c++ nbody simulation passing array as reference - c++

I have a problem when trying to write a code to solve the nbody problem when using an array which contains all the bodies. My code doesn't do the right thing and i have no idea where it goes wrong though i suspect it has something to do with passing the array as a reference. To make it easier to spot my mistakes i will inculde a working version of the code which doesn't use the array containing all the bodies in the same way. The following is the code which doesn't work( when calculataing the orbit of a body you get a straight line instead of an ellipse with this code):
#include <cstdlib>
#include <iostream>
#include <cmath>
#include <fstream>
#define h 10000.0 // size of the timestep
#define N 3 // number of bodies
#define G 6.67384*pow(10.0,-11) // gravitational constant
using namespace std;
class particle{
public:
double kx1,kx2,kx3,kx4, kv1, kv2, kv3, kv4;
double ky1, ky2, ky3, ky4, kvy1, kvy2, kvy3, kvy4;
double x,y,vx,vy,m;
double dist(particle body){
double dx = x - body.x;
double dy = y - body.y;
return sqrt(pow(dx,2.0)+pow(dy,2.0));
}
double g(double x1, double y1,particle body){
return G*body.m*(body.x-x1)/pow(dist(body),3.0);
}
double p(double x1, double y1, particle body){
return G*body.m*(body.y-y1)/pow(dist(body),3.0);
}
void update(){ //object advances 1 step
x = x + (1/6.0)*(kx1+2*kx2+2*kx3+kx4);
vx = vx + (1/6.0)*(kv1+2*kv2+2*kv3+kv4);
y = y + (1/6.0)*(ky1+2*ky2+2*ky3+ky4);
vy = vy + (1/6.0)*(kvy1+2*kvy2+2*kvy3+kvy4);
}
void create(double x1, double y1, double vx1, double vy1, double m1){ //choose the inital conditions for a new object
x = x1;
y = y1;
vx = vx1;
vy = vy1;
m =m1;
}
bool operator ==(particle &other){
if(x == other.x && y == other.y && vx == other.vx && vy == other.vy){
return true;
}
}
};
particle bodies[N];
void set(particle (&bodies)[N]){
bodies[0].create(1, 1, -2, 1, 2*pow(10.0,30));
bodies[1].create(2870671*pow(10.0,6), 0, 0, 6800, 8.6810*pow(10.0,25));
bodies[2].create(4498542*pow(10.0,6),0 ,0, 5430, 1.0243*pow(10.0,26));
}
double xforce(double x1, double y1, particle body, particle bodies[N]){ //force in the x- direction
double fx = 0;
for (int i = 0; i < N; i++){
if (bodies[i] == body ){;}
else{
fx += body.g(x1,y1,bodies[i]);
}
}
return fx;
}
double yforce(double x1, double y1, particle body, particle bodies[N]){ //force in the y- direction
double fy = 0;
for (int i = 0; i < N; i++){
if (bodies[i] == body) {;}
else{
fy += body.p(x1,y1,bodies[i]);
}
}
return fy;
}
void corr(double t, particle bodies[N]){ //runge kutta 4
for(int i =0; i <= N; i++){
bodies[i].kx1 = t*bodies[i].vx;
bodies[i].kv1 = t*xforce(bodies[i].x, bodies[i].y, bodies[i], bodies);
bodies[i].ky1 = t*bodies[i].vy;
bodies[i].kvy1 = t*yforce(bodies[i].x, bodies[i].y, bodies[i], bodies);
bodies[i].kx2 = t*(bodies[i].vx + 0.5*bodies[i].kv1);
bodies[i].kv2 = t*xforce(bodies[i].x + 0.5*bodies[i].kx1, bodies[i].y + 0.5*bodies[i].ky1, bodies[i], bodies);
bodies[i].ky2 = t*(bodies[i].vy + 0.5*bodies[i].kvy1);
bodies[i].kvy2 = t*yforce(bodies[i].x + 0.5*bodies[i].kx1, bodies[i].y + 0.5*bodies[i].ky1, bodies[i], bodies);
bodies[i].kx3 = t*(bodies[i].vx+ 0.5*bodies[i].kv2);
bodies[i].kv3 = t*xforce(bodies[i].x + 0.5*bodies[i].kx2, bodies[i].y + 0.5*bodies[i].ky2, bodies[i], bodies);
bodies[i].ky3 = t*(bodies[i].vy+ 0.5*bodies[i].kvy2);
bodies[i].kvy3 = t*yforce(bodies[i].x + 0.5*bodies[i].kx2, bodies[i].y + 0.5*bodies[i].ky2,bodies[i], bodies);
bodies[i].kx4 = t*(bodies[i].vx + bodies[i].kv3);
bodies[i].kv4 = t*xforce(bodies[i].x+ bodies[i].kx3, bodies[i].y + bodies[i].ky3, bodies[i], bodies);
bodies[i].ky4 = t*(bodies[i].vy + bodies[i].kvy3);
bodies[i].kvy4 = t*yforce(bodies[i].x + bodies[i].kx3, bodies[i].y + bodies[i].ky3, bodies[i], bodies);
}
}
void calculate(particle (&bodies)[N]){
set(bodies);
ofstream file;
file.open("tester.txt");
for(int i =0; i <=50000; i++){
corr(h, bodies);
for(int j = 0; j <= N; j++){
bodies[j].update();
}
if( i%1000 == 0){
file << i*h;
for(int j = 0; j <=N ; j++){
file <<" "<<bodies[j].x << " "<< bodies[j].y;
}
file <<" "<<"\n";
}
else{;}
}
file.close();
}
int main()
{
calculate(bodies);
system("pause");
return 0;
}
Here is the working version of the code, both are supposed to solve the same problem:
#include <cstdlib>
#include <iostream>
#include <cmath>
#include <fstream>
#define h 10000.0
#define N 3
#define G 6.67384*pow(10.0,-11)
using namespace std;
class particle{
public:
double kx1,kx2,kx3,kx4, kv1, kv2, kv3, kv4;
double ky1, ky2, ky3, ky4, kvy1, kvy2, kvy3, kvy4;
double x,y,vx,vy,m;
double dist(particle body){
double dx = x - body.x;
double dy = y - body.y;
return sqrt(pow(dx,2.0)+pow(dy,2.0));
}
double g(double x1, double y1,particle body){
return G*body.m*(body.x-x1)/pow(dist(body),3.0);
}
double p(double x1, double y1, particle body){
return G*body.m*(body.y-y1)/pow(dist(body),3.0);
}
void update(){
x = x + (1/6.0)*(kx1+2*kx2+2*kx3+kx4);
vx = vx + (1/6.0)*(kv1+2*kv2+2*kv3+kv4);
y = y + (1/6.0)*(ky1+2*ky2+2*ky3+ky4);
vy = vy + (1/6.0)*(kvy1+2*kvy2+2*kvy3+kvy4);
}
void create(double x1, double y1, double vx1, double vy1, double m1){
x = x1;
y = y1;
vx = vx1;
vy = vy1;
m =m1;
}
bool operator ==(particle &other){
if(x == other.x && y == other.y && vx == other.vx && vy == other.vy){
return true;
}
}
bool operator !=(particle &other){
if(x != other.x || y != other.y || vx != other.vx || vy != other.vy){
return true;
}
}
};
particle zon, uranus, neptunus;
particle closest[] = {uranus, neptunus};
void set(){
zon.create(1, 1, -2, 1, 2*pow(10.0,30));
uranus.create(2870671*pow(10.0,6), 0, 0, 6800, 8.6810*pow(10.0,25));
neptunus.create(4498542*pow(10.0,6),0 ,0, 5430, 1.0243*pow(10.0,26));
}
double xforce(double x1, double y1, particle body){
particle bodies[] = {zon, uranus, neptunus};
double fx = 0;
for (int i = 0; i < 3; i++){
if (bodies[i] == body ){;}
else{
fx += body.g(x1,y1,bodies[i]);
}
}
return fx;
}
double yforce(double x1, double y1, particle body){
particle bodies[] = {zon, uranus, neptunus};
double fy = 0;
for (int i = 0; i <= 3; i++){
if (bodies[i] == body) {;}
else{
fy += body.p(x1,y1,bodies[i]);
}
}
return fy;
}
void corr(particle& body, double t){
body.kx1 = t*body.vx;
body.kv1 = t*xforce(body.x, body.y, body);
body.ky1 = t*body.vy;
body.kvy1 = t*yforce(body.x, body.y, body);
body.kx2 = t*(body.vx + 0.5*body.kv1);
body.kv2 = t*xforce(body.x + 0.5*body.kx1, body.y + 0.5*body.ky1, body);
body.ky2 = t*(body.vy + 0.5*body.kvy1);
body.kvy2 = t*yforce(body.x + 0.5*body.kx1, body.y + 0.5*body.ky1, body);
body.kx3 = t*(body.vx+ 0.5*body.kv2);
body.kv3 = t*xforce(body.x + 0.5*body.kx2, body.y + 0.5*body.ky2, body);
body.ky3 = t*(body.vy+ 0.5*body.kvy2);
body.kvy3 = t*yforce(body.x + 0.5*body.kx2, body.y + 0.5*body.ky2,body);
body.kx4 = t*(body.vx+body.kv3);
body.kv4 = t*xforce(body.x+ body.kx3, body.y + body.ky3, body);
body.ky4 = t*(body.vy + body.kvy3);
body.kvy4 = t*yforce(body.x + body.kx3, body.y + body.ky3, body);
}
void bereken(){
set();
ofstream file;
file.open("tester.txt");
for(int i =0; i <=50000; i++){
corr(zon, h);
corr(uranus, h);
corr(neptunus, h);
zon.update();
uranus.update();
neptunus.update();
if( i%1000 == 0){
file << i*h <<" "<<zon.x << " "<< zon.y <<" "<<uranus.x<<" " <<uranus.y <<" "<< neptunus.x<<" "<<neptunus.y<<" "<<"\n";
}
else{;}
}
file.close();
}
int main()
{
bereken();
system("pause");
return 0;
}

One problem is that you are overflowing your bodies[] array in 3 places:
#define N 3
particle bodies[N];
for (int i = 0; i <= N; i++) {
bodies[i].x = ... // Oops, access bodies[3] which doesn't exist
The correct loop, which you do use in two places, is:
for (int i = 0; i < N; i++) { // 0 to < N

Related

How to to find smallest (optimized) distance between two vectors in C++

I'm translating Python's version of 'page_dewarper' (https://mzucker.github.io/2016/08/15/page-dewarping.html) into C++. I'm going to use dlib, which is a fantastic tool, that helped me in a few optimization problems before. In line 748 of Github repo (https://github.com/mzucker/page_dewarp/blob/master/page_dewarp.py) Matt uses optimize function from Scipy, to find the minimal distance between two vectors. I think, my C++ equivalent should be solve_least_squares_lm() or solve_least_squares(). I'll give a concrete example to analyze.
My data:
a) dstpoints is a vector with OpenCV points - std::vector<cv::Point2f> (I have 162 points in this example, they are not changing),
b) ppts is also std::vector<cv::Point2f> and the same size as dstpoints.
std::vector<cv::Point2f> ppts = project_keypoints(params, input);
It is dependent on:
- dlib::column_vector 'input' is 2*162=324 long and is not changing,
- dlib::column_vector 'params' is 189 long and its values should be changed to get the minimal value of variable 'suma', something like this:
double suma = 0.0;
for (int i=0; i<dstpoints_size; i++)
{
suma += pow(dstpoints[i].x - ppts[i].x, 2);
suma += pow(dstpoints[i].y - ppts[i].y, 2);
}
I'm looking for 'params' vector that will give me the smallest value of 'suma' variable. Least squares algorithm seems to be a good option to solve it: http://dlib.net/dlib/optimization/optimization_least_squares_abstract.h.html#solve_least_squares, but I don't know if it is good for my case.
I think, my problem is that for every different 'params' vector I get different 'ppts' vector, not only single value, and I don't know if solve_least_squares function can match my example.
I must calculate residual for every point. I think, my 'list' from aforementioned link should be something like this:
(ppts[i].x - dstpoints[i].x, ppts[i].y - dstpoints[i].y, ppts[i+1].x - dstpoints[i+1].x, ppts[i+1].y - dstpoints[i+1].y, etc.)
, where 'ppts' vector depends on 'params' vector and then this problem can be solved with least squares algorithm. I don't know how to create data_samples with these assumptions, because it requires dlib::input_vector for every sample, as it is shown in example: http://dlib.net/least_squares_ex.cpp.html.
Am I thinking right?
I'm doing the same thing this days. My solution is writing a Powell Class by myself. It works, but really slowly. The program takes 2 minutes in dewarping linguistics_thesis.jpg.
I don't know what cause the program running so slowly. Maybe because of the algorithm or the code has some extra loop. I'm a Chinese student and my school only have java lessons. So it is normal if you find some extra codes in my codes.
Here is my Powell class.
using namespace std;
using namespace cv;
class MyPowell
{
public:
vector<vector<double>> xi;
vector<double> pcom;
vector<double> xicom;
vector<Point2d> dstpoints;
vector<double> myparams;
vector<double> params;
vector<Point> keypoint_index;
Point2d dst_br;
Point2d dims;
int N;
int itmax;
int ncom;
int iter;
double fret, ftol;
int usingAorB;
MyPowell(vector<Point2d> &dstpoints, vector<double> &params, vector<Point> &keypoint_index);
MyPowell(Point2d &dst_br, vector<double> &params, Point2d & dims);
MyPowell();
double obj(vector<double> &params);
void powell(vector<double> &p, vector<vector<double>> &xi, double ftol, double &fret);
double sign(double a);// , double b);
double sqr(double a);
void linmin(vector<double> &p, vector<double> &xit, int n, double &fret);
void mnbrak(double & ax, double & bx, double & cx,
double & fa, double & fb, double & fc);
double f1dim(double x);
double brent(double ax, double bx, double cx, double & xmin, double tol);
vector<double> usePowell();
void erase(vector<double>& pbar, vector<double> &prr, vector<double> &pr);
};
#include"Powell.h"
MyPowell::MyPowell(vector<Point2d> &dstpoints, vector<double>& params, vector<Point> &keypoint_index)
{
this->dstpoints = dstpoints;
this->myparams = params;
this->keypoint_index = keypoint_index;
N = params.size();
itmax = N * N;
usingAorB = 1;
}
MyPowell::MyPowell(Point2d & dst_br, vector<double>& params, Point2d & dims)
{
this->dst_br = dst_br;
this->myparams.push_back(dims.x);
this->myparams.push_back(dims.y);
this->params = params;
this->dims = dims;
N = 2;
itmax = N * 1000;
usingAorB = 2;
}
MyPowell::MyPowell()
{
usingAorB = 3;
}
double MyPowell::obj(vector<double> &myparams)
{
if (1 == usingAorB)
{
vector<Point2d> ppts = Dewarp::projectKeypoints(keypoint_index, myparams);
double total = 0;
for (int i = 0; i < ppts.size(); i++)
{
double x = dstpoints[i].x - ppts[i].x;
double y = dstpoints[i].y - ppts[i].y;
total += (x * x + y * y);
}
return total;
}
else if(2 == usingAorB)
{
dims.x = myparams[0];
dims.y = myparams[1];
//cout << "dims.x " << dims.x << " dims.y " << dims.y << endl;
vector<Point2d> vdims = { dims };
vector<Point2d> proj_br = Dewarp::projectXY(vdims, params);
double total = 0;
double x = dst_br.x - proj_br[0].x;
double y = dst_br.y - proj_br[0].y;
total += (x * x + y * y);
return total;
}
return 0;
}
void MyPowell::powell(vector<double> &x, vector<vector<double>> &direc, double ftol, double &fval)
{
vector<double> x1;
vector<double> x2;
vector<double> direc1;
int myitmax = 20;
if(N>500)
myitmax = 10;
else if (N > 300)
{
myitmax = 15;
}
double fx2, t, fx, dum, delta;
fval = obj(x);
int bigind;
for (int j = 0; j < N; j++)
{
x1.push_back(x[j]);
}
int iter = 0;
while (true)
{
do
{
do
{
iter += 1;
fx = fval;
bigind = 0;
delta = 0.0;
for (int i = 0; i < N; i++)
{
direc1 = direc[i];
fx2 = fval;
linmin(x, direc1, N, fval);
if (fabs(fx2 - fval) > delta)
{
delta = fabs(fx2 - fval);
bigind = i;
}
}
if (2.0 * fabs(fx - fval) <= ftol * (fabs(fx) + fabs(fval)) + 1e-7)
{
erase(direc1, x2, x1);
return;
}
if (iter >= itmax)
{
cout << "powell exceeding maximum iterations" << endl;
return;
}
if (!x2.empty())
{
x2.clear();
}
for (int j = 0; j < N; j++)
{
x2.push_back(2.0*x[j] - x1[j]);
direc1[j] = x[j] - x1[j];
x1[j] = x[j];
}
myitmax--;
cout << fx2 << endl;
fx2 = obj(x2);
if (myitmax < 0)
return;
} while (fx2 >= fx);
dum = fx - 2 * fval + fx2;
t = 2.0*dum*pow((fx - fval - delta), 2) - delta * pow((fx - fx2), 2);
} while (t >= 0.0);
linmin(x, direc1, N, fval);
direc[bigind] = direc1;
}
}
double MyPowell::sign(double a)//, double b)
{
if (a > 0.0)
{
return 1;
}
else
{
if (a < 0.0)
{
return -1;
}
}
return 0;
}
double MyPowell::sqr(double a)
{
return a * a;
}
void MyPowell::linmin(vector<double>& p, vector<double>& xit, int n, double &fret)
{
double tol = 1e-2;
ncom = n;
pcom = p;
xicom = xit;
double ax = 0.0;
double xx = 1.0;
double bx = 0.0;
double fa, fb, fx, xmin;
mnbrak(ax, xx, bx, fa, fx, fb);
fret = brent(ax, xx, bx, xmin, tol);
for (int i = 0; i < n; i++)
{
xit[i] = (xmin * xit[i]);
p[i] += xit[i];
}
}
void MyPowell::mnbrak(double & ax, double & bx, double & cx,
double & fa, double & fb, double & fc)
{
const double GOLD = 1.618034, GLIMIT = 110.0, TINY = 1e-20;
double val, fw, tmp2, tmp1, w, wlim;
double denom;
fa = f1dim(ax);
fb = f1dim(bx);
if (fb > fa)
{
val = ax;
ax = bx;
bx = val;
val = fb;
fb = fa;
fa = val;
}
cx = bx + GOLD * (bx - ax);
fc = f1dim(cx);
int iter = 0;
while (fb >= fc)
{
tmp1 = (bx - ax) * (fb - fc);
tmp2 = (bx - cx) * (fb - fa);
val = tmp2 - tmp1;
if (fabs(val) < TINY)
{
denom = 2.0*TINY;
}
else
{
denom = 2.0*val;
}
w = bx - ((bx - cx)*tmp2 - (bx - ax)*tmp1) / (denom);
wlim = bx + GLIMIT * (cx - bx);
if ((bx - w) * (w - cx) > 0.0)
{
fw = f1dim(w);
if (fw < fc)
{
ax = bx;
fa = fb;
bx = w;
fb = fw;
return;
}
else if (fw > fb)
{
cx = w;
fc = fw;
return;
}
w = cx + GOLD * (cx - bx);
fw = f1dim(w);
}
else
{
if ((cx - w)*(w - wlim) >= 0.0)
{
fw = f1dim(w);
if (fw < fc)
{
bx = cx;
cx = w;
w = cx + GOLD * (cx - bx);
fb = fc;
fc = fw;
fw = f1dim(w);
}
}
else if ((w - wlim)*(wlim - cx) >= 0.0)
{
w = wlim;
fw = f1dim(w);
}
else
{
w = cx + GOLD * (cx - bx);
fw = f1dim(w);
}
}
ax = bx;
bx = cx;
cx = w;
fa = fb;
fb = fc;
fc = fw;
}
}
double MyPowell::f1dim(double x)
{
vector<double> xt;
for (int j = 0; j < ncom; j++)
{
xt.push_back(pcom[j] + x * xicom[j]);
}
return obj(xt);
}
double MyPowell::brent(double ax, double bx, double cx, double & xmin, double tol = 1.48e-8)
{
const double CGOLD = 0.3819660, ZEPS = 1.0e-4;
int itmax = 500;
double a = MIN(ax, cx);
double b = MAX(ax, cx);
double v = bx;
double w = v, x = v;
double deltax = 0.0;
double fx = f1dim(x);
double fv = fx;
double fw = fx;
double rat = 0, u = 0, fu;
int iter;
int done;
double dx_temp, xmid, tol1, tol2, tmp1, tmp2, p;
for (iter = 0; iter < 500; iter++)
{
xmid = 0.5 * (a + b);
tol1 = tol * fabs(x) + ZEPS;
tol2 = 2.0*tol1;
if (fabs(x - xmid) <= (tol2 - 0.5*(b - a)))
break;
done = -1;
if (fabs(deltax) > tol1)
{
tmp1 = (x - w) * (fx - fv);
tmp2 = (x - v) * (fx - fw);
p = (x - v) * tmp2 - (x - w) * tmp1;
tmp2 = 2.0 * (tmp2 - tmp1);
if (tmp2 > 0.0)
p = -p;
tmp2 = fabs(tmp2);
dx_temp = deltax;
deltax = rat;
if ((p > tmp2 * (a - x)) && (p < tmp2 * (b - x)) &&
fabs(p) < fabs(0.5 * tmp2 * dx_temp))
{
rat = p / tmp2;
u = x + rat;
if ((u - a) < tol2 || (b - u) < tol2)
{
rat = fabs(tol1) * sign(xmid - x);
}
done = 0;
}
}
if(done)
{
if (x >= xmid)
{
deltax = a - x;
}
else
{
deltax = b - x;
}
rat = CGOLD * deltax;
}
if (fabs(rat) >= tol1)
{
u = x + rat;
}
else
{
u = x + fabs(tol1) * sign(rat);
}
fu = f1dim(u);
if (fu > fx)
{
if (u < x)
{
a = u;
}
else
{
b = u;
}
if (fu <= fw || w == x)
{
v = w;
w = u;
fv = fw;
fw = fu;
}
else if (fu <= fv || v == x || v == w)
{
v = u;
fv = fu;
}
}
else
{
if (u >= x)
a = x;
else
b = x;
v = w;
w = x;
x = u;
fv = fw;
fw = fx;
fx = fu;
}
}
if(iter > itmax)
cout << "\n Brent exceed maximum iterations.\n\n";
xmin = x;
return fx;
}
vector<double> MyPowell::usePowell()
{
ftol = 1e-4;
vector<vector<double>> xi;
for (int i = 0; i < N; i++)
{
vector<double> xii;
for (int j = 0; j < N; j++)
{
xii.push_back(0);
}
xii[i]=(1.0);
xi.push_back(xii);
}
double fret = 0;
powell(myparams, xi, ftol, fret);
//for (int i = 0; i < xi.size(); i++)
//{
// double a = obj(xi[i]);
// if (fret > a)
// {
// fret = a;
// myparams = xi[i];
// }
//}
cout << "final result" << fret << endl;
return myparams;
}
void MyPowell::erase(vector<double>& pbar, vector<double>& prr, vector<double>& pr)
{
for (int i = 0; i < pbar.size(); i++)
{
pbar[i] = 0;
}
for (int i = 0; i < prr.size(); i++)
{
prr[i] = 0;
}
for (int i = 0; i < pr.size(); i++)
{
pr[i] = 0;
}
}
I used PRAXIS library, because it doesn't need derivative information and is fast.
I modified the code a little to my needs and now it is faster than original version written in Python.

'std::out_of_range' error from code

The following error message was received after running my code located at the end of the message:
terminate called after throwing an instance of 'std::out_of_range'
what(): vector::_M_range_check: __n (which is 0) >= this->size() (which is 0)
This application has requested the Runtime to terminate it in an unusual way.
Please contact the application's support team for more information.
I'm sorry for the length of the code. It appears that the error is coming from when I am calling the numerov function within the f function. If you are able to determine what the error is would you please let me know? Thank you!
#include <iostream>
#include <cmath>
#include <fstream>
#include <vector>
using namespace std;
int nx = 500, m = 10, ni = 10;
double x1 = 0, x2 = 1, h = (x2 - x1)/nx;
int nr, nl;
vector<double> ul, q, u;
//Method to achieve the evenly spaced Simpson rule
double simpson(vector <double> y, double h)
{
int n = y.size() - 1;
double s0 = 0, s1 = 0, s2 = 0;
for (int i = 1; i < n; i += 2)
{
s0 += y.at(i);
s1 += y.at(i-1);
s2 += y.at(i+1);
}
double s = (s1 + 4*s0 + s2)/3;
//Add the last slice separately for an even n+1
if ((n+1)%2 == 0)
return h*(s + (5*y.at(n) + 8*y.at(n-1) - y.at(n-2))/12);
else
return h*2;
}
//Method to perform the Numerov integration
vector <double> numerov(int m, double h, double u0, double u1, double q)
{
vector<double> u;
u.push_back(u0);
u.push_back(u1);
double g = h*h/12;
for (int i = 1; i < m+1; i++)
{
double c0 = 1 + g*q;
double c1 = 2 - 10*g*q;
double c2 = 1 + g*q;
double d = g*(0);
u.push_back((c1*u.at(i) - c0*u.at(i-1) + d)/c2);
}
return u;
}
//Method to provide the function for the root search
double f(double x)
{
vector<double> w;
vector<double> j = numerov(nx + 1, h, 0.0, 0.001, x);
for (int i = 0; i < 0; i++)
{
w.push_back(j.at(i));
}
return w.at(0);
}
//Method to carry out the secant search
double secant(int n, double del, double x, double dx)
{
int k = 0;
double x1 = x + dx;
while ((abs(dx) > del) && (k < n))
{
double d = f(x1) - f(x);
double x2 = x1 - f(x1)*(x1 - x)/d;
x = x1;
x1 = x2;
dx = x1 - x;
k++;
}
if (k == n)
cout << "Convergence not found after " << n << " iterations." << endl;
return x1;
}
int main()
{
double del = 1e-6, e = 0, de = 0.1;
//Find the eigenvalue via the secant method
e = secant (ni, del, e, de);
//Find the solution u(x)
u = numerov(nx + 1, h, 0.0, 0.01, e);
//Output the wavefunction to a file
ofstream myfile ("Problem 2.txt");
if (myfile.is_open())
{
myfile << "Input" << "\t" << "u(x)" << endl;
double x = x1;
double mh = m*h;
for (int i = 0; i <= nx; i += m)
{
myfile << x << "\t" << u.at(i) << endl;
x += mh;
}
myfile.close();
}
return 0;
}
vector<double> w;
for (int i = 0; i < 0; i++)
{
w.push_back(j.at(i));
}
return w.at(0);
w will have nothing in it, since that loop will run 0 times. Thus, w.at(0) will throw the out of range error.
Why do you think the problem is in the numerov function?
I see an error in the function f?
vector<double> w;
vector<double> j = numerov(nx + 1, h, 0.0, 0.001, x);
for (int i = 0; i < 0; i++)
{
w.push_back(j.at(i));
}
return w.at(0);
There is nothing on vector w and you try to access element 0.

C++ while loop using bisection method. Help on break

I need some help here. Please excuse the complexity of the code. Basically, I am looking to use the bisection method to find a value "Theta" and each i increment.
I know that all the calculations work fine when I know the Theta, and I have the code run to just simply calculate all the values, but when I introduce a while loop and the bisection method to have the code approximate Theta, I can't seem to get it to run correctly. I am assuming I have my while loop set up incorrectly....
#include <math.h>
#include <iostream>
#include <vector>
#include <iomanip>
#include <algorithm> // std::max
using namespace std;
double FuncM(double theta, double r, double F, double G, double Gprime, double d_t, double sig);
double FuncM(double theta, double r, double F, double G, double Gprime, double d_t, double sig)
{
double eps = 0.0001;
return ((log(max((r + (theta + F - 0.5 * G * Gprime ) * d_t), eps))) / sig);
}
double FuncJSTAR(double m, double x_0, double d_x);
double FuncJSTAR(double m, double x_0, double d_x)
{
return (int(((m - x_0) / d_x)+ 0.5));
}
double FuncCN(double m, double x_0, double j, double d_x);
double FuncCN(double m, double x_0, double j, double d_x)
{
return (m - x_0 - j * d_x);
}
double FuncPup(double d_t, double cn, double d_x);
double FuncPup(double d_t, double cn, double d_x)
{
return (((d_t + pow(cn, 2.0)) / (2.0 * pow(d_x, 2.0))) + (cn / (2.0 * d_x)));
}
double FuncPdn(double d_t, double cn, double d_x);
double FuncPdn(double d_t, double cn, double d_x)
{
return (((d_t + pow(cn, 2.0)) / (2.0 * pow(d_x, 2.0))) - (cn / (2.0 * d_x)));
}
double FuncPmd(double pd, double pu);
double FuncPmd(double pd, double pu)
{
return (1 - pu - pd);
}
int main()
{
const int Maturities = 5;
const double EPS = 0.00001;
double TermStructure[Maturities][2] = {
{0.5 , 0.05},
{1.0 , 0.06},
{1.5 , 0.07},
{2.0 , 0.075},
{3.0 , 0.085} };
//--------------------------------------------------------------------------------------------------------
vector<double> Price(Maturities);
double Initial_Price = 1.00;
for (int i = 0; i < Maturities; i++)
{
Price[i] = Initial_Price * exp(-TermStructure[i][1] * TermStructure[i][0]);
}
//--------------------------------------------------------------------------------------------------------
int j_max = 8;
int j_range = ((j_max * 2) + 1);
//--------------------------------------------------------------------------------------------------------
// Set up vector of possible j values
vector<int> j_value(j_range);
for (int j = 0; j < j_range; j++)
{
j_value[j] = j_max - j;
}
//--------------------------------------------------------------------------------------------------------
double dt = 0.5;
double dx = sqrt(3 * dt);
double sigma = 0.15;
double mean_reversion = 0.2; // "a" value
//--------------------------------------------------------------------------------------------------------
double r0 = TermStructure[0][1]; // Initialise r(0) in case no corresponding dt rate in term structure
//--------------------------------------------------------------------------------------------------------
double x0 = log(r0) / sigma;
//--------------------------------------------------------------------------------------------------------
vector<double> r_j(j_range); // rate at each j
vector<double> F_r(j_range);
vector<double> G_r(j_range);
vector<double> G_prime_r(j_range);
for(int j = 0; j < j_range; j++)
{
if (j == j_max)
{
r_j[j] = r0;
}
else
{
r_j[j] = exp((x0 + j_value[j]*dx) * sigma);
}
F_r[j] = -mean_reversion * r_j[j];
G_r[j] = sigma * r_j[j];
G_prime_r[j] = sigma;
}
//--------------------------------------------------------------------------------------------------------
vector<vector<double>> m((j_range), vector<double>(Maturities));
vector<vector<int>> j_star((j_range), vector<int>(Maturities));
vector<vector<double>> Central_Node((j_range), vector<double>(Maturities));
vector<double> Theta(Maturities - 1);
vector<vector<double>> Pu((j_range), vector<double>(Maturities));
vector<vector<double>> Pd((j_range), vector<double>(Maturities));
vector<vector<double>> Pm((j_range), vector<double>(Maturities));
vector<vector<double>> Q((j_range), vector<double>(Maturities));// = {}; // Arrow Debreu Price. Initialised all array values to 0
vector<double> Q_dt_sum(Maturities);// = {}; // Sum of Arrow Debreu Price at each time step. Initialised all array values to 0
//--------------------------------------------------------------------------------------------------------
double Theta_A, Theta_B, Theta_C;
int JSTART;
int JEND;
int TempStart;
int TempEnd;
int max;
int min;
vector<vector<int>> Up((j_range), vector<int>(Maturities));
vector<vector<int>> Down((j_range), vector<int>(Maturities));
// Theta[0] = 0.0498039349327417;
// Theta[1] = 0.0538710670441647;
// Theta[2] = 0.0181648634139392;
// Theta[3] = 0.0381183886467521;
for(int i = 0; i < (Maturities-1); i++)
{
Theta_A = 0.00;
Theta_B = TermStructure[i][1];
Q_dt_sum[0] = Initial_Price;
Q_dt_sum[i+1] = 0.0;
while (fabs(Theta_A - Theta_B) >= 0.0000001)
{
max = 1;
min = 10;
if (i == 0)
{
JSTART = j_max;
JEND = j_max;
}
else
{
JSTART = TempStart;
JEND = TempEnd;
}
for(int j = JSTART; j >= JEND; j--)
{
Theta_C = (Theta_A + Theta_B) / 2.0; // If Theta C is too low, the associated Price will be higher than Price from initial term structure. (ie P(Theta C) > P(i+2) for Theta C < Theta)
// If P_C > P(i+2), set Theta_B = Theta_C, else if P_C < P(i+2), set Theta_A = Theta_C, Else if P_C = P(i+2), Theta_C = Theta[i]
//cout << Theta_A << " " << Theta_B << " " << Theta_C << endl;
m[j][i] = FuncM(Theta[i], r_j[j], F_r[j], G_r[j], G_prime_r[j], dt, sigma);
j_star[j][i] = FuncJSTAR(m[j][i], x0, dx);
Central_Node[j][i] = FuncCN(m[j][i], x0, j_star[j][i], dx);
Pu[j][i] = FuncPup(dt, Central_Node[j][i], dx);
Pd[j][i] = FuncPdn(dt, Central_Node[j][i], dx);
Pm[j][i] = FuncPmd(Pd[j][i], Pu[j][i]);
for (int p = 0; p < j_range; p++)
{
Q[p][i] = 0; // Clear Q array
}
Q[j_max][0] = Initial_Price;
Q[j_max -(j_star[j][i]+1)][i+1] = Q[j_max - (j_star[j][i]+1)][i+1] + Q[j][i] * Pu[j][i] * exp(-r_j[j] * dt);
Q[j_max -(j_star[j][i] )][i+1] = Q[j_max - (j_star[j][i] )][i+1] + Q[j][i] * Pm[j][i] * exp(-r_j[j] * dt);
Q[j_max -(j_star[j][i]-1)][i+1] = Q[j_max - (j_star[j][i]-1)][i+1] + Q[j][i] * Pd[j][i] * exp(-r_j[j] * dt);
}
for (int j = 0; j < j_range; j++)
{
Up[j][i] = j_star[j][i] + 1;
Down[j][i] = j_star[j][i] - 1;
if (Up[j][i] > max)
{
max = Up[j][i];
}
if ((Down[j][i] < min) && (Down[j][i] > 0))
{
min = Down[j][i];
}
}
TempEnd = j_max - (max);
TempStart = j_max - (min);
for (int j = 0; j < j_range; j++)
{
Q_dt_sum[i+1] = Q_dt_sum[i+1] + Q[j][i] * exp(-r_j[j] * dt);
cout << Q_dt_sum[i+1] << endl;
}
if (Q_dt_sum[i+1] == Price[i+2])
{
Theta[i] = Theta_C;
break;
}
if (Q_dt_sum[i+1] > Price[i+2])
{
Theta_B = Theta_C;
}
else if (Q_dt_sum[i+1] < Price[i+2])
{
Theta_A = Theta_C;
}
}
cout << Theta[i] << endl;
}
return 0;
}
Ok, my bad. I had a value being called incorrectly.
All good.

C++ Function being Skipped [duplicate]

This question already has answers here:
Calling a function in main
(4 answers)
Closed 4 years ago.
So I'm trying to make a simple pool ball simulation, and when trying to check the collision between balls, my bounce function is being skipped in the loop. There should be a display on the console with the random letters in the function bounce in the PoolTable.cpp file, but its skipped and doesn't process the hits or output the text to the console. Not sure why its not running the function. No warnings. No errors. compiles fine. Im on windows machine, using code blocks, and the GLUT library/project.
Walkthrough
So I initialize and place the balls with the constructor. Then I draw the balls on the screen with the drawBalls function. After drawing the balls, i update their positions and move them with moveBalls function. After moving each ball, while still in the moveball function, I check for collisions with checkCollisions function. checkCollisions then starts two for loops, but never runs the bounce function, as the balls don't bounce off eachother, and the cout isn't printed in the terminal. for some reason it is skipped.
PoolTable.cpp
#include "PoolTable.h"
#include "poolball.h"
#include "Graphics.h"
#include <iostream>
using namespace std;
#include <cmath>
PoolTable::PoolTable( int x){
placeBalls( x );
}
void PoolTable::placeBalls( int x ){
number_of_balls = x;
for( int i = 0; i < x; i++){
balls[i].setX( balls[i].getRadius() + i * 20 );
balls[i].setY( balls[i].getRadius() + i * 30 );
}
}
double find_angle(double vx, double vy) {
// determine the angle between poolballs when they collide
double t; double PI = acos(-1.0);
if(vx < 0) // vertical collision
t = PI + atan(vy/vx);
else if(vx > 0.0 && vy >= 0.0) // 1st quardant collision
t = atan(vy/vx);
else if(vx > 0.0 && vy < 0.0) //
t = 2.0*PI + atan(vy/vx);
else if( vx == 0.0 && vy == 0.0)
t = 0.0;
else if(vx == 0 && vy >= 0.0)
t = PI/2.0;
else
t = 1.5 * PI;
return t;
}
void PoolTable::bounce(int i, int j) {
cout << "klasdjflkadsjflkasjfsadk" << endl;
double PI = acos(-1.0);
double x1 = balls[i].getX();
double y1 = balls[i].getY();
double x2 = balls[j].getX();
double y2 = balls[j].getY();
double dx = x2 - x1;
double dy = y2 - y1;
double dist = sqrt(dx*dx+dy*dy);
// did a collision occur
if(dist <= 2 * balls[i].getRadius()) {
double phi; // angle between the two ball centers
if(dx == 0.0)
phi = PI/2.0;
else
phi = atan2 (dy, dx);
// now compute the total velocities of the two balls
double vx1 = balls[i].xSpeed;
double vy1 = balls[i].getYSpeed();
double v1total = sqrt(vx1*vx1 + vy1*vy1);
double vx2 = balls[j].getXSpeed();
double vy2 = balls[j].getYSpeed();
double v2total = sqrt(vx2*vx2 + vy2*vy2);
// find the angle of each ball's velocity
double ang1 = find_angle(vx1,vy1);
double ang2 = find_angle(vx2,vy2);
// transform velocities into normal.tangential components
double v1xr = v1total * cos(ang1 - phi);
double v1yr = v1total * sin(ang1 - phi);
double v2xr = v2total * cos(ang2 - phi);
double v2yr = v2total * sin(ang2 - phi);
// now find the final velocities (assuming equal mass)
double v1fxr = v2xr;
double v2fxr = v1xr;
double v1fyr = v1yr;
double v2fyr = v2yr;
// reset the velocities
balls[i].setXSpeed(cos(phi)*v1fxr + cos(phi+PI/2)*v1fyr);
balls[i].setYSpeed(sin(phi)*v1fxr + sin(phi+PI/2)*v1fyr);
balls[j].setXSpeed(cos(phi)*v2fxr + cos(phi+PI/2)*v2fyr);
balls[j].setYSpeed(sin(phi)*v2fxr + sin(phi+PI/2)*v2fyr);
}
}
void PoolTable::checkCollisions(void){
for( int i = 0; i < number_of_balls; i++){
for( int j = i + 1; j < number_of_balls; j++){
bounce(i, j);
}
}
}
void PoolTable::moveBalls(void){
for( int i = 0; i < number_of_balls; i++){
balls[i].move();
void checkCollisions();
}
}
void PoolTable::drawBalls(void){
for( int i = 0; i < number_of_balls; i++){
balls[i].draw();
}
}
void checkCollisions(); (in moveBalls) is a function prototype, not a function call. Remove the void.

N-body simulation not working

I am trying to write a code to solve the n-body problem and i run into trouble when using an array with all the bodies instead of using the different bodies seperately. I currently have no idea what's going wrong in my code but when i plot x in function of y for any body i get a straight line which obviously isn't right.
This is my current code:
#include <cstdlib>
#include <iostream>
#include <cmath>
#include <fstream>
#define h 10000.0
#define N 3
#define G 6.67384*pow(10.0,-11)
using namespace std;
class particle{
public:
double kx1,kx2,kx3,kx4, kv1, kv2, kv3, kv4;
double ky1, ky2, ky3, ky4, kvy1, kvy2, kvy3, kvy4;
double x,y,vx,vy,m;
double dist(particle aap){
double dx = x - aap.x;
double dy = y - aap.y;
return sqrt(pow(dx,2.0)+pow(dy,2.0));
}
double g(double x1, double y1,particle aap){
return G*aap.m*(aap.x-x1)/pow(dist(aap),3.0);
}
double p(double x1, double y1, particle aap){
return G*aap.m*(aap.y-y1)/pow(dist(aap),3.0);
}
void update(){ //object advances 1 step
x = x + (1/6.0)*(kx1+2*kx2+2*kx3+kx4);
vx = vx + (1/6.0)*(kv1+2*kv2+2*kv3+kv4);
y = y + (1/6.0)*(ky1+2*ky2+2*ky3+ky4);
vy = vy + (1/6.0)*(kvy1+2*kvy2+2*kvy3+kvy4);
}
void create(double x1, double y1, double vx1, double vy1, double m1){
x = x1;
y = y1;
vx = vx1;
vy = vy1;
m =m1;
}
bool operator ==(particle &other){
if(x == other.x && y == other.y && vx == other.vx && vy == other.vy){
return true;
}
}
};
particle bodies[N];
void set(particle (&bodies)[N]){
bodies[0].create(1, 1, -2, 1, 2*pow(10.0,30));
bodies[1].create(2870671*pow(10.0,6), 0, 0, 6800, 8.6810*pow(10.0,25));
bodies[2].create(4498542*pow(10.0,6),0 ,0, 5430, 1.0243*pow(10.0,26));
}
double xforce(double x1, double y1, particle aap, particle bodies[N]){ //force in the x- direction
double fx = 0;
for (int i = 0; i <= N; i++){
if (bodies[i] == aap ){;}
else{
fx += aap.g(x1,y1,bodies[i]);
}
}
return fx;
}
double yforce(double x1, double y1, particle aap, particle bodies[N]){ //force in the y- direction
double fy = 0;
for (int i = 0; i <= N; i++){
if (bodies[i] == aap) {;}
else{
fy += aap.p(x1,y1,bodies[i]);
}
}
return fy;
}
void corr(double t, particle bodies[N]){ //runge kutta 4
for(int i =0; i <= N; i++){
bodies[i].kx1 = t*bodies[i].vx;
bodies[i].kv1 = t*xforce(bodies[i].x, bodies[i].y, bodies[i], bodies);
bodies[i].ky1 = t*bodies[i].vy;
bodies[i].kvy1 = t*yforce(bodies[i].x, bodies[i].y, bodies[i], bodies);
bodies[i].kx2 = t*(bodies[i].vx + 0.5*bodies[i].kv1);
bodies[i].kv2 = t*xforce(bodies[i].x + 0.5*bodies[i].kx1, bodies[i].y + 0.5*bodies[i].ky1, bodies[i], bodies);
bodies[i].ky2 = t*(bodies[i].vy + 0.5*bodies[i].kvy1);
bodies[i].kvy2 = t*yforce(bodies[i].x + 0.5*bodies[i].kx1, bodies[i].y + 0.5*bodies[i].ky1, bodies[i], bodies);
bodies[i].kx3 = t*(bodies[i].vx+ 0.5*bodies[i].kv2);
bodies[i].kv3 = t*xforce(bodies[i].x + 0.5*bodies[i].kx2, bodies[i].y + 0.5*bodies[i].ky2, bodies[i], bodies);
bodies[i].ky3 = t*(bodies[i].vy+ 0.5*bodies[i].kvy2);
bodies[i].kvy3 = t*yforce(bodies[i].x + 0.5*bodies[i].kx2, bodies[i].y + 0.5*bodies[i].ky2,bodies[i], bodies);
bodies[i].kx4 = t*(bodies[i].vx + bodies[i].kv3);
bodies[i].kv4 = t*xforce(bodies[i].x+ bodies[i].kx3, bodies[i].y + bodies[i].ky3, bodies[i], bodies);
bodies[i].ky4 = t*(bodies[i].vy + bodies[i].kvy3);
bodies[i].kvy4 = t*yforce(bodies[i].x + bodies[i].kx3, bodies[i].y + bodies[i].ky3, bodies[i], bodies);
}
}
void calculate(particle (&bodies)[N]){
set(bodies);
ofstream file;
file.open("tester.txt");
for(int i =0; i <=50000; i++){
corr(h, bodies);
for(int j = 0; j <= N; j++){
bodies[j].update();
}
if( i%1000 == 0){
file << i*h;
for(int j = 0; j <=N ; j++){
file <<" "<<bodies[j].x << " "<< bodies[j].y;
}
file <<" "<<"\n";
}
else{;}
}
file.close();
}
int main()
{
calculate(bodies);
system("pause");
return 0;
}
The problem probably lies outside of the class particle since the program worked before i started using the array bodies. Any suggestions for non essential improvements are ofcourse welcome. Another thing i'm trying to do is use std::vector instead of an array but i don't know how i could define a vector outside my functions like i defined the array bodies.
For a start, all of your i <= N are wrong, because your loop will execute 4 times (0, 1, 2, 3) instead of 3 for i < N.
You are likely experiencing energy drift, as RK4 is not symplectic, and the n-body problem is a Hamiltonian system. I had this same problem trying to use RK4 for a solar system n-body as well. So did this person. You should try another symplectic numerical method like Euler, Verlet, Ruth's 3rd, or Ruth's 4th order symplectic integrator.