C++ add virtual method in polymorphic subclass - c++

I have cumbersome class and I want to refactor it to replace type code with subclasses. At some point during such process I have following hierarchy:
// interface
ISomeClass(){
public:
virtual foo() = 0;
virtual ~ISomeClass();
}
// this class is cumbersome one with huge amount of conditional logic based on type
BaseSomeClass : public ISomeClass(){
public:
virtual foo(){
if(TYPE_0 == getType()){ // finally I want to move such conditional logic in subclass
doSmth();
} else if (TYPE_1 == getType()){
doAnother();
}
}
protected:
virtual int getType(){ // I temporary need it for refactoring issue
return type_; // to replace type_ with subclasses
}
private:
int type_;
};
// this classes is almost empty now, but I want to move there all conditional logic in future
class Implementation1 : public BaseSomeClass {
virtual int getType(){ // I temporary need it for refactoring issue
return TYPE_0; // to replace type_ with subclasses
}
};
class Implementation2 : public BaseSomeClass {
virtual int getType(){ // I temporary need it for refactoring issue
return TYPE_1; // to replace type_ with subclasses
}
};
In BaseSomeClassdefined additional virtual method getType(). Would this method behavior be polymorphic if I handle all the instances using some kind of interface ISomeClass pointer? Assuming the interface itself doesn't provide such virtual method. Please notice this code is a first step in refactoring, not final one. Also this is a simplified example and real code has tens of such methods, I need to do refactoring step by step. And the question is about C++ dynamic polymorphism.

You asked:
Would this method behavior be polymorphic if I handle all the instances using some kind of interface ISomeClass pointer? Assuming the interface itself doesn't provide such virtual method.
If the interface does not provide such a virtual method, you can't expect polymorphic behavior.
It'll be better to implement foo in Implementation1 and Implementation2.
class BaseSomeClass : public ISomeClass()
{
};
class Implementation1 : public BaseSomeClass
{
virtual void foo()
{
doSmth();
}
};
class Implementation2 : public BaseSomeClass
{
virtual void foo()
{
doAnother();
}
};
If you must use getType(), you can resort to template based polymorphic behavior.
template <typename D>
class BaseSomeClass : public ISomeClass()
{
public:
virtual foo()
{
int type = D::getType();
if(TYPE_0 == type)
{
doSmth();
}
else if (TYPE_1 == type)
{
doAnother();
}
}
};
Here, you are expecting D to provide the interface getType(). You might as well expect D to provide the interface foo.
template <typename D>
class BaseSomeClass : public ISomeClass()
{
public:
virtual void foo()
{
D::foo():
}
};

Related

Where to implement functions from an interface's parent interface?

I'm asked to implement an interface and I'm wondering what would be the best strategy to factorize the code as much as possible.
Here is the interface definition (I'm not supposed to change it):
#include <string>
class BaseIf
{
public:
virtual ~BaseIf() {}
virtual std::string getName() = 0;
};
class IntIf : public BaseIf
{
public:
virtual ~IntIf() {}
virtual int getValue() = 0;
};
class FloatIf : public BaseIf
{
public:
virtual ~FloatIf() {}
virtual float getValue() = 0;
};
I'll end up with IntImpl (implementing IntIf) and FloatImpl (implementing FloatIf). But I'm wondering where I should put any code common to those two classes (like the name attribute management or any other stuff required by BaseIf which is actually much bigger than in this MCVE).
If I create BaseImpl (implementing BaseIf's getName function) with the common code, and have IntImpl derive from it (and IntIf), then I need to also implement getName in it because it's reported as not implemented. And I also get double inheritance of BaseIf...
I was wondering if Pimpl pattern would help, then IntImpl would have a BaseImpl object as attribute (and only derive from IntIf), but then, again, I need to implement getName in IntImpl to "forward" the call to the BaseImpl attribute. So as BaseIf has actually many virtual functions this is just going to be a real pain to maintain.
Is there no smart solution/pattern making it possible to implement once only getName in a common place? Or is it just the interface that is bad and should be reworked?
This is the primary use case for virtual inheritance.
Despite all the stigma that surrionds multiple and virtual inheritance, there are no particular problems when oure interfaces (no data members) are virtually inherited. Here's the gist:
class BaseIf
{
public:
virtual ~BaseIf() {}
virtual std::string getName() = 0;
};
class IntIf : public virtual BaseIf
{
public:
virtual ~IntIf() {}
virtual int getValue() = 0;
};
class BaseImpl : public virtual BaseIf
{
public:
std::string getName () override { return "whoa dude"; }
};
class IntImpl : public virtual IntIf, public BaseImpl
{
public:
int getValue() override { return 42; }
};
full demo
With a deeper hierarchy one probably would have to virtually inherit implementation classes as well, which is not very convenient but still doable.
An alternative to virtual inheritance of implementation would be to stratify the implementation into a "building blocks" layer and the final layer. Building blocks are standalone and do not inherit other building blocks. (They may inherit interfaces). The final classes inherit building blocks but not other final classes.
class BaseBlock : public virtual BaseIf
{
public:
std::string getName () override { return "whoa dude"; }
};
class IntBlock : public virtual IntIf
{
public:
int getValue() override { return 42; }
};
class BaseImpl : public BaseBlock {};
class IntImpl : public BaseBlock, public IntBlock {};
full demo
One does need to made changes to the interfaces if there was no virtual inheritance in the hierarchy. These changes are however transparent (the clients code need not be changed, only recompiled) and probably beneficial anyway.
Without virtual inheritance, one would have to resort to lots of boilerplate.
class BaseBlock // no base class!
{
public:
virtual std::string getName () { return "whoa dude"; }
};
class BaseImpl : public BaseIf, public BaseBlock
{
public:
// oops, getName would be ambiguous here, need boplerplate
std::string getName () override { return BaseBlock::getName(); }
};
You can make a template class that implements the common part of an interface like this:
template <class IFACE> class BaseImpl : public IFACE
{
public:
std::string getName () override { ... }
}
and then
class IntImpl : public BaseImpl<IntIf>
{
public:
int getValue() override { ... }
}
The result is a simple single-inheritance chain. BaseIf <- IntIf <- BaseImpl <- IntImpl
Make sure you have a good reason for IntIf and FloatIf to exist, though -- in your MCVE they look like they don't need to be there at all.
You can provide default implementation for pure virtual functions:
struct A {
virtual void frob() = 0;
};
void A::frob() {
std::cout << "default";
}
struct B : A {
void frob() override {
A::frob(); // calls the default
}
};
If I'm reading your problem correctly, you'd like a default implementation for getName(). So solve that, simply provide an implementation and call it:
class IntIf : public BaseIf
{
public:
virtual ~IntIf() {}
virtual int getValue() = 0;
std::string getName() override {
return BaseIf::getName();
}
};
class FloatIf : public BaseIf
{
public:
virtual ~FloatIf() {}
virtual float getValue() = 0;
std::string getName() override {
return BaseIf::getName();
}
};

Implementing compositional behaviour for virtual methods

Suppose that I have a heirarchy of several classes:
class A {
public:
virtual void DoStuff() = 0;
};
class B : public A {
public:
// Does some work
void DoStuff() override;
};
class C : public B {
public:
// Calls B::DoStuff and does other work
void DoStuff() override;
};
It can naively be implemented:
void Derived::DoStuff() {
Base::DoStuff();
...
}
This implementation has a serious problem, I believe: one always has to remember to call base implementation when overrides.
Alternative:
class A {
public:
void DoStuff() {
for (auto& func: callbacks_) {
func(this);
}
}
virtual ~A() = default;
protected:
template <class T>
void AddDoStuff(T&& func) {
callbacks_.emplace_back(std::forward<T>(func));
}
private:
template <class... Args>
using CallbackHolder = std::vector<std::function<void(Args...)>>;
CallbackHolder<A*> callbacks_;
};
Usage:
class Derived : public Base {
public:
Derived() {
AddDoStuff([](A* this_ptr){
static_cast<Derived*>(this_ptr)->DoStuffImpl();
});
}
private:
void DoStuffImpl();
};
However, I believe that it has a good amount of overhead when actually calling DoStuff(), as compared to the first implementation. In the use cases which I saw, possibly long costruction of objects is not a problem (one might also try to implement something like "short vector optimization" if he wants).
Also, I believe that 3 definitions for each DoStuff method is a little too much boilerplate.
I know that it can be very effectively solved by using inheritance pattern simular to CRTP, and one can hide the template-based solution behind interface class (A in the example), but I keep wondering -- shouldn't there be an easier solution?
I'm interested in a good implementation of call DERIVED implementation FROM BASE, if and only if derived class exists and it has an overriding method for long inheritance chains (or something equivalent).
Thanks!
Edit:
I am aware of an idea described in #Jarod42's answer, and I don't find it appropriate because I believe that it is ugly for long inheritance chains -- one has to use a different method name for each level of hierarchy.
You might change your class B to something like:
class A {
public:
virtual ~A() = default;
virtual void DoStuff() = 0;
};
class B : public A {
public:
void DoStuff() final { /*..*/ DoExtraStuff(); }
virtual void DoExtraStuff() {}
};
class C : public B {
public:
void DoExtraStuff() override;
};
I am not sure if I understood correctly but this seems to be addressed pretty good by the "Make public interface non-virtual, virtualize private functions instead" advice.
I think it's orignated in the Open-Closed principle. The technique is as-follows:
#include <iostream>
class B {
public:
void f() {
before_f();
f_();
};
private:
void before_f() {
std::cout << "will always be before f";
}
virtual void f_() = 0;
};
class D : public B{
private:
void f_() override {
std::cout << "derived stuff\n";
}
};
int main() {
D d;
d.f();
return 0;
}
You essentially deprive descendant class of overriding public interface, only customize exposed parts. The base class B strictly enforces that required method is called before actual implementation in derived might want to do. As a bonus you don't have to remember to call base class.
Of course you could make f virtual as well and let D decide.

Avoid new when storing base-typed member variable that could be initialized with different derived types

My code structure is like below where multiple classes implement Interface. In Example class I store a pointer to the Interface and new() it in the constructor appropriately (depending on constructor parameters not shown here). I'm looking for ways to avoid using new() in this scenario but haven't got a solution yet. What's the best practice for something like this?
class Interface
{
virtual void Foo() = 0;
};
class A : public Interface
{
void Foo() { ... }
};
class B : public Interface
{
void Foo() { ... }
};
class Example
{
private:
Interface* m_bar;
public:
Example()
{
m_bar = new A(); // deleted in destructor
}
};
There are two ways this is typically done, each with their own merits.
If A is truely defined at compile time, than a typical way to handle this is to simply use a template type:
template <typename T>
class TemplateExample
{
T m_bar;
public:
TemplateExample() : m_bar() {};
}
This has some downsides. TemplateExample<A> becomes unrelated to TemplateExample<B>, the error messages when T doesn't follow the correct interface are pretty obtuse, ect. The upside is this may use duck typing rather than interface typing, and m_bar is a concrete instance.
The other (arguable more common) way is to do the following
class UniquePtrExample
{
std::unique_ptr<Interface> m_bar;
public:
UniquePtrExample() : m_bar(new A()){}
};
This has the benefit of being able to be run time configuratble if you follow a cloable pattern:
class Interface
{
public:
virtual void Foo() = 0;
virtual Interface* clone() const = 0;
};
template <typename T>
class CloneHelper : public Interface
{
public:
virtual Interface* clone() const { return new T(static_cast<const T&>(*this));}
};
class A : public CloneHelper<A>
{
virtual void Foo() { std::cout << 'A' << std::endl; }
};
class B : public CloneHelper<B>
{
virtual void Foo() { std::cout << 'B' << std::endl; }
};
class UniquePtrExample
{
std::unique_ptr<Interface> m_bar;
public:
UniquePtrExample() : m_bar(new A()){}
UniquePtrExample(const Interface& i) : m_bar(i.clone());
};
Note you can further extend the above to have a move variant of the clone function.

wrapper to template class inherited by another class

template <class CollectionItem>
class Collection
{
void A();
// Many other utility functions
}
class ICollection
{
virtual void B() = 0;
}
class Base : public Collection<BaseItem>, public IBase
{
virtual void B();
}
Is there any way of offering Collection functions via ICollection interface without wrapping all the functions in Base class? ICollection : public Collection<CollectionItem> is not an option.
Bounty Update:
OK, so the original idea was to have Interface to all Collection classes. Before we continue, every CollectionItem also has Interface, let's call it ICollectionItem and ICollection only knows about ICollectionItem.
So what I did was create another template class as Interface to Collection template class - ICollection (pure virtual) accepting ICollectionItem(s). Collection class inherits this interface.
Every Collection class (inheriting Collection<CollectionItem> class) would also inherit it's Interface Collection class. That Interface then virtual inherits ICollection<ICollectionItem>. I'll just post the code :)
Here is the code:
template <class ICollectionItem>
class ICollection
{
public:
virtual const ICollectionItem* At(const int idx) = 0;
};
template <class CollectionItem, class ICollectionItem>
class Collection
: public ICollection,
public virtual ICollection<ICollectionItem> // Weak point
{
private:
List<CollectionItem*> fContainer;
public:
Collection(void) {}
virtual ~Collection() {}
virtual const ICollectionItem* At(const int idx); // Casting GetAt result
virtual const TCollectionItem& GetAt(const int idx) const
virtual ListIterator<TCollectionItem> >* GetIterator(void) const;
virtual ListIterator<ICollectionItem> >* Iterator(void) const; // Weak point
}
Example usage:
class IBaseItem
{
public:
virtual int Number() = 0;
{
class BaseItem
: public IBaseItem
{
public:
virtual int Number();
void SetNumber(int value);
}
class IBase
: public virtual ICollection<IBaseItem>
{
public:
virtual IBaseItem* ItemByName(String name) = 0;
virtual ~IBase() {}
}
class Base
: public Collection<BaseItem, IBaseItem>,
public IBase
{
public:
BaseItem* GetItemByName(String name);
virtual IBaseItem* ItemByName(String name);
}
Weak points:
First is at using virtual inheritance ... lots written about it, not much to talk about, or is it?
Unable to access Iterator using ICollection interface. See ListIterator function, only first one can be implemented, the second one would require some kind of new List of IBaseItem. I decided to live with that and just use for loop.
Even tho I somehow managed to get what I wanted (With wrapping and casting), I would still like to hear an second opinion. I don't like using virtual inheritance, specially in such delicate situations - using Collections for application Base creation.
I can not see any other solution than calling some Collection method in Base implementation of IBase virtual methods.
class Base : public Collection<BaseItem>, public IBase
{
virtual void B()
{
A();
}
}
You say, and I quote:
I want to call Collection functions using IBase pointer
I really don't see what is to be done here besides dynamic_cast. It does exactly what you want it to do.
void fun(IBase * base) {
auto * coll = dynamic_cast<Collection<BaseItem>*>(base);
if (coll) {
coll->A();
}
}
Your Collection class must have a virtual destructor.
You can, of course, offer a templated version, if you'd need different baseitems in different, scenarios for some reasons. This has bad code smell and I think your architecture is bad at this point, but oh well.
template <typename T> void fun(IBase * base) {
auto * coll = dynamic_cast<Collection<T>*>(base);
if (coll) {
coll->A();
}
}
void test(IBase * p) {
fun<BaseItem5>(p);
}
If you have some other specific scenario in mind, please edit your question to say what you mean.
Hmm...So you wanna to reuse the Collection class's utility functions, and you want to design a class which will implement an interface defined by IBase. As you mentioned above,"wrapping all the functions in Base class" is a way to offer Collection functions.
(1) Via inheritance,derived class has a good knowledge of Collection
class Derived:public Collection<DerivedType>,public IBase{};
or
template <typename T>
class Derived:public Collection<T>,public IBase{};
(2) Via inheritance,derived class knows little about Collection,but through IBase
class IBase : public Collection<BaseItem>{};
class Derived:public IBase{};
By (1),If you want to call Collection functions using IBase pointer,you have to wrap the functions.
By (2), any Derived instance is " a kind of " IBase which is "a kind of " Collection. So you can use IBase pointer to call Collection functions.
So,the key point is that the objects pointed by the IBase pointer should have the method you want to call.Wrap it or inherit it. I can not see any other solution than these two ways.
Edit: the idea is refined based on your example:
Here is an idea:
//generic interface can be kept as it is
template <class ICollectionItem>
class ICollection
{
public:
virtual const ICollectionItem* At(const int idx) = 0;
};
class Empty
{
};
template <class CollectionItem , class BaseClass = Empty>
class GenericCollection
: public BaseClass
{
public:
const CollectionItem* At(const int idx);
// At and ItemByName are standard functions for a collection
CollectionItem* ItemByName(String name);
//note that here nothing has to be declared as virtual
};
//example usage:
class IBase
: public virtual ICollection<IBaseItem>
{
public:
virtual IBaseItem* ItemByName(String name) = 0;
virtual ~IBase() {}
};
class Base
: public GenericCollection<BaseItem, IBase >
{
public:
//nothing to be implemented here, all functions are implemented in GenericCollection and defined as virtual in IBase
//The definition of the functions has to be the same:
};
In collection you can implement whatever and in the interface you can define what ever you want to be virtual from your collection. The only thing is that you need to have some standard in naming convention for functions.
Hope this helps,
Raxvan.
From your comments in another answer, it seems you want a collection of interfaces, and an implementation of this interface. The simplest I can advise you is the following:
template<typename T>
class ICollection
{
public:
virtual iterator<T>* begin() const = 0;
};
template<typename T, typename TBase>
class Collection : public ICollection<TBase>
{
public:
iterator_impl<T>* begin() const { return whatever; }
};
Example:
class IItem {};
class Item : public IItem {};
class Base : public Collection<Item, IItem> {};
old answer:
Is there any way of offering Collection functions via IBase interface without wrapping all the functions in Base class ?
If I understood your problem, you want to use it like this:
void myfunc()
{
// ...
IBase* obj = ...;
obj->A();
obj->B();
}
I think here is a misunderstanding here: if you want A() to be callable from an IBase, then you have to add it to Ibase declaration.
If you want to use the Collection functions on an object, then you should cast this object to a Collection, via dynamic_cast for example.
Furthermore, if you have such a funcion:
void fun(IBase* base) { /* ... */ }
you cannot cast to a Collection*, since there are no relationship between these two classes, unless you have another way to be sure base is a Collection:
void fun(IBase* base)
{
if(base && base->isABaseItemCollection())
{
// Valid, since the real type was checked before
Collection* collection = (Collection*)base;
// ...
}
}
On a side note: you can generate bases almost automatically:
template
class Base : public Collection, public U {};
typedef Base BaseCollection;
According to comment/chat:
You have something like:
class IAnimal { /*...*/ };
class Cat : public IAnimal { /*...*/ };
class Dog : public IAnimal { /*...*/ };
class Cats
{
std::vector<Cat*> cats;
public:
Cat* at(size_t index) { return cats[index]; }
/*...*/
};
class Dogs
{
std::vector<Dog*> dogs;
public:
Dog* at(size_t index) { return dogs[index]; }
/*...*/
};
And you want to factorize some code using something like
class IAnimals
{
public:
std::vector<IAnimals*> animals; // or getter/setter which works with IAnimals.
/* some common factorized code */
};
// And so
class Cats : public IAnimals { /**/ };
class Dogs : public IAnimals { /**/ };
I propose, instead of creating class IAnimals, to use template functions as:
template <typename TAnimals>
void foo(TAnimals& animals)
{
Ianimals* animal = animals.at(42);
// ...
animal->eat(food);
// ...
}
You have to give compatible "interface" (names) to the type used in template.
Maybe you could have an operator() in IBase that would be delegated to Base?
class CollectionBase {};
template <class Item> class Collection: public CollectionBase {};
class IBase
{
public:
virtual CollectionBase* operator()() = 0;
};
class Base : public Collection<BaseItem>, public IBase
{
public:
virtual Collection<BaseItem>* operator()() { return this; }
};

Call base class method if not abstract

How to call base class method if it is not abstract.
class WithAbstMethod {
public:
virtual void do() = 0;
}
class WithImplMethod : public WithAbstMethod {
public:
virtual void do() {
// do something
}
}
template<typename BaseT>
class DerivedClass : BaseT {
public:
virtual void do() {
BaseT::do(); // here is a question. How to modify code, so that do() is called if it is not abstract?
// do something
}
}
void main() {
DerivedClass<WithAbstMethod> d1;
d1.do(); // only DerivedClass::do() should be called
DerivedClass<WithImplMethod> d2;
d2.do(); // both WithImplMethod::do() and DerivedClass::do() should be called
}
Is it possible to do this using templates in compile-time without much code (instantiate DerivedClass::do() method with BaseT::do() call and without depending on BaseT type)?
Obviously, provide implementation in WithAbstMethod class is not an option. Code above is pseudo-code so may contain minor errors.
Actually, providing an implementation for WithAbstMethod::do() might be an option. Abstract functions are allowed to have an implementation.
void WithAbstMethod::do()
{
// do nothing...
}