Config file location and binaries and build systems like autoconf - c++

Most build systems, like autoconf/automake, allow the user to specify a target directory to install the various files needed to run a program. Usually this includes binaries, configuration files, auxilliary scripts, etc.
At the same time, many executables often need to read from a configuration file in order to allow a user to modify runtime settings.
Ultimately, a program (let's say, a compiled C or C++ program) needs to know where to look to read in a configuration file. A lot of times I will just hardcode the path as something like /etc/MYPROGAM/myprog.conf, which of course is not a great idea.
But in the autoconf world, the user might specify an install prefix, meaning that the C/C++ code needs to somehow be aware of this.
One solution would be to specify a C header file with a .in prefix, which simply is used to define the location of the config file, like:
const char* config_file_path = "#CONFIG_FILE_PATH#"; // `CONFIG_FILE_PATH` is defined in `configure.ac`.
This file would be named something like constants.h.in and it would have to be process by the configure.ac file to output an actual header file, which could then be included by whatever .c or .cpp files need it.
Is that the usual way this sort of thing is handled? It seems a bit cumbersome, so I wonder if there is a better solution.

There are basically two choices for how to handle this.
One choice is to do what you've mentioned -- compile the relevant paths into the resulting executable or library. Here it's worth noting that if files are installed in different sub-parts of the prefix, then each such thing needs its own compile-time path. That's because the user might specify --prefix separately from --bindir, separately from --libexecdir, etc. Another wrinkle here is that if there are multiple installed programs that refer to each other, then this process probably should take into account the program name transform (see docs on --program-transform-name and friends).
That's all if you want full generality of course.
The other approach is to have the program be relocatable at runtime. Many GNU projects (at least gdb and gcc) take this approach. The idea here is for the program to attempt to locate its data in the filesystem at runtime. In the projects I'm most familiar with, this is done with the libiberty function make_relative_prefix; but I'm sure there are other ways.
This approach is often touted as being nicer because it allows the program's install tree to be tared up and delivered to users; but in the days of distros it seems to me that it isn't as useful as it once was. I think the primary drawback of this approach is that it makes it very hard, if not impossible, to support both relocation and the full suite of configure install-time options.
Which one you pick depends, I think, on what your users want.
Also, to answer the above comment: I think changing the prefix between configure- and build time is not really supported, though it may work with some packages. Instead the usual way to handle this is either to require the choice at configure time, or to supported the somewhat more limited DESTDIR feature.

Related

How to get a hash of the source code in Rust

For checking compatibility between a client and a server, I'd like to compare the versions of their shared code. I have implemented this by a build.rs that creates a hash of the content of all files under src/, but it seems brittle. I want to make sure I calculate a hash of the files that are actually used in the build. Surely this is already done at some point during the build process.
There is a feature to Add hash of source files in debug info, which sounds promising, but it adds the data to the debug information, and I want to get it at runtime.
If you want to check for compatibility, then I'm afraid just checking your source code is not enough (at least, this isn't always true). You might rely on some crate for some feature and if you change the version of it, it might still fail.
So if you want to go the hashing route, then you'll need to hash the entire project including the Cargo.lock file. And yes, you would indeed do it through the build.rs script.
However, I would not go that route.
Version numbers are usually used for this. In Rust, you're supposed to use semantic versioning. With this system you can see from the numbers whether two crate versions are compatible.

building c++ from header-include information

With Haskell I can "ghc --make Main.hs" and with Ada I can just "gnatmake Main.adb" and that is it.
Isn't there anything like that for C++? Why not?
I do not want to write buildscripts nor makefiles for C++ projects. I have those damn #include lines there. Why isn't that information enough?
note: I vaguely remember a feature like that mentioned once in the context of Clang.
update:
It seems possible to have a C++ compiler (or write a wrapper script), that recursively looks for included headers and expects either sourcefile or objectfile to be in the same dir; compiles and links everything automatically. Skipping if source and object file have same timestamp. Link-time-decisions are left as a special case necessiating a compiler-flag/switch to select one from multiple source/object-files for the single header, or specify dynamic linking. E.g.: awesomecompiler Main.cpp --link-choice=DrawStuff.h-->DrawStuffGL.o.
Hence there must be another reason for using make or its alternatives. What is it?
To rephrase the question as suggested by martin:
Why can't we just get all the build-information from the header files, and a few commandline flags for special cases?
Some languages have a system whereby the "main" file is specifying everything else that makes up that program as "modules" or some such. Ada certainly does, I don't know enough Haskell to comment there.
C and C++ rely on modules being compiled separately and linked at the end, and the software developer decides exactly what the process is here. This has some advantages, such as that you can build a module for one solution, and a different module for another solution. This is not possible if all modules are specified by the source file (you then have to make the files appear/disappear in the filesystem instead, which of course means some other "work outside the compiler", so you end up with a makefile or some such anyway).
Say for example, we make a game, and we encapsulate all the drawing, then we can choose whether we use DirectX9, DirectX10, OpenGL or OpenGLES by simply linking with the relevant "DrawStuffDX9.o" or "DrawStuffGL.o" etc.
As always, freedom means more choice, but also a bit more work. Just like buying a ready made piece of furniture is simple, but if you want it to fit exactly to your house, floor to ceiling, you have to be lucky. A bespoke piece of furniture will cost more and require some detailed measurements, but will be a perfect fit for your home.
[gcc -MM somefile(s) will give you a rudimentary makefile for the source file(s) you specified].

When writing a portable c/c++ program, what is the best way to consume external files?

I'm pretty new to the c/c++ scene, I've been spoon fed on virtual machines for too long.
I'm modifying an existing C++ tool that we use across the company. The tool is being used on all the major operating systems (Windows, Mac, Ubuntu, Solaris, etc). I'm attempting to bridge the tool with another tool written Java. Basically I just need to call java -jar from the C++ tool.
The problem is, how do I know where the jar is located on the user's computer? The c++ executables are currently checked into Perforce, and users sync and then call the exe, presumably leaving the exe in place (although they could copy it somewhere else). My current solution checks in the jar file beside the exe.
I've looked at multiple ways to calculate the location of the exe from C++, but none of them seem to be portable. On windows there is a 'GetModuleLocation' and on posix you can look at the procs/process.exe info to figure out the location of the process. And on most systems you can look at argv[0] to figure out where the exe is. But most of these techniques are 100% guaranteed due to users using $PATH, symlinks, etc to call the exe.
So, any guidance on the right way to do this that will always work? I guess I have no problem ifdef'ing multiple solutions, but it seems like there should be a more elegant way to do this.
I don't believe there is a portable way of doing this. The C++ standard itself does not define anything about the execution environment. The best you get is the std::system call, and that can fail for things like Unicode characters in path names.
The issue here is that C and C++ are both used on systems where there's no such thing as an operating system. No such thing as $PATH. Therefore, it would be nonsensical for the standards committee to require a conforming implementation provide such features.
I would just write one implementation for POSIX, one for Mac (if it differs significantly from the POSIX one... never used it so I'm not sure), and one for Windows (Select which one at compilation time with the preprocessor). It's maybe 3 function calls for each one; not a lot of code, and you'll be sure you're following the conventions of your target platform.
I'd like to point you to a few URLs which might help you find where the current executable was located. It does not appear as if there is one method for all (aside from the ARGV[0] + path search method which as you note is spoofable, but…are you really in a threat environment such that this is likely to happen?).
How to get the application executable name in WindowsC++/CLI?
https://superuser.com/questions/49104/handy-tool-to-find-executable-program-location
Finding current executable's path without /proc/self/exe
How do I find the location of the executable in C?
There are several solutions, none of them perfect. Under Windows, as
you have said, you can use GetModuleLocation, but that's not available
under Unix. You can try to simulate how the shell works, using
argv[0] and getenv("PATH"), but that's not easy, and it's not 100%
reliable either. (Under Unix, and I think under Windows as well, the
spawning application can hoodwink you, and put any sort of junk in
argv[0].) The usual solution under Unix is to require an environment
variable, e.g. MYAPPLICATION_HOME, which should contain the root
directory where you're application is installed; the application won't
start without it. Or you can ask the user to specify the root path with
a command line option.
In practice, I usually use all three: the command line option has
precedence, and is very useful when testing; the environment variable
works well in the Unix world, since it's what people are used to; and if
neither are present, I'll try to work out the location from where I was
started, using system dependent code: GetModuleLocation under Windows,
and getenv("PATH") and all the rest under Unix. (The Unix solution
isn't that hard if you already have code for breaking a string into
fields, and are using boost::filesystem.)
Good solution would be to write your custom function that is guaranteed to work in every platform you use. Preferably should use runtime checks if it worked, and then fallback to ifdefs only if some way of detecting it is not available in all platforms. But it might not be easy to detect if your code that executes correctly for example argv[0] would return the correct path...

C++ internal code reuse: compile everything or share the library / dynamic library?

General question:
For unmanaged C++, what's better for internal code sharing?
Reuse code by sharing the actual source code? OR
Reuse code by sharing the library / dynamic library (+ all the header files)
Whichever it is: what's your strategy for reducing duplicate code (copy-paste syndrome), code bloat?
Specific example:
Here's how we share the code in my organization:
We reuse code by sharing the actual source code.
We develop on Windows using VS2008, though our project actually needs to be cross-platform. We have many projects (.vcproj) committed to the repository; some might have its own repository, some might be part of a repository. For each deliverable solution (.sln) (e.g. something that we deliver to the customer), it will svn:externals all the necessary projects (.vcproj) from the repository to assemble the "final" product.
This works fine, but I'm quite worried about eventually the code size for each solution could get quite huge (right now our total code size is about 75K SLOC).
Also one thing to note is that we prevent all transitive dependency. That is, each project (.vcproj) that is not an actual solution (.sln) is not allowed to svn:externals any other project even if it depends on it. This is because you could have 2 projects (.vcproj) that might depend on the same library (i.e. Boost) or project (.vcproj), thus when you svn:externals both projects into a single solution, svn:externals will do it twice. So we carefully document all dependencies for each project, and it's up to guy that creates the solution (.sln) to ensure all dependencies (including transitive) are svn:externals as part of the solution.
If we reuse code by using .lib , .dll instead, this would obviously reduce the code size for each solution, as well as eliminiate the transitive dependency mentioned above where applicable (exceptions are, for example, third-party library/framework that use dll like Intel TBB and the default Qt)
Addendum: (read if you wish)
Another motivation to share source code might be summed up best by Dr. GUI:
On top of that, what C++ makes easy is
not creation of reusable binary
components; rather, C++ makes it
relatively easy to reuse source code.
Note that most major C++ libraries are
shipped in source form, not compiled
form. It's all too often necessary to
look at that source in order to
inherit correctly from an object—and
it's all too easy (and often
necessary) to rely on implementation
details of the original library when
you reuse it. As if that isn't bad
enough, it's often tempting (or
necessary) to modify the original
source and do a private build of the
library. (How many private builds of
MFC are there? The world will never
know . . .)
Maybe this is why when you look at libraries like Intel Math Kernel library, in their "lib" folder, they have "vc7", "vc8", "vc9" for each of the Visual Studio version. Scary stuff.
Or how about this assertion:
C++ is notoriously non-accommodating
when it comes to plugins. C++ is
extremely platform-specific and
compiler-specific. The C++ standard
doesn't specify an Application Binary
Interface (ABI), which means that C++
libraries from different compilers or
even different versions of the same
compiler are incompatible. Add to that
the fact that C++ has no concept of
dynamic loading and each platform
provide its own solution (incompatible
with others) and you get the picture.
What's your thoughts on the above assertion? Does something like Java or .NET face these kinds of problems? e.g. if I produce a JAR file from Netbeans, will it work if I import it into IntelliJ as long as I ensure that both have compatible JRE/JDK?
People seem to think that C specifies an ABI. It doesn't, and I'm not aware of any standardised compiled language that does. To answer your main question, use of libraries is of course the way to go - I can't imagine doing anything else.
One good reason to share the source code: Templates are one of C++'s best features because they are an elegant way around the rigidity of static typing, but by their nature are a source-level construct. If you focus on binary-level interfaces instead of source-level interfaces, your use of templates will be limited.
We do the same. Trying to use binaries can be a real problem if you need to use shared code on different platforms, build environments, or even if you need different build options such as static vs. dynamic linking to the C runtime, different structure packing settings, etc..
I typically set projects up to build as much from source on-demand as possible, even with third-party code such as zlib and libpng. For those things that must be built separately, e.g. Boost, I typically have to build 4 or 8 different sets of binaries for the various combinations of settings needed (debug/release, VS7.1/VS9, static/dynamic), and manage the binaries along with the debugging information files in source control.
Of course, if everyone sharing your code is using the same tools on the same platform with the same options, then it's a different story.
I never saw shared libraries as a way to reuse code from an old project into a new one. I always thought it was more about sharing a library between different applications that you're developing at about the same time, to minimize bloat.
As far as copy-paste syndrome goes, if I copy and paste it in more than a couple places, it needs to be its own function. That's independent of whether the library is shared or not.
When we reuse code from an old project, we always bring it in as source. There's always something that needs tweaking, and its usually safer to tweak a project-specific version than to tweak a shared version that can wind up breaking the previous project. Going back and fixing the previous project is out of the question because 1) it worked (and shipped) already, 2) it's no longer funded, and 3) the test hardware needed may no longer be available.
For example, we had a communication library that had an API for sending a "message", a block of data with a message ID, over a socket, pipe, whatever:
void Foo:Send(unsigned messageID, const void* buffer, size_t bufSize);
But in a later project, we needed an optimization: the message needed to consist of several blocks of data in different parts of memory concatenated together, and we couldn't (and didn't want to, anyway) do the pointer math to create the data in its "assembled" form in the first place, and the process of copying the parts together into a unified buffer was taking too long. So we added a new API:
void Foo:SendMultiple(unsigned messageID, const void** buffer, size_t* bufSize);
Which would assemble the buffers into a message and send it. (The base class's method allocated a temporary buffer, copied the parts together, and called Foo::Send(); subclasses could use this as a default or override it with their own, e.g. the class that sent the message on a socket would just call send() for each buffer, eliminating a lot of copies.)
Now, by doing this, we have the option of backporting (copying, really) the changes to the older version, but we're not required to backport. This gives the managers flexibility, based on the time and funding constraints they have.
EDIT: After reading Neil's comment, I thought of something that we do that I need to clarify.
In our code, we do lots of "libraries". LOTS of them. One big program I wrote had something like 50 of them. Because, for us and with our build setup, they're easy.
We use a tool that auto-generates makefiles on the fly, taking care of dependencies and almost everything. If there's anything strange that needs to be done, we write a file with the exceptions, usually just a few lines.
It works like this: The tool finds everything in the directory that looks like a source file, generates dependencies if the file changed, and spits out the needed rules. Then it makes a rule to take eveything and ar/ranlib it into a libxxx.a file, named after the directory. All the objects and library are put in a subdirectory that is named after the target platform (this makes cross-compilation easy to support). This process is then repeated for every subdirectory (except the object file subdirs). Then the top-level directory gets linked with all the subdirs' libraries into the executable, and a symlink is created, again, naked after the top-level directory.
So directories are libraries. To use a library in a program, make a symbolic link to it. Painless. Ergo, everything's partitioned into libraries from the outset. If you want a shared lib, you put a ".so" suffix on the directory name.
To pull in a library from another project, I just use a Subversion external to fetch the needed directories. The symlinks are relative, so as long as I don't leave something behind it still works. When we ship, we lock the external reference to a specific revision of the parent.
If we need to add functionality to a library, we can do one of several things. We can revise the parent (if it's still an active project and thus testable), tell Subversion to use the newer revision and fix any bugs that pop up. Or we can just clone the code, replacing the external link, if messing with the parent is too risky. Either way, it still looks like a "library" to us, but I'm not sure that it matches the spirit of a library.
We're in the process of moving to Mercurial, which has no "externals" mechanism so we have to either clone the libraries in the first place, use rsync to keep the code synced between the different repositories, or force a common directory structure so you can have hg pull from multiple parents. The last option seems to be working pretty well.

Where do I learn "what I need to know" about C++ compilers?

I'm just starting to explore C++, so forgive the newbiness of this question. I also beg your indulgence on how open ended this question is. I think it could be broken down, but I think that this information belongs in the same place.
(FYI -- I am working predominantly with the QT SDK and mingw32-make right now and I seem to have configured them correctly for my machine.)
I knew that there was a lot in the language which is compiler-driven -- I've heard about pre-compiler directives, but it seems like someone would be able to write books the different C++ compilers and their respective parameters. In addition, there are commands which apparently precede make (like qmake, for example (is this something only in QT)).
I would like to know if there is any place which gives me an overview of what compilers are out there, and what their different options are. I'd also like to know how each of them views Makefiles (it seems that there is a difference in syntax between them?).
If there is no website regarding, "Everything you need to know about C++ compilers but were afraid to ask," what would be the best way to go about learning the answers to these questions?
Concerning the "numerous options of the various compilers"
A piece of good news: you needn't worry about the detail of most of these options. You will, in due time, delve into this, only for the very compiler you use, and maybe only for the options that pertain to a particular set of features. But as a novice, generally trust the default options or the ones supplied with the make files.
The broad categories of these features (and I may be missing a few) are:
pre-processor defines (now, you may need a few of these)
code generation (target CPU, FPU usage...)
optimization (hints for the compiler to favor speed over size and such)
inclusion of debug info (which is extra data left in the object/binary and which enables the debugger to know where each line of code starts, what the variables names are etc.)
directives for the linker
output type (exe, library, memory maps...)
C/C++ language compliance and warnings (compatibility with previous version of the compiler, compliance to current and past C Standards, warning about common possible bug-indicative patterns...)
compile-time verbosity and help
Concerning an inventory of compilers with their options and features
I know of no such list but I'm sure it probably exists on the web. However, suggest that, as a novice you worry little about these "details", and use whatever free compiler you can find (gcc certainly a great choice), and build experience with the language and the build process. C professionals may likely argue, with good reason and at length on the merits of various compilers and associated runtine etc., but for generic purposes -and then some- the free stuff is all that is needed.
Concerning the build process
The most trivial applications, such these made of a single unit of compilation (read a single C/C++ source file), can be built with a simple batch file where the various compiler and linker options are hardcoded, and where the name of file is specified on the command line.
For all other cases, it is very important to codify the build process so that it can be done
a) automatically and
b) reliably, i.e. with repeatability.
The "recipe" associated with this build process is often encapsulated in a make file or as the complexity grows, possibly several make files, possibly "bundled together in a script/bat file.
This (make file syntax) you need to get familiar with, even if you use alternatives to make/nmake, such as Apache Ant; the reason is that many (most?) source code packages include a make file.
In a nutshell, make files are text files and they allow defining targets, and the associated command to build a target. Each target is associated with its dependencies, which allows the make logic to decide what targets are out of date and should be rebuilt, and, before rebuilding them, what possibly dependencies should also be rebuilt. That way, when you modify say an include file (and if the make file is properly configured) any c file that used this header will be recompiled and any binary which links with the corresponding obj file will be rebuilt as well. make also include options to force all targets to be rebuilt, and this is sometimes handy to be sure that you truly have a current built (for example in the case some dependencies of a given object are not declared in the make).
On the Pre-processor:
The pre-processor is the first step toward compiling, although it is technically not part of the compilation. The purposes of this step are:
to remove any comment, and extraneous whitespace
to substitute any macro reference with the relevant C/C++ syntax. Some macros for example are used to define constant values such as say some email address used in the program; during per-processing any reference to this constant value (btw by convention such constants are named with ALL_CAPS_AND_UNDERSCORES) is replace by the actual C string literal containing the email address.
to exclude all conditional compiling branches that are not relevant (the #IFDEF and the like)
What's important to know about the pre-processor is that the pre-processor directive are NOT part of the C-Language proper, and they serve several important functions such as the conditional compiling mentionned earlier (used for example to have multiple versions of the program, say for different Operating Systems, or indeed for different compilers)
Taking it from there...
After this manifesto of mine... I encourage to read but little more, and to dive into programming and building binaries. It is a very good idea to try and get a broad picture of the framework etc. but this can be overdone, a bit akin to the exchange student who stays in his/her room reading the Webster dictionary to be "prepared" for meeting native speakers, rather than just "doing it!".
Ideally you shouldn't need to care what C++ compiler you are using. The compatability to the standard has got much better in recent years (even from microsoft)
Compiler flags obviously differ but the same features are generally available, it's just a differently named option to eg. set warning level on GCC and ms-cl
The build system is indepenant of the compiler, you can use any make with any compiler.
That is a lot of questions in one.
C++ compilers are a lot like hammers: They come in all sizes and shapes, with different abilities and features, intended for different types of users, and at different price points; ultimately they all are for doing the same basic task as the others.
Some are intended for highly specialized applications, like high-performance graphics, and have numerous extensions and libraries to assist the engineer with those types of problems. Others are meant for general purpose use, and aren't necessarily always the greatest for extreme work.
The technique for using each type of hammer varies from model to model—and version to version—but they all have a lot in common. The macro preprocessor is a standard part of C and C++ compilers.
A brief comparison of many C++ compilers is here. Also check out the list of C compilers, since many programs don't use any C++ features and can be compiled by ordinary C.
C++ compilers don't "view" makefiles. The rules of a makefile may invoke a C++ compiler, but also may "compile" assembly language modules (assembling), process other languages, build libraries, link modules, and/or post-process object modules. Makefiles often contain rules for cleaning up intermediate files, establishing debug environments, obtaining source code, etc., etc. Compilation is one link in a long chain of steps to develop software.
Also, many development environments abstract the makefile into a "project file" which is used by an integrated development environment (IDE) in an attempt to simplify or automate many programming tasks. See a comparison here.
As for learning: choose a specific problem to solve and dive in. The target platform (Linux/Windows/etc.) and problem space will narrow the choices pretty well. Which you choose is often linked to other considerations, such as working for a particular company, or being part of a team. C++ has something like 95% commonality among all its flavors. Learn any one of them well, and learning the next is a piece of cake.