If you have an input array, and an output array, but you only want to write those elements which pass a certain condition, what would be the most efficient way to do this in AVX2?
I've seen in SSE where it was done like this:
(From:https://deplinenoise.files.wordpress.com/2015/03/gdc2015_afredriksson_simd.pdf)
__m128i LeftPack_SSSE3(__m128 mask, __m128 val)
{
// Move 4 sign bits of mask to 4-bit integer value.
int mask = _mm_movemask_ps(mask);
// Select shuffle control data
__m128i shuf_ctrl = _mm_load_si128(&shufmasks[mask]);
// Permute to move valid values to front of SIMD register
__m128i packed = _mm_shuffle_epi8(_mm_castps_si128(val), shuf_ctrl);
return packed;
}
This seems fine for SSE which is 4 wide, and thus only needs a 16 entry LUT, but for AVX which is 8 wide, the LUT becomes quite large(256 entries, each 32 bytes, or 8k).
I'm surprised that AVX doesn't appear to have an instruction for simplifying this process, such as a masked store with packing.
I think with some bit shuffling to count the # of sign bits set to the left you could generate the necessary permutation table, and then call _mm256_permutevar8x32_ps. But this is also quite a few instructions I think..
Does anyone know of any tricks to do this with AVX2? Or what is the most efficient method?
Here is an illustration of the Left Packing Problem from the above document:
Thanks
AVX2 + BMI2. See my other answer for AVX512. (Update: saved a pdep in 64bit builds.)
We can use AVX2 vpermps (_mm256_permutevar8x32_ps) (or the integer equivalent, vpermd) to do a lane-crossing variable-shuffle.
We can generate masks on the fly, since BMI2 pext (Parallel Bits Extract) provides us with a bitwise version of the operation we need.
Beware that pdep/pext are very slow on AMD CPUs before Zen 3, like 6 uops / 18 cycle latency and throughput on Ryzen Zen 1 and Zen 2. This implementation will perform horribly on those AMD CPUs. For AMD, you might be best with 128-bit vectors using a pshufb or vpermilps LUT, or some of the AVX2 variable-shift suggestions discussed in comments. Especially if your mask input is a vector mask (not an already packed bitmask from memory).
AMD before Zen2 only has 128-bit vector execution units anyway, and 256-bit lane-crossing shuffles are slow. So 128-bit vectors are very attractive for this on Zen 1. But Zen 2 has 256-bit load/store and execution units. (And still slow microcoded pext/pdep.)
For integer vectors with 32-bit or wider elements: Either 1) _mm256_movemask_ps(_mm256_castsi256_ps(compare_mask)).
Or 2) use _mm256_movemask_epi8 and then change the first PDEP constant from 0x0101010101010101 to 0x0F0F0F0F0F0F0F0F to scatter blocks of 4 contiguous bits. Change the multiply by 0xFFU into expanded_mask |= expanded_mask<<4; or expanded_mask *= 0x11; (Not tested). Either way, use the shuffle mask with VPERMD instead of VPERMPS.
For 64-bit integer or double elements, everything still Just Works; The compare-mask just happens to always have pairs of 32-bit elements that are the same, so the resulting shuffle puts both halves of each 64-bit element in the right place. (So you still use VPERMPS or VPERMD, because VPERMPD and VPERMQ are only available with immediate control operands.)
For 16-bit elements, you might be able to adapt this with 128-bit vectors.
For 8-bit elements, see Efficient sse shuffle mask generation for left-packing byte elements for a different trick, storing the result in multiple possibly-overlapping chunks.
The algorithm:
Start with a constant of packed 3 bit indices, with each position holding its own index. i.e. [ 7 6 5 4 3 2 1 0 ] where each element is 3 bits wide. 0b111'110'101'...'010'001'000.
Use pext to extract the indices we want into a contiguous sequence at the bottom of an integer register. e.g. if we want indices 0 and 2, our control-mask for pext should be 0b000'...'111'000'111. pext will grab the 010 and 000 index groups that line up with the 1 bits in the selector. The selected groups are packed into the low bits of the output, so the output will be 0b000'...'010'000. (i.e. [ ... 2 0 ])
See the commented code for how to generate the 0b111000111 input for pext from the input vector mask.
Now we're in the same boat as the compressed-LUT: unpack up to 8 packed indices.
By the time you put all the pieces together, there are three total pext/pdeps. I worked backwards from what I wanted, so it's probably easiest to understand it in that direction, too. (i.e. start with the shuffle line, and work backward from there.)
We can simplify the unpacking if we work with indices one per byte instead of in packed 3-bit groups. Since we have 8 indices, this is only possible with 64bit code.
See this and a 32bit-only version on the Godbolt Compiler Explorer. I used #ifdefs so it compiles optimally with -m64 or -m32. gcc wastes some instructions, but clang makes really nice code.
#include <stdint.h>
#include <immintrin.h>
// Uses 64bit pdep / pext to save a step in unpacking.
__m256 compress256(__m256 src, unsigned int mask /* from movmskps */)
{
uint64_t expanded_mask = _pdep_u64(mask, 0x0101010101010101); // unpack each bit to a byte
expanded_mask *= 0xFF; // mask |= mask<<1 | mask<<2 | ... | mask<<7;
// ABC... -> AAAAAAAABBBBBBBBCCCCCCCC...: replicate each bit to fill its byte
const uint64_t identity_indices = 0x0706050403020100; // the identity shuffle for vpermps, packed to one index per byte
uint64_t wanted_indices = _pext_u64(identity_indices, expanded_mask);
__m128i bytevec = _mm_cvtsi64_si128(wanted_indices);
__m256i shufmask = _mm256_cvtepu8_epi32(bytevec);
return _mm256_permutevar8x32_ps(src, shufmask);
}
This compiles to code with no loads from memory, only immediate constants. (See the godbolt link for this and the 32bit version).
# clang 3.7.1 -std=gnu++14 -O3 -march=haswell
mov eax, edi # just to zero extend: goes away when inlining
movabs rcx, 72340172838076673 # The constants are hoisted after inlining into a loop
pdep rax, rax, rcx # ABC -> 0000000A0000000B....
imul rax, rax, 255 # 0000000A0000000B.. -> AAAAAAAABBBBBBBB..
movabs rcx, 506097522914230528
pext rax, rcx, rax
vmovq xmm1, rax
vpmovzxbd ymm1, xmm1 # 3c latency since this is lane-crossing
vpermps ymm0, ymm1, ymm0
ret
(Later clang compiles like GCC, with mov/shl/sub instead of imul, see below.)
So, according to Agner Fog's numbers and https://uops.info/, this is 6 uops (not counting the constants, or the zero-extending mov that disappears when inlined). On Intel Haswell, it's 16c latency (1 for vmovq, 3 for each pdep/imul/pext / vpmovzx / vpermps). There's no instruction-level parallelism. In a loop where this isn't part of a loop-carried dependency, though, (like the one I included in the Godbolt link), the bottleneck is hopefully just throughput, keeping multiple iterations of this in flight at once.
This can maybe manage a throughput of one per 4 cycles, bottlenecked on port1 for pdep/pext/imul plus popcnt in the loop. Of course, with loads/stores and other loop overhead (including the compare and movmsk), total uop throughput can easily be an issue, too.
e.g. the filter loop in my godbolt link is 14 uops with clang, with -fno-unroll-loops to make it easier to read. It might sustain one iteration per 4c, keeping up with the front-end, if we're lucky.
clang 6 and earlier created a loop-carried dependency with popcnt's false dependency on its output, so it will bottleneck on 3/5ths of the latency of the compress256 function. clang 7.0 and later use xor-zeroing to break the false dependency (instead of just using popcnt edx,edx or something like GCC does :/).
gcc (and later clang) does the multiply by 0xFF with multiple instructions, using a left shift by 8 and a sub, instead of imul by 255. This takes 3 total uops vs. 1 for the front-end, but the latency is only 2 cycles, down from 3. (Haswell handles mov at register-rename stage with zero latency.) Most significantly for this, imul can only run on port 1, competing with pdep/pext/popcnt, so it's probably good to avoid that bottleneck.
Since all hardware that supports AVX2 also supports BMI2, there's probably no point providing a version for AVX2 without BMI2.
If you need to do this in a very long loop, the LUT is probably worth it if the initial cache-misses are amortized over enough iterations with the lower overhead of just unpacking the LUT entry. You still need to movmskps, so you can popcnt the mask and use it as a LUT index, but you save a pdep/imul/pext.
You can unpack LUT entries with the same integer sequence I used, but #Froglegs's set1() / vpsrlvd / vpand is probably better when the LUT entry starts in memory and doesn't need to go into integer registers in the first place. (A 32bit broadcast-load doesn't need an ALU uop on Intel CPUs). However, a variable-shift is 3 uops on Haswell (but only 1 on Skylake).
See my other answer for AVX2+BMI2 with no LUT.
Since you mention a concern about scalability to AVX512: don't worry, there's an AVX512F instruction for exactly this:
VCOMPRESSPS — Store Sparse Packed Single-Precision Floating-Point Values into Dense Memory. (There are also versions for double, and 32 or 64bit integer elements (vpcompressq), but not byte or word (16bit)). It's like BMI2 pdep / pext, but for vector elements instead of bits in an integer reg.
The destination can be a vector register or a memory operand, while the source is a vector and a mask register. With a register dest, it can merge or zero the upper bits. With a memory dest, "Only the contiguous vector is written to the destination memory location".
To figure out how far to advance your pointer for the next vector, popcnt the mask.
Let's say you want to filter out everything but values >= 0 from an array:
#include <stdint.h>
#include <immintrin.h>
size_t filter_non_negative(float *__restrict__ dst, const float *__restrict__ src, size_t len) {
const float *endp = src+len;
float *dst_start = dst;
do {
__m512 sv = _mm512_loadu_ps(src);
__mmask16 keep = _mm512_cmp_ps_mask(sv, _mm512_setzero_ps(), _CMP_GE_OQ); // true for src >= 0.0, false for unordered and src < 0.0
_mm512_mask_compressstoreu_ps(dst, keep, sv); // clang is missing this intrinsic, which can't be emulated with a separate store
src += 16;
dst += _mm_popcnt_u64(keep); // popcnt_u64 instead of u32 helps gcc avoid a wasted movsx, but is potentially slower on some CPUs
} while (src < endp);
return dst - dst_start;
}
This compiles (with gcc4.9 or later) to (Godbolt Compiler Explorer):
# Output from gcc6.1, with -O3 -march=haswell -mavx512f. Same with other gcc versions
lea rcx, [rsi+rdx*4] # endp
mov rax, rdi
vpxord zmm1, zmm1, zmm1 # vpxor xmm1, xmm1,xmm1 would save a byte, using VEX instead of EVEX
.L2:
vmovups zmm0, ZMMWORD PTR [rsi]
add rsi, 64
vcmpps k1, zmm0, zmm1, 29 # AVX512 compares have mask regs as a destination
kmovw edx, k1 # There are some insns to add/or/and mask regs, but not popcnt
movzx edx, dx # gcc is dumb and doesn't know that kmovw already zero-extends to fill the destination.
vcompressps ZMMWORD PTR [rax]{k1}, zmm0
popcnt rdx, rdx
## movsx rdx, edx # with _popcnt_u32, gcc is dumb. No casting can get gcc to do anything but sign-extend. You'd expect (unsigned) would mov to zero-extend, but no.
lea rax, [rax+rdx*4] # dst += ...
cmp rcx, rsi
ja .L2
sub rax, rdi
sar rax, 2 # address math -> element count
ret
Performance: 256-bit vectors may be faster on Skylake-X / Cascade Lake
In theory, a loop that loads a bitmap and filters one array into another should run at 1 vector per 3 clocks on SKX / CSLX, regardless of vector width, bottlenecked on port 5. (kmovb/w/d/q k1, eax runs on p5, and vcompressps into memory is 2p5 + a store, according to IACA and to testing by http://uops.info/).
#ZachB reports in comments that in practice, that a loop using ZMM _mm512_mask_compressstoreu_ps is slightly slower than _mm256_mask_compressstoreu_ps on real CSLX hardware. (I'm not sure if that was a microbenchmark that would allow the 256-bit version to get out of "512-bit vector mode" and clock higher, or if there was surrounding 512-bit code.)
I suspect misaligned stores are hurting the 512-bit version. vcompressps probably effectively does a masked 256 or 512-bit vector store, and if that crosses a cache line boundary then it has to do extra work. Since the output pointer is usually not a multiple of 16 elements, a full-line 512-bit store will almost always be misaligned.
Misaligned 512-bit stores may be worse than cache-line-split 256-bit stores for some reason, as well as happening more often; we already know that 512-bit vectorization of other things seems to be more alignment sensitive. That may just be from running out of split-load buffers when they happen every time, or maybe the fallback mechanism for handling cache-line splits is less efficient for 512-bit vectors.
It would be interesting to benchmark vcompressps into a register, with separate full-vector overlapping stores. That's probably the same uops, but the store can micro-fuse when it's a separate instruction. And if there's some difference between masked stores vs. overlapping stores, this would reveal it.
Another idea discussed in comments below was using vpermt2ps to build up full vectors for aligned stores. This would be hard to do branchlessly, and branching when we fill a vector will probably mispredict unless the bitmask has a pretty regular pattern, or big runs of all-0 and all-1.
A branchless implementation with a loop-carried dependency chain of 4 or 6 cycles through the vector being constructed might be possible, with a vpermt2ps and a blend or something to replace it when it's "full". With an aligned vector store every iteration, but only moving the output pointer when the vector is full.
This is likely slower than vcompressps with unaligned stores on current Intel CPUs.
If you are targeting AMD Zen this method may be preferred, due to the very slow pdepand pext on ryzen (18 cycles each).
I came up with this method, which uses a compressed LUT, which is 768(+1 padding) bytes, instead of 8k. It requires a broadcast of a single scalar value, which is then shifted by a different amount in each lane, then masked to the lower 3 bits, which provides a 0-7 LUT.
Here is the intrinsics version, along with code to build LUT.
//Generate Move mask via: _mm256_movemask_ps(_mm256_castsi256_ps(mask)); etc
__m256i MoveMaskToIndices(u32 moveMask) {
u8 *adr = g_pack_left_table_u8x3 + moveMask * 3;
__m256i indices = _mm256_set1_epi32(*reinterpret_cast<u32*>(adr));//lower 24 bits has our LUT
// __m256i m = _mm256_sllv_epi32(indices, _mm256_setr_epi32(29, 26, 23, 20, 17, 14, 11, 8));
//now shift it right to get 3 bits at bottom
//__m256i shufmask = _mm256_srli_epi32(m, 29);
//Simplified version suggested by wim
//shift each lane so desired 3 bits are a bottom
//There is leftover data in the lane, but _mm256_permutevar8x32_ps only examines the first 3 bits so this is ok
__m256i shufmask = _mm256_srlv_epi32 (indices, _mm256_setr_epi32(0, 3, 6, 9, 12, 15, 18, 21));
return shufmask;
}
u32 get_nth_bits(int a) {
u32 out = 0;
int c = 0;
for (int i = 0; i < 8; ++i) {
auto set = (a >> i) & 1;
if (set) {
out |= (i << (c * 3));
c++;
}
}
return out;
}
u8 g_pack_left_table_u8x3[256 * 3 + 1];
void BuildPackMask() {
for (int i = 0; i < 256; ++i) {
*reinterpret_cast<u32*>(&g_pack_left_table_u8x3[i * 3]) = get_nth_bits(i);
}
}
Here is the assembly generated by MSVC:
lea ecx, DWORD PTR [rcx+rcx*2]
lea rax, OFFSET FLAT:unsigned char * g_pack_left_table_u8x3 ; g_pack_left_table_u8x3
vpbroadcastd ymm0, DWORD PTR [rcx+rax]
vpsrlvd ymm0, ymm0, YMMWORD PTR __ymm#00000015000000120000000f0000000c00000009000000060000000300000000
Will add more information to a great answer from #PeterCordes : https://stackoverflow.com/a/36951611/5021064.
I did the implementations of std::remove from C++ standard for integer types with it. The algorithm, once you can do compress, is relatively simple: load a register, compress, store. First I'm going to show the variations and then benchmarks.
I ended up with two meaningful variations on the proposed solution:
__m128i registers, any element type, using _mm_shuffle_epi8 instruction
__m256i registers, element type of at least 4 bytes, using _mm256_permutevar8x32_epi32
When the types are smaller then 4 bytes for 256 bit register, I split them in two 128 bit registers and compress/store each one separately.
Link to compiler explorer where you can see complete assembly (there is a using type and width (in elements per pack) in the bottom, which you can plug in to get different variations) : https://gcc.godbolt.org/z/yQFR2t
NOTE: my code is in C++17 and is using a custom simd wrappers, so I do not know how readable it is. If you want to read my code -> most of it is behind the link in the top include on godbolt. Alternatively, all of the code is on github.
Implementations of #PeterCordes answer for both cases
Note: together with the mask, I also compute the number of elements remaining using popcount. Maybe there is a case where it's not needed, but I have not seen it yet.
Mask for _mm_shuffle_epi8
Write an index for each byte into a half byte: 0xfedcba9876543210
Get pairs of indexes into 8 shorts packed into __m128i
Spread them out using x << 4 | x & 0x0f0f
Example of spreading the indexes. Let's say 7th and 6th elements are picked.
It means that the corresponding short would be: 0x00fe. After << 4 and | we'd get 0x0ffe. And then we clear out the second f.
Complete mask code:
// helper namespace
namespace _compress_mask {
// mmask - result of `_mm_movemask_epi8`,
// `uint16_t` - there are at most 16 bits with values for __m128i.
inline std::pair<__m128i, std::uint8_t> mask128(std::uint16_t mmask) {
const std::uint64_t mmask_expanded = _pdep_u64(mmask, 0x1111111111111111) * 0xf;
const std::uint8_t offset =
static_cast<std::uint8_t>(_mm_popcnt_u32(mmask)); // To compute how many elements were selected
const std::uint64_t compressed_idxes =
_pext_u64(0xfedcba9876543210, mmask_expanded); // Do the #PeterCordes answer
const __m128i as_lower_8byte = _mm_cvtsi64_si128(compressed_idxes); // 0...0|compressed_indexes
const __m128i as_16bit = _mm_cvtepu8_epi16(as_lower_8byte); // From bytes to shorts over the whole register
const __m128i shift_by_4 = _mm_slli_epi16(as_16bit, 4); // x << 4
const __m128i combined = _mm_or_si128(shift_by_4, as_16bit); // | x
const __m128i filter = _mm_set1_epi16(0x0f0f); // 0x0f0f
const __m128i res = _mm_and_si128(combined, filter); // & 0x0f0f
return {res, offset};
}
} // namespace _compress_mask
template <typename T>
std::pair<__m128i, std::uint8_t> compress_mask_for_shuffle_epi8(std::uint32_t mmask) {
auto res = _compress_mask::mask128(mmask);
res.second /= sizeof(T); // bit count to element count
return res;
}
Mask for _mm256_permutevar8x32_epi32
This is almost one for one #PeterCordes solution - the only difference is _pdep_u64 bit (he suggests this as a note).
The mask that I chose is 0x5555'5555'5555'5555. The idea is - I have 32 bits of mmask, 4 bits for each of 8 integers. I have 64 bits that I want to get => I need to convert each bit of 32 bits into 2 => therefore 0101b = 5.The multiplier also changes from 0xff to 3 because I will get 0x55 for each integer, not 1.
Complete mask code:
// helper namespace
namespace _compress_mask {
// mmask - result of _mm256_movemask_epi8
inline std::pair<__m256i, std::uint8_t> mask256_epi32(std::uint32_t mmask) {
const std::uint64_t mmask_expanded = _pdep_u64(mmask, 0x5555'5555'5555'5555) * 3;
const std::uint8_t offset = static_cast<std::uint8_t(_mm_popcnt_u32(mmask)); // To compute how many elements were selected
const std::uint64_t compressed_idxes = _pext_u64(0x0706050403020100, mmask_expanded); // Do the #PeterCordes answer
// Every index was one byte => we need to make them into 4 bytes
const __m128i as_lower_8byte = _mm_cvtsi64_si128(compressed_idxes); // 0000|compressed indexes
const __m256i expanded = _mm256_cvtepu8_epi32(as_lower_8byte); // spread them out
return {expanded, offset};
}
} // namespace _compress_mask
template <typename T>
std::pair<__m256i, std::uint8_t> compress_mask_for_permutevar8x32(std::uint32_t mmask) {
static_assert(sizeof(T) >= 4); // You cannot permute shorts/chars with this.
auto res = _compress_mask::mask256_epi32(mmask);
res.second /= sizeof(T); // bit count to element count
return res;
}
Benchmarks
Processor: Intel Core i7 9700K (a modern consumer level CPU, no AVX-512 support)
Compiler: clang, build from trunk near the version 10 release
Compiler options: --std=c++17 --stdlib=libc++ -g -Werror -Wall -Wextra -Wpedantic -O3 -march=native -mllvm -align-all-functions=7
Micro-benchmarking library: google benchmark
Controlling for code alignment:
If you are not familiar with the concept, read this or watch this
All functions in the benchmark's binary are aligned to 128 byte boundary. Each benchmarking function is duplicated 64 times, with a different noop slide in the beginning of the function (before entering the loop). The main numbers I show is min per each measurement. I think this works since the algorithm is inlined. I'm also validated by the fact that I get very different results. At the very bottom of the answer I show the impact of code alignment.
Note: benchmarking code. BENCH_DECL_ATTRIBUTES is just noinline
Benchmark removes some percentage of 0s from an array. I test arrays with {0, 5, 20, 50, 80, 95, 100} percent of zeroes.
I test 3 sizes: 40 bytes (to see if this is usable for really small arrays), 1000 bytes and 10'000 bytes. I group by size because of SIMD depends on the size of the data and not a number of elements. The element count can be derived from an element size (1000 bytes is 1000 chars but 500 shorts and 250 ints). Since time it takes for non simd code depends mostly on the element count, the wins should be bigger for chars.
Plots: x - percentage of zeroes, y - time in nanoseconds. padding : min indicates that this is minimum among all alignments.
40 bytes worth of data, 40 chars
For 40 bytes this does not make sense even for chars - my implementation gets about 8-10 times slower when using 128 bit registers over non-simd code. So, for example, compiler should be careful doing this.
1000 bytes worth of data, 1000 chars
Apparently the non-simd version is dominated by branch prediction: when we get small amount of zeroes we get a smaller speed up: for no 0s - about 3 times, for 5% zeroes - about 5-6 times speed up. For when the branch predictor can't help the non-simd version - there is about a 27 times speed up. It's an interesting property of simd code that it's performance tends to be much less dependent on of data. Using 128 vs 256 register shows practically no difference, since most of the work is still split into 2 128 registers.
1000 bytes worth of data, 500 shorts
Similar results for shorts except with a much smaller gain - up to 2 times.
I don't know why shorts do that much better than chars for non-simd code: I'd expect shorts to be two times faster, since there are only 500 shorts, but the difference is actually up to 10 times.
1000 bytes worth of data, 250 ints
For a 1000 only 256 bit version makes sense - 20-30% win excluding no 0s to remove what's so ever (perfect branch prediction, no removing for non-simd code).
10'000 bytes worth of data, 10'000 chars
The same order of magnitude wins as as for a 1000 chars: from 2-6 times faster when branch predictor is helpful to 27 times when it's not.
Same plots, only simd versions:
Here we can see about a 10% win from using 256 bit registers and splitting them in 2 128 bit ones: about 10% faster. In size it grows from 88 to 129 instructions, which is not a lot, so might make sense depending on your use-case. For base-line - non-simd version is 79 instructions (as far as I know - these are smaller then SIMD ones though).
10'000 bytes worth of data, 5'000 shorts
From 20% to 9 times win, depending on the data distributions. Not showing the comparison between 256 and 128 bit registers - it's almost the same assembly as for chars and the same win for 256 bit one of about 10%.
10'000 bytes worth of data, 2'500 ints
Seems to make a lot of sense to use 256 bit registers, this version is about 2 times faster compared to 128 bit registers. When comparing with non-simd code - from a 20% win with a perfect branch prediction to 3.5 - 4 times as soon as it's not.
Conclusion: when you have a sufficient amount of data (at least 1000 bytes) this can be a very worthwhile optimisation for a modern processor without AVX-512
PS:
On percentage of elements to remove
On one hand it's uncommon to filter half of your elements. On the other hand a similar algorithm can be used in partition during sorting => that is actually expected to have ~50% branch selection.
Code alignment impact
The question is: how much worth it is, if the code happens to be poorly aligned
(generally speaking - there is very little one can do about it).
I'm only showing for 10'000 bytes.
The plots have two lines for min and for max for each percentage point (meaning - it's not one best/worst code alignment - it's the best code alignment for a given percentage).
Code alignment impact - non-simd
Chars:
From 15-20% for poor branch prediction to 2-3 times when branch prediction helped a lot. (branch predictor is known to be affected by code alignment).
Shorts:
For some reason - the 0 percent is not affected at all. It can be explained by std::remove first doing linear search to find the first element to remove. Apparently linear search for shorts is not affected.
Other then that - from 10% to 1.6-1.8 times worth
Ints:
Same as for shorts - no 0s is not affected. As soon as we go into remove part it goes from 1.3 times to 5 times worth then the best case alignment.
Code alignment impact - simd versions
Not showing shorts and ints 128, since it's almost the same assembly as for chars
Chars - 128 bit register
About 1.2 times slower
Chars - 256 bit register
About 1.1 - 1.24 times slower
Ints - 256 bit register
1.25 - 1.35 times slower
We can see that for simd version of the algorithm, code alignment has significantly less impact compared to non-simd version. I suspect that this is due to practically not having branches.
In case anyone is interested here is a solution for SSE2 which uses an instruction LUT instead of a data LUT aka a jump table. With AVX this would need 256 cases though.
Each time you call LeftPack_SSE2 below it uses essentially three instructions: jmp, shufps, jmp. Five of the sixteen cases don't need to modify the vector.
static inline __m128 LeftPack_SSE2(__m128 val, int mask) {
switch(mask) {
case 0:
case 1: return val;
case 2: return _mm_shuffle_ps(val,val,0x01);
case 3: return val;
case 4: return _mm_shuffle_ps(val,val,0x02);
case 5: return _mm_shuffle_ps(val,val,0x08);
case 6: return _mm_shuffle_ps(val,val,0x09);
case 7: return val;
case 8: return _mm_shuffle_ps(val,val,0x03);
case 9: return _mm_shuffle_ps(val,val,0x0c);
case 10: return _mm_shuffle_ps(val,val,0x0d);
case 11: return _mm_shuffle_ps(val,val,0x34);
case 12: return _mm_shuffle_ps(val,val,0x0e);
case 13: return _mm_shuffle_ps(val,val,0x38);
case 14: return _mm_shuffle_ps(val,val,0x39);
case 15: return val;
}
}
__m128 foo(__m128 val, __m128 maskv) {
int mask = _mm_movemask_ps(maskv);
return LeftPack_SSE2(val, mask);
}
This is perhaps a bit late though I recently ran into this exact problem and found an alternative solution which used a strictly AVX implementation. If you don't care if unpacked elements are swapped with the last elements of each vector, this could work as well. The following is an AVX version:
inline __m128 left_pack(__m128 val, __m128i mask) noexcept
{
const __m128i shiftMask0 = _mm_shuffle_epi32(mask, 0xA4);
const __m128i shiftMask1 = _mm_shuffle_epi32(mask, 0x54);
const __m128i shiftMask2 = _mm_shuffle_epi32(mask, 0x00);
__m128 v = val;
v = _mm_blendv_ps(_mm_permute_ps(v, 0xF9), v, shiftMask0);
v = _mm_blendv_ps(_mm_permute_ps(v, 0xF9), v, shiftMask1);
v = _mm_blendv_ps(_mm_permute_ps(v, 0xF9), v, shiftMask2);
return v;
}
Essentially, each element in val is shifted once to the left using the bitfield, 0xF9 for blending with it's unshifted variant. Next, both shifted and unshifted versions are blended against the input mask (which has the first non-zero element broadcast across the remaining elements 3 and 4). Repeat this process two more times, broadcasting the second and third elements of mask to its subsequent elements on each iteration and this should provide an AVX version of the _pdep_u32() BMI2 instruction.
If you don't have AVX, you can easily swap out each _mm_permute_ps() with _mm_shuffle_ps() for an SSE4.1-compatible version.
And if you're using double-precision, here's an additional version for AVX2:
inline __m256 left_pack(__m256d val, __m256i mask) noexcept
{
const __m256i shiftMask0 = _mm256_permute4x64_epi64(mask, 0xA4);
const __m256i shiftMask1 = _mm256_permute4x64_epi64(mask, 0x54);
const __m256i shiftMask2 = _mm256_permute4x64_epi64(mask, 0x00);
__m256d v = val;
v = _mm256_blendv_pd(_mm256_permute4x64_pd(v, 0xF9), v, shiftMask0);
v = _mm256_blendv_pd(_mm256_permute4x64_pd(v, 0xF9), v, shiftMask1);
v = _mm256_blendv_pd(_mm256_permute4x64_pd(v, 0xF9), v, shiftMask2);
return v;
}
Additionally _mm_popcount_u32(_mm_movemask_ps(val)) can be used to determine the number of elements which remained after the left-packing.
I want to calculate y = ax + b, where x and y is a pixel value [i.e, byte with value range is 0~255], while a and b is a float
Since I need to apply this formula for each pixel in image, in addition, a and b is different for different pixel. Direct calculation in C++ is slow, so I am kind of interest to know the sse2 instruction in c++..
After searching, I find that the multiplication and addition in float with sse2 is just as _mm_mul_ps and _mm_add_ps. But in the first place I need to convert the x in byte to float (4 byte).
The question is, after I load the data from byte-data source (_mm_load_si128), how can I convert the data from byte to float?
a and b are different for each pixel? That's going to make it difficult to vectorize, unless there's a pattern or you can generate them in vectors.
Is there any way you can efficiently generate a and b in vectors, either as fixed-point or floating point? If not, inserting 4 FP values, or 8 16bit integers, might be worse than just scalar ops.
Fixed point
If a and b can be reused at all, or generated with fixed-point in the first place, this might be a good use-case for fixed-point math. (i.e. integers that represent value * 2^scale). SSE/AVX don't have a 8b*8b->16b multiply; the smallest elements are words, so you have to unpack bytes to words, but not all the way to 32bit. This means you can process twice as much data per instruction.
There's a _mm_maddubs_epi16 instruction which might be useful if b and a change infrequently enough, or you can easily generate a vector with alternating a2^4 and b2^1 bytes. Apparently it's really handy for bilinear interpolation, but it still gets the job done for us with minimal shuffling, if we can prepare an a and b vector.
float a, b;
const int logascale = 4, logbscale=1;
const int ascale = 1<<logascale; // fixed point scale for a: 2^4
const int bscale = 1<<logbscale; // fixed point scale for b: 2^1
const __m128i brescale = _mm_set1_epi8(1<<(logascale-logbscale)); // re-scale b to match a in the 16bit temporary result
for (i=0 ; i<n; i+=16) {
//__m128i avec = get_scaled_a(i);
//__m128i bvec = get_scaled_b(i);
//__m128i ab_lo = _mm_unpacklo_epi8(avec, bvec);
//__m128i ab_hi = _mm_unpackhi_epi8(avec, bvec);
__m128i abvec = _mm_set1_epi16( ((int8_t)(bscale*b) << 8) | (int8_t)(ascale*a) ); // integer promotion rules might do sign-extension in the wrong place here, so check this if you actually write it this way.
__m128i block = _mm_load_si128(&buf[i]); // call this { v[0] .. v[15] }
__m128i lo = _mm_unpacklo_epi8(block, brescale); // {v[0], 8, v[1], 8, ...}
__m128i hi = _mm_unpackhi_epi8(block, brescale); // {v[8], 8, v[9], 8, ...
lo = _mm_maddubs_epi16(lo, abvec); // first arg is unsigned bytes, 2nd arg is signed bytes
hi = _mm_maddubs_epi16(hi, abvec);
// lo = { v[0]*(2^4*a) + 8*(2^1*b), ... }
lo = _mm_srli_epi16(lo, logascale); // truncate from scaled fixed-point to integer
hi = _mm_srli_epi16(hi, logascale);
// and re-pack. Logical, not arithmetic right shift means sign bits can't be set
block = _mm_packuswb(lo, hi);
_mm_store_si128(&buf[i], block);
}
// then a scalar cleanup loop
2^4 is an arbitrary choice. It leaves 3 non-sign bits for the integer part of a, and 4 fraction bits. So it effectively rounds a to the nearest 16th, and overflows if it has a magnitude greater than 8 and 15/16ths. 2^6 would give more fractional bits, and allow a from -2 to +1 and 63/64ths.
Since b is being added, not multiplied, its useful range is much larger, and fractional part much less useful. To represent it in 8 bits, rounding it to the nearest half still keeps a little bit of fractional information, but allows it to be [-64 : 63.5] without overflowing.
For more precision, 16b fixed-point is a good choice. You can scale a and b up by 2^7 or something, to have 7b of fractional precision and still allow the integer part to be [-256 .. 255]. There's no multiply-and-add instruction for this case, so you'd have to do that separately. Good options for doing the multiply include:
_mm_mulhi_epu16: unsigned 16b*16b->high16 (bits [31:16]). Useful if a can't be negative
_mm_mulhi_epi16: signed 16b*16b->high16 (bits [31:16]).
_mm_mulhrs_epi16: signed 16b*16b->bits [30:15] of the 32b temporary, with rounding. With a good choice of scaling factor for a, this should be nicer. As I understand it, SSSE3 introduced this instruction for exactly this kind of use.
_mm_mullo_epi16: signed 16b*16b->low16 (bits [15:0]). This only allows 8 significant bits for a before the low16 result overflows, so I think all you gain over the _mm_maddubs_epi16 8bit solution is more precision for b.
To use these, you'd get scaled 16b vectors of a and b values, then:
unpack your bytes with zero (or pmovzx byte->word), to get signed words still in the [0..255] range
left shift the words by 7.
multiply by your a vector of 16b words, taking the upper half of each 16*16->32 result. (e.g. mul
right shift here if you wanted different scales for a and b, to get more fractional precision for a
add b to that.
right shift to do the final truncation back from fixed point to [0..255].
With a good choice of fixed-point scale, this should be able to handle a wider range of a and b, as well as more fractional precision, than 8bit fixed point.
If you don't left-shift your bytes after unpacking them to words, a has to be full-range just to get 8bits set in the high16 of the result. This would mean a very limited range of a that you could support without truncating your temporary to less than 8 bits during the multiply. Even _mm_mulhrs_epi16 doesn't leave much room, since it starts at bit 30.
expand bytes to floats
If you can't efficiently generate fixed-point a and b values for every pixel, it may be best to convert your pixels to floats. This takes more unpacking/repacking, so latency and throughput are worse. It's worth looking into generating a and b with fixed point.
For packed-float to work, you still have to efficiently build a vector of a values for 4 adjacent pixels.
This is a good use-case for pmovzx (SSE4.1), because it can go directly from 8b elements to 32b. The other options are SSE2 punpck[l/h]bw/punpck[l/h]wd with multiple steps, or SSSE3 pshufb to emulate pmovzx. (You can do one 16B load and shuffle it 4 different ways to unpack it to four vectors of 32b ints.)
char *buf;
// const __m128i zero = _mm_setzero_si128();
for (i=0 ; i<n; i+=16) {
__m128 a = get_a(i);
__m128 b = get_b(i);
// IDK why there isn't an intrinsic for using `pmovzx` as a load, because it takes a m32 or m64 operand, not m128. (unlike punpck*)
__m128i unsigned_dwords = _mm_cvtepu8_epi32( _mm_loadu_si32(buf+i)); // load 4B at once.
// Current GCC has a bug with _mm_loadu_si32, might want to use _mm_load_ss and _mm_castps_si128 until it's fixed.
__m128 floats = _mm_cvtepi32_ps(unsigned_dwords);
floats = _mm_fmadd_ps(floats, a, b); // with FMA available, this might as well be 256b vectors, even with the inconvenience of the different lane-crossing semantics of pmovzx vs. punpck
// or without FMA, do this with _mm_mul_ps and _mm_add_ps
unsigned_dwords = _mm_cvtps_epi32(floats);
// repeat 3 more times for buf+4, buf+8, and buf+12, then:
__m128i packed01 = _mm_packss_epi32(dwords0, dwords1); // SSE2
__m128i packed23 = _mm_packss_epi32(dwords2, dwords3);
// packuswb wants SIGNED input, so do signed saturation on the first step
// saturate into [0..255] range
__m12i8 packedbytes=_mm_packus_epi16(packed01, packed23); // SSE2
_mm_store_si128(buf+i, packedbytes); // or storeu if buf isn't aligned.
}
// cleanup code to handle the odd up-to-15 leftover bytes, if n%16 != 0
(Re: a load that can be a memory source operand for pmovzxbd, see also Loading 8 chars from memory into an __m256 variable as packed single precision floats re: the problems compilers have with this.) And see also GCC bug 99754 - wrong code for _mm_loadu_si32 - reversed vector elements.
The previous version of this answer went from float->uint8 vectors with packusdw/packuswb, and had a whole section on workarounds for without SSE4.1. None of that masking-the-sign-bit after an unsigned pack is needed if you simply stay in the signed integer domain until the last pack. I assume this is the reason SSE2 only included signed pack from dword to word, but both signed and unsigned pack from word to byte. packuswd is only useful if your final goal is uint16_t, rather than further packing.
The last CPU to not have SSE4.1 was Intel Conroe/merom (first gen Core2, from before late 2007), and AMD pre Barcelona (before late 2007). If working-but-slow is acceptable for those CPUs, just write a version for AVX2, and a version for SSE4.1. Or SSSE3 (with 4x pshufb to emulate pmovzxbd of the four 32b elements of a register) pshufb is slow on Conroe, though, so if you care about CPUs without SSE4.1, write a specific version. Actually, Conroe/merom also has slow xmm punpcklbw and so on (except for q->dq). 4x slow pshufb should still beats 6x slow unpacks. Vectorizing is a lot less of a win on pre-Wolfdale, because of the slow shuffles for unpacking and repacking. The fixed point version, with a lot less unpacking/repacking, will have an even bigger advantage there.
See the edit history for an unfinished attempt at using punpck before I realized how many extra instructions it was going to need. Removed it because this answer is long already, and another code block would be confusing.
I guess you're looking fro the __m128 _mm_cvtpi8_ps(__m64 a ) composite intrinsic.
Here is a minimal example:
#include <xmmintrin.h>
#include <stdio.h>
int main() {
unsigned char a[4] __attribute__((aligned(32)))= {1,2,3,4};
float b[4] __attribute__((aligned(32)));
_mm_store_ps(b, _mm_cvtpi8_ps(*(__m64*)a));
printf("%f %f, %f, %f\n", b[0], b[1], b[2], b[3]);
return 0;
}