CXF interceptors, SoapFaults, and custom exceptions - web-services

I'm trying to modify my CXF/Spring based SOAP web service into using interceptors to
capture SoapFaults and convert them into custom exceptions. The goal here is to
present a web client with only instances of my custom exception class when things go wrong,
never a SoapFault.
This is what I've managed to scrape together so far. You'd think there'd be more on
proper error handling in the various tuts and books , oh well.
FormsEndpointException
#XmlAccessorType(XmlAccessType.FIELD)
public class FormsEndpointException extends Exception
{
#XmlElement(name="errMsg")
private String myMsg
...
FormsEndpointImpl
#WebService( endpointInterface="mycorp.forms.web.endpoint.FormsEndpoint")
#org.apache.cxf.interceptor.InInterceptors (interceptors = {"mycorp.forms.web.resolver.MyExceptionInterceptor"})
public class FormsEndpointImpl implements FormsEndpoint
{
#Resource
WebServiceContext context;
FormTemplateService formTemplateService; //injected from bean
// must have default constructor per JAXB
public FormsEndpointImpl() {}
//only need setters
public void setFormTemplateService(FormTemplateService formTemplateService) {
this.formTemplateService = formTemplateService;
}
//methods
#WebMethod public void insertFormTemplate( FormTemplate formTemplate) throws FormsEndpointException
{
try {
formTemplateService.persist(formTemplate);
} catch ( Exception e) {
throw new FormsEndpointException( e.getMessage());
}
}
....
}
MyExceptionInterceptor
public class MyExceptionInterceptor extends AbstractSoapInterceptor
{
//special constructor
public MyExceptionInterceptor()
{
super( Phase.USER_LOGICAL);
}
#Override
public void handleMessage(SoapMessage arg0) throws Fault
{
//left blank for normal stuff
}
//only gets called when unwinding a chain when an exception is called on that chain
// Every exception will be wrapped into a Fault object by CXF
#Override
public void handleFault(SoapMessage arg0)
{
Fault aNewFault = new Fault( arg0.getContent(Exception.class));
aNewFault.setFaultCode( new QName("SNAP"));
aNewFault.setMessage("DAMMIT");
// TODO Auto-generated method stub
// Throwable FormsEndpointException = new FormsEndpointException("Awww");
}
}
application-context.xml
...
<!-- Spring manage ServiceBean -->
<bean id="formsEndpoint" class="mycorp.forms.web.endpoint.FormsEndpointImpl">
<property name="formTemplateService" ref="formTemplateService" />
</bean>
<!-- JAX-WS Service Endpoint -->
<jaxws:endpoint id="formsServiceService" implementor="#formsEndpoint" address="/formsService">
<jaxws:inFaultInterceptors>
<ref class="mycorp.forms.web.resolver.MyExceptionInterceptor" />
</jaxws:inFaultInterceptors>
<jaxws:outFaultInterceptors>
<ref class="mycorp.forms.web.resolver.MyExceptionInterceptor" />
</jaxws:outFaultInterceptors>
</jaxws:endpoint>
...
Question is, what needs to go into handleFault() to throw a new instance of MyException?
TIA,
Still-learning Steve

Related

Does The program flow go deeper into the bean being mocked in MockMvc?

From what I understand about mocking, the test should not go deeper into the bean being mocked. For example the control flow shouldn't go into the function apiService.getSomeData() and instead it should just return the string "Hello there".
But is that how mocking works or does the program keep going deeper and should I be able to see the print statements of getSomeData() in the stdout?
When I actually run the code below, it doesn't go deeper. But is that how it's supposed to work?
Suppose this is the Rest Controller Code:
#RestController
#RequestMapping(value = "/testing")
public class ApiController {
#Autowired
ApiService service;
#PostMapping(path = "/events/notifications",consumes = "application/json", produces = "application/json" )
public ResponseEntity<String> checkMapping(#Valid #RequestBody String someData, #RequestHeader(value="X-User-Context") String xUserContext) throws Exception {
String response = service.getSomeData(someData);
return ResponseEntity.status(HttpStatus.OK).body(response);
}
}
Suppose this is the Controller test code:
#WebMvcTest(ApiController.class)
public class ApiControllerTest {
#Autowired
MockMvc mockMvc;
#Autowired
ObjectMapper mapper;
#MockBean
ApiService apiService;
#Test
public void testingApi() throws Exception {
Mockito.when(apiService.getSomeData("")).thenReturn("Hello there");
MockHttpServletRequestBuilder mockRequest = MockMvcRequestBuilders.post("/testing/events/notifications")
.contentType(MediaType.APPLICATION_JSON)
.accept(MediaType.APPLICATION_JSON)
.header("X-User-Context","something")
.content("something");
mockMvc.perform(mockRequest)
.andExpect(status().isBadGateway());
}
}
Suppose this is the Api Service code:
#Service
public class ApiServiceImpl implements ApiService{
#Override
public String getSomeData(String data) throws Exception {
System.out.println("Going deeper in the program flow);
callThisFunction();
return "Some data";
}
public void callThisFunction(){
System.out.println("Going two levels deeper");
}
}
In your test you are not talking to ApiServiceImpl at all, but an instance that is created by mockito and that is also implementing the ApiService interface. Therefore, your implementation of getSomeData() is not executed at all. That's what mocking is about. You create a "mock" implementation (or let a tool like mockito do it for you) of the thing you do not want to be executed and inject it instead of the "real" thing.

How to Mock DataSource Dependency Injection Despite Being Accessible via Static Method

I'm using Mockito, DBUnit and HSQLDB to unit test my database code. I'm also writing integration tests of course.
I'm having trouble understanding how to inject a mocked DataSource into the system under test (class I'm testing). The DataSource is used for connection pooling, and therefore other classes can call a static method in the same class in order to retrieve an instance of this DataSource. This means that the DataSource is not injected into any constructors, anywhere, and so my tests don't have any constructors to inject the mocked DataSource into.
I'm getting around this by altering the logic of my real code to check if a private variable is null, and if so then use the injected DataSource (bad design since it's only needed for tests), otherwise it calls the static method to retrieve the connection pool's source (better design).
How do I inject a mocked DataSource into a class that doesn't have a constructor set up to accept it, because it can instead just call the static method to retrieve the dependency?
Class to Test
public DBConnection(DBSource dbSource) { // <--- Constructor only required for test purposes :(
this.dbSource = dbSource;
}
public final void createCompsDB() {
Connection conn = null;
Statement statement = null;
try {
if(dbSource==null){
conn = DBSource.getInstance().getConnection();
}else{
conn = dbSource.getConnection(); /** Likely bad design, since dbSource is only NOT null for tests, so that you can inject the mocked datasource :( */
}
statement = conn.createStatement();
statement.executeUpdate("CREATE DATABASE placesdb");
System.out.println("Database created...");
} catch (SQLException e) {
// ...
}
} finally {
// Close Resources...
}
}
}
Test Class -- Test Passes
public class DBConnectionTest {
final Statement statement = mock(Statement.class);
final Connection connection = mock(Connection.class);
final DBSource dataSource = mock(DBSource.class);
#Before
public void setUp() throws SQLException, IOException, PropertyVetoException {
when(dataSource.getConnection()).thenReturn(connection);
when(connection.createStatement()).thenReturn(statement);
}
#Test
public void testCreateCompDBIfNotAlready() throws Exception {
DBConnection dbConnection = new DBConnection(localDB, dataSource); /** This constructor is only needed for testing :( . How do I avoid it since all the classes I need to test don't require the dependency to be injected? */
dbConnection.createCompsDB();
verify(statement).executeUpdate("CREATE DATABASE PLACES");
}
}
DBSource.java
protected DBSource() throws IOException, SQLException, PropertyVetoException {
ds = new BasicDataSource();
ds.setDriverClassName("org.postgresql.Driver");
ds.setUsername("user");
ds.setPassword("pass");
ds.setUrl("jdbc:postgresql://localhost:5432/placesdb");
}
public static DBSource getInstance() { // <--- Static method means dependent classes don't need to accept injections
if (datasource == null) {
datasource = new DBSource();
return datasource;
} else {
return datasource;
}
}
public Connection getConnection() throws SQLException {
return this.ds.getConnection();
}
}
Mocking of the static class methods may be done with PowerMockito.
The test class should be something like this:
#RunWith(PowerMockRunner.class)
#PrepareForTest(DBSource.class)
public class DBConnectionTest {
#Mock
final Statement statement;
#Mock
final Connection connection;
#Mock
final DBSource dbsource;
#Before
public void setUp() throws SQLException, IOException, PropertyVetoException {
PowerMockito.mockStatic(DBSource.class);
when(DbSource.getInstance()).thenReturn(dbsource);
when(dbsource.getConnection()).thenReturn(connection);
when(connection.createStatement()).thenReturn(statement);
}
#Test
public void testCreateCompDBIfNotAlready() throws Exception {
DBConnection dbConnection = new DBConnection(localDB); // No test-only constructor anymore
dbConnection.createCompsDB();
verify(statement).executeUpdate("CREATE DATABASE PLACES");
}
}
You can read here more about mocking with PowerMock.

Assert exchange property set in Camel after calling external mocked service

I'm trying to write a Unit Test for camel to check if an exchange property was correctly set based on the response of the external mocked service. However I can get the property after the call as I can't access the original exchange after mocked external service has been called.
public class OutputTest extends CamelBlueprintTestSupport {
#Override
protected String getBlueprintDescriptor() {
return "/OSGI-INF/blueprint/blueprint-camel.xml,/OSGI-INF/blueprint/blueprint-beans.xml";
}
#Override
public boolean isUseAdviceWith() {
return true;
}
#Override
public String isMockEndpointsAndSkip() {
return "wmq:.*|jetty:.*";
}
#Test
public void testCallAndPropertyIsSet() throws Exception {
getMockEndpoint("mock:jetty:http:localhost").expectedBodiesReceived(context.getTypeConverter().convertTo(String.class, new File("src/test/resources/requests/Request.xml")));
getMockEndpoint("mock:jetty:http:localhost").returnReplyBody(new Expression() {
#Override
public <T> T evaluate(Exchange exchange, Class<T> aClass) {
return context.getTypeConverter().convertTo(aClass, new File("src/test/resources/requests/Response.xml"));
}
});
template.sendBody("direct:route1", context.getTypeConverter().convertTo(String.class, new File("src/test/resources/requests/ValidRequest.xml")));
getMockEndpoint("mock:jetty:http:localhost").expectedBodiesReceived();
//How to assert exchange property 'Property1' has been set?
}
Blueprint camel route:
<route id="rav">
<from uri="direct:route1"/>
<to uri="velocity:templates/RequestTemplate.vm"/>
<to uri="jetty:{{integration.service.service1}}?bridgeEndpoint=true"/>
<setProperty propertyName="Property1">
<xpath resultType="java.lang.String">/soapenv:Envelope/soapenv:Body/namespace:element/text()</xpath>
</setProperty>
</route>
There are different ways to do this. You can try to use the MockEndpoint and get the exchange from there. Another approach is:
Exchange exchange = template.send("uri", new Processor() {
public void process(Exchange exchange) throws Exception {
exchange.getIn().setBody("");
}
});
Message resp = exchange.getIn();
assertEquals("someproperty", resp.getProperty("propertyName"));

Eclipse Scout client unit tests with ScoutClientTestRunner

I am trying to create unit test with scout context and I can't find proper tutorial or example for it.
When I create test with ScoutClientTestRunner, I get error
java.lang.Exception: Client session class is not set. Either set the default client session using 'ScoutClientTestRunner.setDefaultClientSessionClass' or annotate your test class and/or method with 'ClientTest'
I try to set client session class like this :
#Before
public void setClassSession() throws Exception {
ScoutClientTestRunner.setDefaultClientSessionClass(ClientSession.class)
}
and
#BeforeClass
public void setClassSession() throws Exception {
ScoutClientTestRunner.setDefaultClientSessionClass(ClientSession.class);
}
I try to add #ClientTest to the class and to all methods but I still get same error.
How to set client session in tests if you use ScoutClientTestRunner ?
The ScoutClientTestRunner ensures that the JUnit tests are executed having all the Scout Context (OSGi and so on) available.
Your attempts with #Before or #BeforeClass are too late. You need to provide the Scout Context initialization parameters before that. As the exception message says, you have 2 possibilities:
(1) #ClientTest annotation
You can annotate test classes or methods with #ClientTest using the clientSessionClass parameter:
#RunWith(ScoutClientTestRunner.class)
#ClientTest(clientSessionClass = ClientSession.class)
public class DesktopFormTest {
#Test
public void test1() throws Exception {
//Do something requiring a scout context:
//for example instantiate a DesktopForm.
}
}
If necessary you can also do it at method level:
#RunWith(ScoutClientTestRunner.class)
public class DesktopFormTest {
#Test
#ClientTest(clientSessionClass = Client1Session.class)
public void test1() throws Exception {
//client session is an instance of Client1Session.
}
#Test
#ClientTest(clientSessionClass = Client2Session.class)
public void test2() throws Exception {
//client session is an instance of Client2Session.
}
}
(2) Defining a TestEnvironment
When the test is run (directly or using maven-tycho), a lookup for a fully qualified class org.eclipse.scout.testing.client.runner.CustomClientTestEnvironment is done.
The CustomClientTestEnvironment class should implement org.eclipse.scout.testing.client.runner.IClientTestEnvironment
The method setupGlobalEnvironment() is called once and can be used to define the default client session with ScoutClientTestRunner.setDefaultClientSessionClass(..). This method can also be used to register required services.
Here an example:
package org.eclipse.scout.testing.client.runner; // <= can not be changed.
// add imports
public class CustomClientTestEnvironment implements IClientTestEnvironment {
#Override
public void setupGlobalEnvironment() {
//Set client session:
ScoutClientTestRunner.setDefaultClientSessionClass(ClientSession.class);
}
#Override
public void setupInstanceEnvironment() {
}
}
Of course (1) and (2) are compatible. The second mechanism defines only the default and ClientSession configured with (1) will override the default.

How to unit test an interceptor?

I want to write some unit tests for an interceptor that intercepts the Loggable base class (which implements ILoggable).
The Loggable base class has no methods to call and it is used only to be initialized by the logging facility.
To my understanding I should:
Mock an ILoggable and an ILogger
Initialize the logging facility
Register my interceptor on it
Invoke some method of the mocked ILoggable
The problem is that my ILoggable interface has no methods to call and thus nothing will be intercepted.
What is the right way to act here?
Should I mock ILoggable manually and add a stub method to call?
Also, should I be mocking the container as well?
I am using Moq and NUnit.
EDIT:
Here's my interceptor implementation for reference:
public class LoggingWithDebugInterceptor : IInterceptor
{
#region IInterceptor Members
public void Intercept(IInvocation invocation)
{
var invocationLogMessage = new InvocationLogMessage(invocation);
ILoggable loggable = invocation.InvocationTarget as ILoggable;
if (loggable == null)
throw new InterceptionFailureException(invocation, string.Format("Class {0} does not implement ILoggable.", invocationLogMessage.InvocationSource));
loggable.Logger.DebugFormat("Method {0} called with arguments {1}", invocationLogMessage.InvokedMethod, invocationLogMessage.Arguments);
Stopwatch stopwatch = new Stopwatch();
try
{
stopwatch.Start();
invocation.Proceed();
stopwatch.Stop();
}
catch (Exception e)
{
loggable.Logger.ErrorFormat(e, "An exception occured in {0} while calling method {1} with arguments {2}", invocationLogMessage.InvocationSource, invocationLogMessage.InvokedMethod, invocationLogMessage.Arguments);
throw;
}
finally
{
loggable.Logger.DebugFormat("Method {0} returned with value {1} and took exactly {2} to run.", invocationLogMessage.InvokedMethod, invocation.ReturnValue, stopwatch.Elapsed);
}
}
#endregion IInterceptor Members
}
If it's just the interceptor that uses the Logger Property on your class than why have in there at all? You might just as well have it on the interceptor. (like Ayende explained in his post here).
Other than that - interceptor is just a class which interacts with an interface - everything highly testable.
I agree with Krzysztof, if you're looking to add Logging through AOP, the responsibility and implementation details about logging should be transparent to the caller. Thus it's something that the Interceptor can own. I'll try to outline how I would test this.
If I follow the question correctly, your ILoggable is really just a naming container to annotate the class so that the interceptor can determine if it should perform logging. It exposes a property that contains the Logger. (The downside to this is that the class still needs to configure the Logger.)
public interface ILoggable
{
ILogger { get; set; }
}
Testing the interceptor should be a straight-forward process. The only challenge I see that you've presented is how to manually construct the IInvocation input parameter so that it resembles runtime data. Rather than trying to reproduce this through mocks, etc, I would suggest you test it using classic State-based verification: create a proxy that uses your interceptor and verify that your log reflects what you expect.
This might seem like a bit more work, but it provides a really good example of how the interceptor works independently from other parts of your code-base. Other developers on your team benefit from this as they can reference this example as a learning tool.
public class TypeThatSupportsLogging : ILoggable
{
public ILogger { get; set; }
public virtual void MethodToIntercept()
{
}
public void MethodWithoutLogging()
{
}
}
public class TestLogger : ILogger
{
private StringBuilder _output;
public TestLogger()
{
_output = new StringBuilder();
}
public void DebugFormat(string message, params object[] args)
{
_output.AppendFormat(message, args);
}
public string Output
{
get { return _output.ToString(); }
}
}
[TestFixture]
public class LoggingWithDebugInterceptorTests
{
protected TypeThatSupportsLogging Input;
protected LoggingWithDebugInterceptor Subject;
protected ILogger Log;
[Setup]
public void Setup()
{
// create your interceptor
Subject = new LoggingWithDebugInterceptor();
// create your proxy
var generator = new Castle.DynamicProxy.ProxyGenerator();
Input = generator.CreateClassProxy<TypeThatSupportLogging>( Subject );
// setup the logger
Log = new TestLogger();
Input.Logger = Log;
}
[Test]
public void DemonstrateThatTheInterceptorLogsInformationAboutVirtualMethods()
{
// act
Input.MethodToIntercept();
// assert
StringAssert.Contains("MethodToIntercept", Log.Output);
}
[Test]
public void DemonstrateNonVirtualMethodsAreNotLogged()
{
// act
Input.MethodWithoutLogging();
// assert
Assert.AreEqual(String.Empty, Log.Output);
}
}
No methods? What are you testing?
Personally, this sounds like it goes too far. I realize that TDD and code coverage is dogma, but if you mock an interface with no methods and prove that the mocking framework does what you instructed it to do, what have you really proven?
There's another misdirection going on here: logging is the "hello world" of aspect oriented programming. Why aren't you doing logging in an interceptor/aspect? If you did it that way, there'd be no reason for all your classes to implement ILoggable; you could decorate them with logging capability declaratively. I think it's a less invasive design and a better use of interceptors.