Weird OpenGL issue when factoring out code - c++

So I have some code that creates a buffer and puts some vertices in it:
GLuint vertexbuffer;
glGenBuffers(1, &vertexbuffer);
glBindBuffer(GL_ARRAY_BUFFER, vertexbuffer);
glBufferData(GL_ARRAY_BUFFER, sizeof(g_vertex_buffer_data), g_vertex_buffer_data, GL_STATIC_DRAW);
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 0, 0);
glBindBuffer(GL_ARRAY_BUFFER, 0);
glEnableVertexAttribArray(0);
I also bind it to a shader attribute:
glBindAttribLocation(programID, 0, "pos");
And, finally, draw it:
glBindBuffer(GL_ARRAY_BUFFER, vertexbuffer);
glDrawArrays(GL_TRIANGLES, 0, 3);
Of course, there is other code, but all of this stuff runs fine (displays a red triangle on the screen)
However, the instant I try to factor this stuff out in a struct, nothing will display (here is one of the methods):
void loadVerts(GLfloat verts[], int indices)
{
GLuint vertexbuffer;
glGenBuffers(1, &vertexbuffer);
glBindBuffer(GL_ARRAY_BUFFER, vertexbuffer);
glBufferData(GL_ARRAY_BUFFER, sizeof(verts), verts, GL_STATIC_DRAW);
glVertexAttribPointer(indice, indices, GL_FLOAT, GL_FALSE, 0, 0);
glBindBuffer(GL_ARRAY_BUFFER, 0);
glEnableVertexAttribArray(indice);
indice++;
buffers.push_back(vertexbuffer);
}
I've quadruple checked this code, and I've also traced it to make sure it would match the code above whenever its called. My draw call is almost the same as my original:
void draw()
{
glBindBuffer(GL_ARRAY_BUFFER, buffers.at(0));
glDrawArrays(GL_TRIANGLES, 0, 3);
}
I've also tried making this a class, and adding/changing many parts of the code. buffers and indice are just some vars to keep track of buffers and attribute indexes. buffers is an std::vector<GLuint> FWIW.

The main problem is here:
void loadVerts(GLfloat verts[], int indices)
{
...
glBufferData(GL_ARRAY_BUFFER, sizeof(verts), verts, GL_STATIC_DRAW);
The type of the verts argument is a pointer to GLfloat. Your function signature is equivalent to:
void loadVerts(GLfloat* verts, int indices)
So sizeof(verts), which is used as the second argument to glBufferData(), is 4 on a 32-bit architecture, 8 on a 64-bit architecture.
You will need to pass the size as an additional argument to this function, and use that value as the second argument to glBufferData().
These statements also look somewhat confusing:
glVertexAttribPointer(indice, indices, GL_FLOAT, GL_FALSE, 0, 0);
glEnableVertexAttribArray(indice);
I can't tell if there's a real problem, but you have two variables with very similar names that are used very differently. indice needs to be the location of the attribute in your vertex shader, while indices needs to be the number of components in the attribute.

Related

How to fix OpenGL stack corruption when exiting

I've been following some opengl tutorials in C++ (moving from using java, so I know openGL alright, but memory management, pointers, etc I'm a little slow on) from http://www.opengl-tutorial.org, and I'm currently having problems with an error when exiting my application.
I am trying to add a normals vertex attrib array. It seems to work fine during runtime, but when I exit the application, I get this:
"Run-Time Check Failure #2 - Stack around the variable 'normalbuffer' was corrupted."
I of course did some googling, and found that this error was normally related to arrays and index out of bounds errors, but normalbuffer is just a GLuint. As far as I can tell, the code for implementing my normalbuffer is identical to that implementing my vertex positions and my uv texture map.
Here is my initialization code:
// Create Vertex Buffer
GLuint vertexbuffer;
glGenBuffers(1, &vertexbuffer);
glBindBuffer(GL_ARRAY_BUFFER, vertexbuffer);
glBufferData(GL_ARRAY_BUFFER, vertices.size() * sizeof(glm::vec3), &vertices[0], GL_STATIC_DRAW);
// Create UV Buffer
GLuint uvbuffer;
glGenBuffers(1, &uvbuffer);
glBindBuffer(GL_ARRAY_BUFFER, uvbuffer);
glBufferData(GL_ARRAY_BUFFER, uvs.size() * sizeof(glm::vec2), &uvs[0], GL_STATIC_DRAW);
// Create Normals Buffer
GLuint normalbuffer;
glGenBuffers(2, &normalbuffer);
glBindBuffer(GL_ARRAY_BUFFER, normalbuffer);
glBufferData(GL_ARRAY_BUFFER, normals.size() * sizeof(glm::vec3), &normals[0], GL_STATIC_DRAW);
And then my looped code (run every frame):
//...
//Load the vertex positions array
glEnableVertexAttribArray(0);
glBindBuffer(GL_ARRAY_BUFFER, vertexbuffer);
glVertexAttribPointer(
0, //Specify which attribute index we are using
3, //Size of the attribute
GL_FLOAT, //Type of attribute
GL_FALSE, //Normalized?
0, //Stride
(void*)0 //Array Buffer Offset
);
//Load the UV positions array
glEnableVertexAttribArray(1);
glBindBuffer(GL_ARRAY_BUFFER, uvbuffer);
glVertexAttribPointer(
1, //Specify which attribute index we are using
2, //Size of the attribute
GL_FLOAT, //Type of attribute
GL_FALSE, //Normalized?
0, //Stride
(void*)0 //Array Buffer Offset
);
//Load the normal vectors array
glEnableVertexAttribArray(2);
glBindBuffer(GL_ARRAY_BUFFER, normalbuffer);
glVertexAttribPointer(
2, //Specify which attribute index we are using
3, //Size of the attribute
GL_FLOAT, //Type of attribute
GL_FALSE, //Normalized?
0, //Stride
(void*)0 //Array Buffer Offset
);
//glDrawArrays() happens here
glDisableVertexAttribArray(0);
glDisableVertexAttribArray(1);
glDisableVertexAttribArray(2);
//...
This error doesn't seem to happen at all during run time, only when I close the program by hitting the escape key (so I'm not killing the process in VS).
The 1st parameter of glGenBuffers specifies the number of buffer object names to be generated.
You generate 2 objects, but pass the address of the single variable normalbuffer to glGenBuffers.
2 objects are generated and the names of the objects are written to the memory addressed by &normalbuffer and (&normalbuffer) + 1. This causes the stack corruption.
Change the number of objects to be generated:
GLuint normalbuffer;
glGenBuffers(2, &normalbuffer);
glGenBuffers(1, &normalbuffer);

How to properly add OpenGL code into an external function

I am attempting to be able to take some OpenGL code that draws objects from a vertex array and add it to a class file. However, the code only runs currently when I have it in my main.cpp file. I call init() from my main() function, before heading into my draw loop.
init(){
GLuint containerVAO, VBO;
glGenVertexArrays(1, &containerVAO);
glGenBuffers(1, &VBO);
glBindBuffer(GL_ARRAY_BUFFER, VBO);
glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW);
glBindVertexArray(containerVAO);
// Position attribute
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 6 * sizeof(GLfloat), (GLvoid*)0);
glEnableVertexAttribArray(0);
// Normal attribute
glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 6 * sizeof(GLfloat),(GLvoid*)(3 * sizeof(GLfloat)));
glEnableVertexAttribArray(1);
glBindVertexArray(0);
}
The relevant code in my draw loop:
glUseProgram(noTextureShaderID);
glBindVertexArray(containerVAO);
///many different uniforms added here
glDrawArrays(GL_TRIANGLES, 0, 36);
This creates a cube no problem.
Now, when I replace the code inside my init() function (which initialises all objects, not just this one, I change it to this:
init(){
square.init(noTextureShaderID, vertices[], NULL, 36);
//Square is a global variable within my main.cpp file
}
And then I use this function:
void Mesh::init(const GLuint& shaderid, GLfloat vertices[], const char* tex_file, int num_vertices)
{
GLuint VBO;
vao = NULL; //This is a variable within the Mesh class
g_point_count = num_vertices;
glGenVertexArrays(1, &vao);
glGenBuffers(1, &VBO);
glBindBuffer(GL_ARRAY_BUFFER, VBO);
glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW);
glBindVertexArray(vao);
// Position attribute
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 6 * sizeof(GLfloat), (GLvoid*)0);
glEnableVertexAttribArray(0);
// Normal attribute
glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 6 * sizeof(GLfloat), (GLvoid*)(3 * sizeof(GLfloat)));
glEnableVertexAttribArray(1);
glBindVertexArray(0);
}
Then, in my draw function I call this instead:
glUseProgram(noTextureShaderID);
glBindVertexArray(square.vao);
///many different uniforms added here
glDrawArrays(GL_TRIANGLES, 0, g_point_count);
But even though both programs seem to have the same code, only the first version generates a cube. What am I missing in this regard?
Your code is not identical in both cases, and this has nothing to do with OpenGL:
void Mesh::init(const GLuint& shaderid, GLfloat vertices[], const char* tex_file, int num_vertices)
{
// ...
glBufferData(..., sizeof(vertices), ...);
}
vertices is passed by reference here, the inner function will never see the array, and sizeof(vertices) will be identical to sizeof(GLfloat*), which is typically 4 or 8 on todays machines. Hence, your buffer is just containing the first one or two floats.
You either have to explicitely provide the array size as an additional parameter, or you use some (reference to an) higher-level object like std:vector, which completely manages the array internally and allows you to query the size.

Order of arguments in glBindBuffer

I'm creating a VBO, populating it with data, then that data is being rendered using the following code:
// Buffer data
glGenBuffers(1, &VBOID);
glBindBuffer(VBOID, GL_ARRAY_BUFFER); // Shouldn't these be the other way around?
glBufferData(GL_ARRAY_BUFFER, bufferSize, buffer, GL_STATIC_DRAW);
glVertexPointer(3, GL_FLOAT, 0, buffer);
// Draw arrays
glBindBuffer(VBOID, GL_ARRAY_BUFFER);
glEnableClientState(GL_VERTEX_ARRAY);
glDrawArrays(GL_TRIANGLES, 0, bufferSize);
glDisableClientState(GL_VERTEX_ARRAY);
However, the openGL reference (https://www.opengl.org/sdk/docs/man/html/glBindBuffer.xhtml) says that the glBindBuffer function takes the target TYPE of buffer, then the buffer ID, not the other way around. When I put them in that way around, nothing draws to the screen, however when they're the 'wrong' way around, it seems to work just fine.
To clarify:
// Should be this
glBindBuffer(GL_ARRAY_BUFFER, VBOID);
// Only this works
glBindBuffer(VBOID, GL_ARRAY_BUFFER);
I feel like this is one of those really dumb issues, but I just can't see where the problem is. Could anyone shed some light on the situation?
Thanks.
It should definitely be written like this:
glBindBuffer(GL_ARRAY_BUFFER, VBOID);
I can't explain why reversing those arguments results in successful drawing. However, there's a few oddities you have in your code that you need to revise:
glVertexPointer(3, GL_FLOAT, 0, buffer);
This is immediate mode code. I don't think it's been deprecated, but the correct way to write this is
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, sizeof(GLfloat) * 3, nullptr);
On top of that, you have two references to setting client state—glEnableClientState(GL_VERTEX_ARRAY); and glDisableClientState(GL_VERTEX_ARRAY);—These are also part of immediate mode, and should be removed.
Finally, the whole thing should be wrapped up inside a Vertex Array Object, like so:
glGenVertexArrays(1, &vao);
glBindVertexArray(vao);
glGenBuffers(1, &VBOID);
glBindBuffer(GL_ARRAY_BUFFER, VBOID);
glBufferData(GL_ARRAY_BUFFER, bufferSize, buffer, GL_STATIC_DRAW);
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, sizeof(GLfloat) * 3, nullptr);
glEnableVertexAttribArray(0);
// Draw arrays
glBindVertexArray(vao);
glDrawArrays(GL_TRIANGLES, 0, num_of_vertices); //num_of_vertices is usually the number of floats in the buffer divided by the number of dimensions of the vertex, or 3 in this case, since each vertex is a vec3 object.

Should I use the same VBO for passing different vertex attributes? Or should I use 2?

I know the glVertexAttribPointer will use the values from the VBO that was bound when it was called. But can you buffer twice onto the same object? Would it replace what was in? Or can you clear a buffer? I don't know if this approach is correct:
glBindVertexArray(VAO);
glBindBuffer(GL_ARRAY_BUFFER, VBO); // shared VBO
glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW);
glEnableVertexAttribArray(posLoc);
glVertexAttribPointer(posLoc, 3, GL_FLOAT, GL_FALSE, 3*sizeof(GLfloat),(GLvoid*)0);
glBufferData(GL_ARRAY_BUFFER, sizeof(colours), colours, GL_STATIC_DRAW);
glEnableVertexAttribArray(colLoc);
glVertexAttribPointer(colLoc, 4, GL_FLOAT, GL_FALSE, 4*sizeof(GLfloat),(GLvoid*)0);
glBindBuffer(GL_ARRAY_VERTEX, 0);
glBindVertexArray(0);
Or if I should be using 2 VBOs for buffering the data. What would happen if you call the glBufferData function twice to the same bound vertex array object? This is the other way I would think of for doing this:
glBindVertexArray(VAO);
glBindBuffer(GL_ARRAY_BUFFER, VBO1); // VBO for vertices
glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW);
glEnableVertexAttribArray(posLoc);
glVertexAttribPointer(posLoc, 3, GL_FLOAT, GL_FALSE, 3*sizeof(GLfloat),(GLvoid*)0);
glBindBuffer(GL_ARRAY_BUFFER, VBO2); // VBO for colours
glBufferData(GL_ARRAY_BUFFER, sizeof(colours), colours, GL_STATIC_DRAW);
glEnableVertexAttribArray(colLoc);
glVertexAttribPointer(colLoc, 4, GL_FLOAT, GL_FALSE, 4*sizeof(GLfloat),(GLvoid*)0);
glBindBuffer(GL_ARRAY_BUFFER, 0);
glBindVertexArray(0);
The top example won't work as the second glBufferData call will overwrite all of the buffer space in the second one. To properly do that, you have to use the stride and pointer arguments properly, so that the data is interleaved. It's easier (and cleaner imo) to just have multiple VBO's, each storing a separate set of data.

glDrawElements not drawing anything to screen

Whenever I try to draw a mesh using glDrawElements, my program gets no errors, but it doesn't draw anything. I'm pretty sure that the issue is with glDrawElements since if I comment glDrawElements out and replace it with glDrawArrays, it works perfectly. So, my question is, can anyone help me figure out why this is happening?
Also glGetError returns no errors
#include "Mesh.h"
Mesh::Mesh(glm::vec2* vertices, glm::vec2* texCoords, GLushort* elements, int size)
{
m_size = size;
m_vertices = vertices;
m_elements = elements;
movementVector = glm::vec2(0.0f, 0.0f);
glGenVertexArrays(1, &vao);
glBindVertexArray(vao);
glGenBuffers(1, &vbo);
glBindBuffer(GL_ARRAY_BUFFER, vbo);
glBufferData(GL_ARRAY_BUFFER, size * sizeof(float), vertices, GL_DYNAMIC_DRAW);
glEnableVertexAttribArray(0);
glBindBuffer(GL_ARRAY_BUFFER, vbo);
glVertexAttribPointer(0, 2, GL_FLOAT, GL_FALSE, 0, NULL);
glGenBuffers(1, &tex_vbo);
glBindBuffer(GL_ARRAY_BUFFER, tex_vbo);
glBufferData(GL_ARRAY_BUFFER, size * sizeof(float), texCoords, GL_STATIC_DRAW);
// note: I assume that vertex positions are location 0
int dimensions = 2; // 2d data for texture coords
glVertexAttribPointer(1, dimensions, GL_FLOAT, GL_FALSE, 0, NULL);
glEnableVertexAttribArray (1); // don't forget this!
glGenBuffers(1, &ebo);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, ebo);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(elements), elements, GL_STATIC_DRAW);
}
Mesh::~Mesh()
{
glDeleteVertexArrays(1, &vbo);
}
void Mesh::Draw()
{
glBindVertexArray(vao);
glEnableVertexAttribArray(0);
//glDrawArrays(GL_TRIANGLES, 0, 8);
glBindBuffer(GL_ARRAY_BUFFER, vbo);
glVertexAttribPointer(0, 2, GL_FLOAT, GL_FALSE, 0, NULL);
glDrawElements(GL_TRIANGLES, 6, GL_UNSIGNED_SHORT, NULL);
glDisableVertexAttribArray(0);
}
Here's a link to the code handling drawing objects to the screen, also, I have tested my shaders, they are fully functional and unless drawing via glDrawElements requires changes to the shaders as well, then there is nothing that is causing this with them.