OpenGL is not displaying anything when looking along the y axis - opengl

I am currently trying to display a red grid viewed from the top using SFML and OpenGL.
The grid plan is normal to the y axis (y axis is the vector looking to the top).
This is called before my rendering loop:
glEnable(GL_DEPTH_TEST);
gluPerspective(90.0f, (GLfloat)640/(GLfloat)480, 1.0f, 1000.0f);
Inside my rendering loop:
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
gluLookAt(0.0, -3.0, 0.0,
0.0, -0.8, 0.0,
0.0, 1.0, 0.0);
for (float x = -10.0f, x < 10.0f, x += 1.0f) {
glColor3f(1.0f, 0.0f, 0.0f);
glBegin(GL_LINES);
glVertex3f(x, -0.5f, -10.0f);
glVertex3f(x, -0.5f, 10.0f);
glVertex3f(-10.0f, -0.5f, x);
glVertex3f(10.0f, -0.5f, x);
glEnd();
}
window.display(); // swap buffers in SFML
I stripped the SFML part.
When I replace the gluLookAt(); part by this one (slight tilt of the camera):
gluLookAt(0.0, -3.0, 0.0,
0.0, -0.8, 0.01,
0.0, 1.0, 0.0);
or this one:
gluLookAt(0.0, -3.0, 0.0,
0.0, -0.8, 0.0,
0.0, 0.0, 1.0);
Everything is displayed fine.
I concluded that when I look exactly in the -y direction (90°), nothing is drawn. But why? Did I miss something?
My OpenGL supported version is 2.1 Mesa 10.2.4
Many thanks in advance!

The problem is, that you up-axis also points towards the y-axis. It is not necessary that the up-vector points exactly upwards, but it has to be different from your viewing-direction. For more details have a look at this answer
Edit: Since requested, here is the mathematical explaination:
gluLookAt generates a 3d coordinate frame, that consists of three perpendicular vectors.
Assuming the input to gluLookAt is a camera position (C), a eye-position (E), and a up-vector (U), than the matrix is constructed using the following equations:
F = C - E
f = F / |F|
U' = U / |U|
this results in two vectors that span a plane. We already know, that f (the view-vector) will be the -z axis of our final coordinate frame (opengl looks always along the negative z-axis). The x-axis can be calculated by finding the normal vector of the plane spanned by f and u and can thus be calculated via
S = f x U' (x is the cross product)
s = S / |S|
Note that the normalization would not be required if u and f are already perpendicular, but since gluLookAt does not require the real up vector this is not necessarily given. Out of the same reason we cannot use u directly as y-axis. What we are looking for is a y-vector that is perpendicular to both, f and s, which is given as:
u = s x f
The final matrix is than constructed by
| s 0 |
M = | u 0 |
| -f 0 |
| 0 0 0 1 |
Now consider your case where f = U':
When calculating S we get
S = f x U' = U' x U' = [0, 0, 0]
Since this gives a null-vector, u will also be a null-vector. In total this results in a matrix where the first two rows are all zero, and thus each vector multiplied with this matrix will end up with x and y beeing 0.
Hope this helps you. The formulas for gluLookAt are taken from here

Related

How do I properly rotate these houses?

I am using C++, OpenGL and glut. I am trying to make 5 houses that are rotated properly like this:
However, whenever I try to implement the glRotatef function, I seem to not be able to either get the proper coordinates or something is off somewhere in my code. Furthermore, I set the background color to white but it's still all black, how come? For now I have the houses set to white to counter this for now. Here is my code:
#include <GL/glut.h>
typedef int vert2D[2];
void initialize()
{
glClearColor(1.0, 1.0, 1.0, 0);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluOrtho2D(10.0, 215.0, 0.0, 250.0);
glMatrixMode(GL_MODELVIEW);
}
void drawHouse(vert2D* sq, vert2D* tri)
{
glColor3f(1.0, 1.0, 1.0);
glBegin(GL_LINE_LOOP);
glVertex2iv(sq[0]);
glVertex2iv(sq[1]);
glVertex2iv(sq[2]);
glVertex2iv(sq[3]);
glEnd();
glBegin(GL_LINE_LOOP);
glVertex2iv(tri[0]);
glVertex2iv(tri[1]);
glVertex2iv(tri[2]);
glEnd();
}
void render()
{
vert2D sqPts[4] = { {115, 150}, {115, 125}, {100,125}, {100,150} };
vert2D triPts[3] = { {120, 150}, {95,150}, {108,160} };
glPolygonMode(GL_FRONT_AND_BACK, GL_LINE);
glMatrixMode(GL_MODELVIEW);
drawHouse(sqPts, triPts);
glPushMatrix();
glTranslatef(1.0, 0.0, 0.0);
glRotatef(-10.0, 0.0, 0.0, 1.0);
drawHouse(sqPts, triPts);
glTranslatef(1.0, 0.0, 0.0);
glRotatef(-10.0, 0.0, 0.0, -1.0);
drawHouse(sqPts, triPts);
glPopMatrix();
glPushMatrix();
glTranslatef(-1.0, 0.0, 0.0);
glRotatef(10.0, 0.0, 0.0, 1.0);
drawHouse(sqPts, triPts);
glTranslatef(-1.0, 0.0, 0.0);
glRotatef(10.0, 0.0, 0.0, 1.0);
drawHouse(sqPts, triPts);
glPopMatrix();
glFlush();
}
int main(int argc, char** argv)
{
glutInit(&argc, argv);
glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB);
glutInitWindowPosition(100, 100);
glutInitWindowSize(640, 480);
glutCreateWindow("TestMeOut");
initialize();
glutDisplayFunc(render);
glutMainLoop();
}
Let's answer the simpler question of why your background is still black, first:
You simply never glClear(GL_COLOR_BUFFER_BIT) the color buffer. You tell OpenGL "hey, the next time I call glClear with (at least) the GL_COLOR_BUFFER_BIT, I want the color buffer to be cleared to white." but you never actually clear the buffer.
Now, onto how we can draw the houses with their correct locations and orientations:
You should first start by defining your house's vertices in a sensible local coordinate system/frame that is suitable for transforming them in further steps. Currently, with how you define your house's vertices, it is hard to do any transformations on those (mainly because linear transformations like rotation are always relative to the coordinate system's origin).
So, let's change that. Let's define the origin (0, 0) for your house to be the center of the bottom/base line of the house. And let's also define that your house's quad has a side length of 10 "units":
vert2D sqPts[4] = {
{-5, 0}, // <- bottom left
{ 5, 0}, // <- bottom right
{ 5,10}, // <- top right
{-5,10} // <- top left
};
Now, for the roof of the house, we assume the same coordinate system (with (0, 0) being the center of the house's base/bottom line), so we start at Y=10:
vert2D triPts[3] = {
{-6, 10}, // <- left
{ 6, 10}, // <- right
{ 0, 12} // <- top
};
Next, we need to define where (0, 0) should be in our "world", so to speak. One definition could be: (0, 0) should be the center of the bottom of the viewport/screen and the viewport should have a length of 100 "units". Right now, we don't care about a correct aspect ratio when the viewport's width does not equal the viewport's height. This can be added later.
Starting from the clip space coordinate system, we can transform this clip space into our own "world space" by using these transformations:
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glTranslatef(0.0, -1.0, 0.0); // <- move the origin down to the bottom of the viewport
glScalef(1.0 / 50.0, 1.0 / 50.0, 1.0); // <- "scale down" the clip space to cover more space in the viewport
Now, the above part is essentially what gluOrtho2D() does as well, but highlighting the actual coordinate system transformation steps is useful here.
Now that we defined our house's local coordinate system and our "world" coordinate system, we can rotate and translate the world coordinate system such that the houses appear at their correct locations and orientations in our world.
In order to draw 5 houses, we just use a for-loop:
glMatrixMode(GL_MODELVIEW);
for (int i = -2; i <= 2; i++) { // <- 5 steps
glPushMatrix();
glRotatef(i * 20.0, 0.0, 0.0, 1.0);
glTranslatef(0.0, 50.0, 0.0);
drawHouse(sqPts, triPts);
glPopMatrix();
}
So, starting from our world coordinate system, we transform it by rotating the appropriate amount around its origin (0, 0) for the house with index i to have the correct rotation, and then translate the coordinate system by 50 units along its (now rotated) Y axis.
These two transformations will now result in a house to be drawn at the desired location. So, repeat that 5 times in total with differing rotation angles, and you're done.

shapes skewed when rotated, using openGL, glm math, orthographic projection

For practice I am setting up a 2d/orthographic rendering pipeline in openGL to be used for a simple game, but I am having issues related to the coordinate system.
In short, rotations distort 2d shapes, and I cannot seem to figure why. I am also not entirely sure that my coordinate system is sound.
First I looked for previous answers, but the following (the most relevant 2D opengl rotation causes sprite distortion) indicates that the problem was an incorrect ordering of transformations, but for now I am using just a view matrix and projection matrix, multiplied in the correct order in the vertex shader:
gl_Position = projection * view * model vec4(1.0); //(The model is just the identity matrix.)
To summarize my setup so far:
- I am successfully uploading a quad that should stretch across the whole screen:
GLfloat vertices[] = {
-wf, hf, 0.0f, 0.0, 0.0, 1.0, 1.0, // top left
-wf, -hf, 0.0f, 0.0, 0.0, 1.0, 1.0, // bottom left
wf, -hf, 0.0f, 0.0, 0.0, 1.0, 1.0, // bottom right
wf, hf, 0.0f, 0.0, 0.0, 1.0, 1.0, // top right
};
GLuint indices[] = {
0, 1, 2, // first Triangle
2, 3, 0, // second Triangle
};
wf and hf are 1, and I am trying to use a -1 to 1 coordinate system so I don't need to scale by the resolution in shaders (though I am not sure that this is correct to do.)
My viewport and orthographic matrix:
glViewport(0, 0, SCREEN_WIDTH, SCREEN_HEIGHT);
...
glm::mat4 mat_ident(1.0f);
glm::mat4 mat_projection = glm::ortho(-1.0f, 1.0f, -1.0f, 1.0f, -1.0f, 1.0f);
... though this clearly does not factor in the screen width and height. I have seen others use width and height instead of 1s, but this seems to break the system or display nothing.
I rotate with a static method that modifies a struct containing a glm::quaternion (time / 1000) to get seconds:
main_cam.rotate((GLfloat)curr_time / TIME_UNIT_TO_SECONDS, 0.0f, 0.0f, 1.0f);
// which does: glm::angleAxis(angle, glm::vec3(x, y, z) * orientation)
Lastly, I pass the matrix as a uniform:
glUniformMatrix4fv(MAT_LOC, 1, GL_FALSE, glm::value_ptr(mat_projection * FreeCamera_calc_view_matrix(&main_cam) * mat_ident));
...and multiply in the vertex shader
gl_Position = u_matrix * vec4(a_position, 1.0);
v_position = a_position.xyz;
The full-screen quad rotates on its center (0, 0 as I wanted), but its length and width distort, which means that I didn't set something correctly.
My best guess is that I haven't created the right ortho matrix, but admittedly I have had trouble finding anything else on stack overflow or elsewhere that might help debug. Most answers suggest that the matrix multiplication order is wrong, but that is not the case here.
A secondary question is--should I not set my coordinates to 1/-1 in the context of a 2d game? I did so in order to make writing shaders easier. I am also concerned about character/object movement once I add model matrices.
What might be causing the issue? If I need to multiply the arguments to gl::ortho by width and height, then how do I transform coordinates so v_position (my "in"/"varying" interpolated version of the position attribute) works in -1 to 1 as it should in a shader? What are the implications of choosing a particular coordinates system when it comes to ease of placing entities? The game will use sprites and textures, so I was considering a pixel coordinate system, but that quickly became very challenging to reason about on the shader side. I would much rather have THIS working.
Thank you for your help.
EDIT: Is it possible that my varying/interpolated v_position should be set to the calculated gl_Position value instead of the attribute position?
Try accounting for the aspect ratio of the window you are displaying on in the first two parameters of glm::ortho to reflect the aspect ratio of your display.
GLfloat aspectRatio = SCREEN_WIDTH / SCREEN_HEIGHT;
glm::mat4 mat_projection = glm::ortho(-aspectRatio, aspectRatio, -1.0f, 1.0f, -1.0f, 1.0f);

Bullet | Rigidbody translated correctly but printed position is wrong

I have a very simple problem, but I can't see what I'm doing wrong.
I have a rigidbody starting at pos: 0.0, 3.0, 0.0. I apply a translate, -90 degree rotation, and then another translate. The rigidbody's final position should be 2.0, 1.0, 0.0, but the position that is printed out is still 0.0, 3.0, 0.0.
I perform a collision test by dropping some small cubes above the rigidbody in question. Oddly enough, they stop above 2.0, 1.0, 0.0 showing that the rigidbody was moved correctly.
//Rigidbody in question
btRigidBody *btPhys;
//First transform
btPhys->translate(btVector3(0.0, -2.0, 0.0));
//Perform -90 degree rotation
btMatrix3x3 orn = btPhys->getWorldTransform().getBasis();
orn *= btMatrix3x3(btQuaternion( btVector3(0, 0, 1), btScalar(degreesToRads(-90))));
btPhys->getWorldTransform().setBasis(orn);
//Perform second transform
btPhys->translate(btVector3(2.0, 0.0, 0.0));
//Print out final position
btTransform trans;
btPhys->getMotionState()->getWorldTransform(trans);
float x, y, z;
x = trans.getOrigin().getX();
y = trans.getOrigin().getY();
z = trans.getOrigin().getZ();
printf("\n\nposition: %f %f %f\n\n", x, y, z);
Basically, I'd just like to be able to get the correct position of the rigidbody from this code (2.0, 1.0, 0.0). Thank you!
In your case, if you want to obtain correct position of btRigidBody you should call:
btPhys->getWorldTransform().getOrigin();
You are calling
btPhys->getMotionState()->getWorldTransform(trans);
instead, but the MotionState is not yet updated. All MotionStates are updated in simulation step.

From gluOrtho2D to 3D

I followed a guide to draw a Lorenz system in 2D.
I want now to extend my project and switch from 2D to 3D. As far as I know I have to substitute the gluOrtho2D call with either gluPerspective or glFrustum. Unfortunately whatever I try is useless.
This is my initialization code:
// set the background color
glClearColor(0.0f, 0.0f, 0.0f, 1.0f);
/// set the foreground (pen) color
glColor4f(1.0f, 1.0f, 1.0f, 1.0f);*/
// set the foreground (pen) color
glColor4f(1.0f, 1.0f, 1.0f, 0.02f);
// enable blending
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
// enable point smoothing
glEnable(GL_POINT_SMOOTH);
glPointSize(1.0f);
// set up the viewport
glViewport(0, 0, 400, 400);
// set up the projection matrix (the camera)
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
//gluOrtho2D(-2.0f, 2.0f, -2.0f, 2.0f);
gluPerspective(45.0f, 1.0f, 0.1f, 100.0f); //Sets the frustum to perspective mode
// set up the modelview matrix (the objects)
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
while to draw I do this:
glClear(GL_COLOR_BUFFER_BIT);
// draw some points
glBegin(GL_POINTS);
// go through the equations many times, drawing a point for each iteration
for (int i = 0; i < iterations; i++) {
// compute a new point using the strange attractor equations
float xnew=z*sin(a*x)+cos(b*y);
float ynew=x*sin(c*y)+cos(d*z);
float znew=y*sin(e*z)+cos(f*x);
// save the new point
x = xnew;
y = ynew;
z = znew;
// draw the new point
glVertex3f(x, y, z);
}
glEnd();
// swap the buffers
glutSwapBuffers();
the problem is that I don't visualize anything in my window. It's all black. What am I doing wrong?
The name "gluOrtho2D" is a bit misleading. In fact gluOrtho2D is probably the most useless function ever. The definition of gluOrtho2D is
void gluOrtho2D(
GLdouble left,
GLdouble right,
GLdouble bottom,
GLdouble top )
{
glOrtho(left, right, bottom, top, -1, 1);
}
i.e. the only thing it does it calling glOrtho with default values for near and far. Wow, how complicated and ingenious </sarcasm>.
Anyway, even if it's called ...2D, there's nothing 2-dimensional about it. The projection volume still has a depth range of [-1 ; 1] which is perfectly 3-dimensional.
Most likely the points generated lie outside the projection volume, which has a Z value range of [0.1 ; 100] in your case, but your points are confined to the range [-1 ; 1] in either axis (and IIRC the Z range of the strange attractor is entirely positive). So you have to apply some translation to see something. I suggest you choose
near = 1
far = 10
and apply a translation of Z: -5.5 to move things into the center of the viewing volume.

Rendering visually perfect squares in OpenGL?

In OpenGL's fixed pipeline, by default, specifying vertex coordinates using glVertex3f is equivalent to specifying a location between -1.0 and +1.0 in screen space. Therefore, given a set of 4 perfectly adjacent screen-space vertices using GL_TRIANGLE_STRIP (or even GL_QUADS), and unless your window is already perfectly square, you will always render a rectangle instead of a perfect square...
Knowing the width, height and aspect ratio of a window, is there some way to correct this?
I have tried multiplying the vertex coordinates by the aspect ratio, which unfortunately seemed to achieve the same visual effect.
Here's the full source code I'm currently using:
#include "main.h"
#pragma comment(lib, "glut32.lib")
int g_width = 800;
int g_height = 600;
int g_aspectRatio = double(g_width) / double(g_height);
bool g_bInitialized = false;
int main(int argc, char **argv)
{
glutInit(&argc, argv);
glutInitDisplayMode(GLUT_DEPTH | GLUT_DOUBLE | GLUT_RGBA);
glutInitWindowPosition(0, 0);
glutInitWindowSize(g_width, g_height);
glutCreateWindow("OpenGL Test App");
glutDisplayFunc(onRender);
glutReshapeFunc(onSize);
glutIdleFunc(onRender);
glutMainLoop();
return 0;
}
void onInit()
{
glFrontFace(GL_CW);
}
void onRender()
{
if(!g_bInitialized)
onInit();
static float angle = 0.0f;
const float p = 0.5f * g_aspectRatio;
glLoadIdentity();
gluLookAt(
0.0f, 0.0f, 10.0f,
0.0f, 0.0f, 0.0f,
0.0f, 1.0f, 0.0f
);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glScalef(1, -1, 1); // Flip the Y-axis
glRotatef(angle, 0.0f, 1.0f, 0.0f);
glBegin(GL_TRIANGLE_STRIP);
{
glColor4f(1.0, 0.0, 0.0, 1.0); // Red
glVertex3f(-p, -p, 0.0); // Top-Left
glColor4f(0.0, 1.0, 0.0, 1.0); // Green
glVertex3f(p, -p, 0.0); // Top-Right
glColor4f(0.0, 0.0, 1.0, 1.0); // Blue
glVertex3f(-p, p, 0.0); // Bottom-Left
glColor4f(1.0, 1.0, 0.0, 1.0); // Yellow
glVertex3f(p, p, 0.0); // Bottom-Left
}
glEnd();
angle += 0.6f;
glutSwapBuffers();
}
void onSize(int w, int h)
{
g_width = max(w, 1);
g_height = max(h, 1);
g_aspectRatio = double(g_width) / double(g_height);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glViewport(0, 0, w, h);
gluPerspective(45, g_aspectRatio, 1, 1000);
glMatrixMode(GL_MODELVIEW);
}
EDIT:
This has been solved... In the above code, I had defined g_aspectRatio as an int instead of a floating-point value. Therefore, it's value was always 1...
In my (old) experience, that's just why you have an aspect ratio argument to gluPerspective().
The manual page says:
In general, the aspect ratio in gluPerspective should match
the aspect ratio of the associated viewport. For example, aspect = 2.0
means the viewer's angle of view is twice as wide in x as it is in y.
If the viewport is twice as wide as it is tall, it displays the image
without distortion.
Check your g_aspectRatio value.
by default, specifying vertex coordinates using glVertex3f is equivalent to specifying a location between -1.0 and +1.0 in screen space
Wrong. Coordinates passed to OpenGL through glVertex or a glVertexPointer vertex array are in model space. The transformation to screen space happens by transforming into view space by the modelview matrix and from view space to clip space by the projection matrix. Then clipping is applied and the perspective divide applied to reach normalized coordinate space.
Hence the value range for glVertex can be whatever you like it to be. By applying the right projection matrix you get your view space to be in [-aspect; aspect]×[-1, 1] if you like that.
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glOrtho(-aspect, aspect, -1, 1, -1, 1);