After passing pointer to the main function, cannot print the content properly - c++

I am practicing using pointers to create objects and access data. I created a stuct called BigNum to represent a number with multiple digits. When I try to print the content of the struct inside the readDigits function, it can be printed pretty well. However, after passing the pointer to the main function, the content of the stuct is printed out to be random numbers. Why? How to fix it?
struct BigNum{
int numDigits; //the number of digits
int *digits; //the content of the big num
};
int main(){
BigNum *numPtr = readDigits();
for (int i=0; i<(numPtr->numDigits);i++ ){
std::cout << (numPtr->digits)[i] << std::endl;
}
return 0;
}
BigNum* readDigits(){
std::string digits;
std::cout << "Input a big number:" << std::endl;
std::cin >> digits;
int result[digits.length()];
toInt(digits,result);
BigNum *numPtr = new BigNum();
numPtr->numDigits = digits.length();
numPtr->digits = result;
/* When I try to print in here, it's totally okay!
std::cout << "Here is the content:" << std::endl;
for (int i=0; i<numPtr->numDigits;i++ ){
std::cout << (numPtr->digits)[i] << std::endl;
}
*/
return numPtr;
}
void toInt(std::string& str, int result[]){
for (int i=0;i<str.length() ;i++ ){
result[str.length()-i-1] = (int)(str[i]-'0');
}
}

BigNum* readDigits(){
//....
int result[digits.length()];
//....
numPtr->digits = result;
return numPtr;
}
result is stored on the stack. So if you return it as part of numPtr, it will be invalid as soon as you exit the function. Instead of storing it on the stack you have to allocate it with new.

You have undefined behavior because you assign address of automatic object to digits pointer. When readDigits() returns this memory is not valid anymore. You should assign to this pointer address of heap-based object (or some equivalent, e.g. use vector or smart pointer):
#include <vector>
struct BigNum{
int numDigits; //the number of digits
std::vector<int> digits; //the content of the big num
};
Then you can insert numbers into vector this way:
int input;
while ( std::cin >> input) //enter any non-integer to end the loop
{
digits.push_back(input);
}

The problem is that within the function BigNum* readDigits() you assign apointer to stack memory to the pointer of your newly allocated BigNum:
int result[digits.length()]; // <--- variable is on the stack!!!
toInt(digits,result);
BigNum *numPtr = new BigNum();
numPtr->numDigits = digits.length();
numPtr->digits = result; // <--- make pointer to stack memory available to caller of readDigits
Now if you proceed the access to numPtr->digits is ok since the memory of result is still valid on the stack (as long as you are within readDigits). Once you've left ´readDigits()´ the memory of result is overwritten depending on what you do (calling other functions, ...).
Right now I'm even wondering why you don't get a compiler error with ´int result[digits.length()];´ since ´digits.length()´ is not constant and the size of required stack memory has to be defined at compile time... so I'm thinking that the size of result is actually 0...?? Would be a nice thing to test!
My recommendation is to modify the code of readDigits as follows:
BigNum* readDigits()
{
std::string digits;
int i;
std::cout << "Input a big number:" << std::endl;
std::cin >> digits;
//int result[digits.length()];
//toInt(digits,result);
BigNum *numPtr = new BigNum();
numPtr->numDigits = digits.length();
numPtr->digits = (int *)malloc(sizeof(int) * numPtr->numDigits); // allocate heap memory for digits
toInt(digits, numPtr->digits);
/* When I try to print in here, it's totally okay!
std::cout << "Here is the content:" << std::endl;
for (i = 0; i <numPtr->numDigits; i++)
{
std::cout << (numPtr->digits)[i] << std::endl;
}
*/
return numPtr;
}
Remember to free your memory if ´BigNum *numPtr´ is no longer used (´free(numPtr->digits);´) otherwise you'll get a memory leak (sooner or later):
int main()
{
BigNum *numPtr = readDigits();
int i;
for (i = 0; i < (numPtr->numDigits); i++)
{
std::cout << (numPtr->digits)[i] << std::endl;
}
free(numPtr->digits); // free memory allocated by readDigits(..)
return 0;
}

Related

Pointer being freed was not allocated even though it was allocated before

I have error that says error for object 0x7ffbaf002000: pointer being freed was not allocated. But I have printed out the memory address and it was indeed allocated before at 0x7ffbaf002000 in the function allocFlights(Flight**, int) inside the loop when flight[0] = (Flight*) malloc(sizeof(Flight) * 60). So I print out the memory address at std::cout << flight[0] << std::endl in function deAllocFlights(Flight**, int) to see if it's there and it is there at 0x7ffbaf002000 inside the loop
I don't understand why I have this problem. I'm still new at C++.
Here is the struct Flight:
typedef struct {
int flightNum;
char origin[20];
char destination[20];
Plane *plane;
}Flight;
void getAllFlights(Flight **flight) {
FILE *file = fopen("reservation.txt", "r");
int i = 0, totalFlights;
if(file == NULL)
{
perror("Error in opening file");
}
fscanf(file, "%d\n", &totalFlights);
*flight = (Flight*) malloc(sizeof(Flight*) * totalFlights);
allocFlights(flight, totalFlights); // Allocate here
.
.
.
deAllocFlights(flight, totalFlights); // Error: Deallocate here
fclose(file);
}
Function allocFlights
void allocFlights(Flight **flight, int totalFlights) {
for (int i = 0; i < totalFlights; i++) {
flight[i] = (Flight*) malloc(sizeof(Flight) * 60);
std::cout << flight[i] << " " << i << std::endl; // Print out memory address
}
}
Function deallocFlights
void deAllocFlights(Flight** flight, int totalFlights) {
for (int i = 0; i < totalFlights; i++) {
std::cout << flight[i] << " " << i << std::endl; // Print out memory address
free (flight[i]);
}
}
Main:
int main() {
Flight *flight;
getAllFlights(&flight);
free(flight);
return 0;
}
You're deallocating your first flight twice. So the second time you deallocate it, the system tells you that it hasn't been allocated because, although it was allocated, it was also deallocated. You don't need to call free(flight); at the end because you already deallocated all flights in deAllocAllFlights(). As mentioned by David Schwartz in the comments, this is because flight[0] is the same as *flight (or as he put it *(flight + 0)).
There is missing one star everywhere.
The code works with the original variable as array of pointers to Flight (or pointer to pointers to Flight). Therefore it has to be defined with double star:
int main() {
Flight **flight;
getAllFlights(&flight);
free(flight);
return 0;
}
And the same for every function:
void getAllFlights(Flight ***flight) {
...
*flight = (Flight**) malloc(sizeof(Flight*) * totalFlights);
void allocFlights(Flight ***flight, int totalFlights) {
for (int i = 0; i < totalFlights; i++) {
// dereference the pointer first and then access array:
(*flight)[i] = (Flight*) malloc(sizeof(Flight));
void deAllocFlights(Flight*** flight, int totalFlights) {
for (int i = 0; i < totalFlights; i++) {
std::cout << (*flight)[i] << " " << i << std::endl; // Print out memory address
// dereference the pointer first and then access array
free ((*flight)[i]);
The original code accessed directly the pointer to the variable defined in main function and used it as an array which meant it went to the address behind the variable for index 1 and even more with higher indices.
Also note, that flights is much better name for the variable and all the other parameters as it's actually array. That would make the code more clear and potentially give better chance to avoid mistakes like this.

How to create and increase the size of an array at runtime in C++

I want to create an array whose size I will only know at runtime, and then further increase that size during execution of the program.
This is from an /r/dailyprogrammer challenge which can be found here https://www.reddit.com/r/dailyprogrammer/comments/3twuwf/20151123_challenge_242_easy_funny_plant/
MSVisual gives me the error std::badd_array_new_length which means that it's having trouble instantiating the array?
I'm so tired with oftentimes copying code letter for letter from websites where it works and I constantly get errors. Is Visual a bad platform for learning C++? Should I try QT?
#include <iostream>
#include <string>
void main(int argc, char* argv[]) {
int currentPlants = std::stoi(argv[2]), targetPeople = std::stoi(argv[1]), currentProduce = 0, week = 0;
int * plants;
plants = new int[currentPlants];
for (int i = 0; i < currentPlants; i++) {
plants[i] = 0;
}
if (plants == nullptr) EXIT_FAILURE;
while (currentProduce < targetPeople) {
currentProduce = 0;
for (int i = 0; i < currentPlants; i++) {
currentProduce += plants[i];
plants[i]++;
}
if (currentProduce >= targetPeople) break;
else {
plants = new int[currentProduce];
for (; currentPlants < currentProduce; currentPlants++) {
plants[currentPlants] = 0;
}
}
week++;
}
std::cout << week;
}
You should use an std::vector.
As a summary :
// Create an array of size 10
std::vector<int> my_vector(10);
// Add '3' to my_vector
my_vector.push_back(3);
// Remove the last element
my_vector.pop_back();
Explanation and example here : www.cplusplus.com/reference/vector/vector/
Edit : you don't need to specify the array size when you construct your object.
// Create an array
std::vector<int> my_vector;
You can't increase the size of an array at runtime. You can create a new bigger array, and copy the contents of the old array to the new array.
The problem with your code is that on the first pass through plants all of your plants[x] are zero. You add all of these together and get zero => currentProduce == 0. You then try to new plants[currentProduce aka 0] which is illegal.
Your second problem is that each time you new you create a new array discarding the old values; new creates a new array, it doesn't know anything about the old one.
I rewrote your code using std::vector, which fixes the crash but produces an endless loop because on the first pass, currentProduce comes out to zero so the array is truncated.
#include <iostream>
#include <string>
#include <vector>
int main(int argc, const char* argv_real[])
{
const char* argv[] = { "programname", "5", "25" };
int currentPlants = std::stoi(argv[2]), targetPeople = std::stoi(argv[1]), currentProduce = 0, week = 0;
std::cout << "targetPeople = " << targetPeople
<< ", currentPlants = " << currentPlants
<< "\n";
std::vector<int> plants;
// Option 1:
// plants.resize(currentPlants);
// Option 2:
for (auto i = 0; i < currentPlants; ++i) {
plants.push_back(0);
}
while (currentProduce < targetPeople) {
std::cout << "cp: " << currentProduce
<< ", tp: " << targetPeople
<< "\n";
currentProduce = 0;
// plantCount is a reference to plants[i] for each i
for (auto& plantCount : plants) {
std::cout << plantCount << ", ";
currentProduce += plantCount;
plantCount++;
}
std::cout << " cp: " << currentProduce << "\n";
if (currentProduce >= targetPeople)
break;
// Option 1:
plants.resize(currentProduce);
// Option 2:
// while (currentPlants < currentProduce) {
// plants.push_back(0);
// }
week++;
}
std::cout << week;
}
Live demo: http://ideone.com/xGpoF6
Outside of using std::vector, you would need to allocate a new array on the heap, copy the contents over, and delete the old one. Then point your int* to the newly allocated array.
This wouldn't technically change the array size, but those accessing the object would see it as though it was changing.
This is dangerous:
int * plants;
plants = new int[currentPlants];
for (int i = 0; i < currentPlants; i++) {
plants[i] = 0;
}
if (plants == nullptr) EXIT_FAILURE;
This is what happens (if you are lucky):
the program attempts to create some memory and returns nullptr if it can't
the program then uses the memory in a loop even if nullptr was returned. (If nullptr was returned this will crash the program, silently corrupt the memory so you get the wrong results or otherwise doing something you don't want)
the program then checks to see if nullptr was returned.
If you are unlucky the compiler does time travel and destroys the entire universe. I am not kidding, have a look at:
https://blogs.msdn.microsoft.com/oldnewthing/20140627-00/?p=633
Undefined behavior causing time travel

Class accept and return array

I try to create a class that accept and return an array but I got some problem. I'm not sure if it is legal to return an array from a class. Or it could be done by returning an pointer to the array. Thank for any solution to the problem.
#include <iostream>
using namespace std;
class myclass {
private:
int Array[10];
public:
myclass (int temp[10]) {
for (int i = 0; i < 10; i++) {
Array [i] = temp [i];
}
}
int returnArray () {
return Array; // error here, I'm not sure if it is legal to return an array.
}
int* returnArray2 () {
return this->Array; // hope it will return a pointer to the array
}
};
int main () {
int Array[10] = {1,2,3,4,5,6,7,8,9};
myclass A(Array);
cout << A.returnArray() << endl; // try to return an array and print it.
myclass* ptr = &A;
cout << *ptr->returnArray2 << endl; // error here
return 0;
}
First of all it is better to write the constructor either like
myclass ( const int ( &temp )[10] ) {
for (size_t i = 0; i < 10; i++) {
Array [i] = temp [i];
}
}
or like
myclass ( int temp[], size_t n ) : Array {} {
if ( n > 10 ) n = 10;
for (size_t i = 0; i < n; i++) {
Array [i] = temp [i];
}
}
Or even you may define the both constructors.
As for the returning value then you may not return an array. You may return either a reference to an array or a pointer to the entire array or a pointer to its first element
For example
int ( &returnArray () )[10] {
return Array;
}
In this case you can write in main
for ( int x : A.returnArray() ) std::cout << x << ' ';
std::cout << std::endl;
As for this statement
cout << *ptr->returnArray2 << endl; // error here
then you forgot to place parentheses after returnArray2. Write
cout << *ptr->returnArray2() << endl;
And the following member function is wrong because the expression in the return statement has type int * while the return type of the function is int
int returnArray () {
return Array; // error here, I'm not sure if it is legal to return an array.
}
So either the function will coincide with the the second member function if you specify its return type like int *. Or you could change the return expression to *Array
int returnArray () {
return Array; // error here, I'm not sure if it is legal to return an array.
}
This is illegal because Array is not of int type. Your returnArray2 is valid, however. As for this line:
cout << *ptr->returnArray2 << endl; // error here
This is illegal because returnArray2 is a function; you must call it to return the int*:
cout << *ptr->returnArray2() << endl; // prints the first value in the array
Other notes:
Your capitalization is backwards; you should call your class MyClass and your member array arr or arr_, or you will confuse a lot of people.
return this->Array; this is redundant, you can simply return Array;
If you haven't heard of std::vector and std::array you should research those, as they are generally superior to C-style arrays.
In general, I would suggest to read a c++ book to get your basics correct as there are lot of issues in the code you posted.
Regarding your main question about exposing C style arrays in class public API, this is not a very robust mechanism. Do it if it is absolutely essential because of existing code but if possible prefer to use std::vector. You will mostly always end up with better code.
Other answers have corrected your coding errors, so i won't repeat that.
One other thing, your code suggests that the array size is fixed. You can pass and return the array by reference as well. Refer to: General rules of passing/returning reference of array (not pointer) to/from a function?

Random array value after return c++

My problem is I don't know what happens with data that I put into my arrays and how to make them stay in array. While debugging it is clear that arr gets initialized with zeros and arr2 with {1,2,3}. Functions however return some random values.. can someone help me to point out what it should be like?
#include <iostream>
#include <algorithm>
#include <vector>
class A
{
private:
double arr[5];
public:
A()
{
std::fill( arr, arr + 5, 0.0 );
};
~A() {};
void setArr( double arrx[] )
{
for ( int i = 0; i < 5; i++ )
arr[i] = arrx[i];
}
double* getArr(void) { return arr;}
};
int* probe()
{
int arr2[3] = {1,2,3};
return arr2;
}
int main()
{
A ob1;
double rr[5] = {1,2,3,4,5};
ob1.setArr(rr);
std::cout << ob1.getArr() << std::endl;
std::cout << probe() << std::endl;
system("Pause");
}
EDIT:
Now thanks to you i realize I have to loop the get** function to obtain all values. But how can I loop it if my planned usage is to write it like you see below into some file?
pF = fopen ("myfile.csv","a");
if (NULL != pF)
{
char outp[1000];
sprintf_s(outp, 1000, "%6d,\n", ob1.getArr());
fputs(outp, pF);
fclose(pF);
}
In
std::cout << ob1.getArr() << std::endl;
std::cout << probe() << std::endl;
You are actually printing the pointers (address), not the values which are double or int. You need to loop through all the elements of the array to print them.
As pointed out by P0W that accessing element of probe() has undefined behaviour, in that case you must make sure that the array should be valid. One quick solution is that declare the array static in the function.
As you want to write the value in the file
pF = fopen ("myfile.csv","a");
if (NULL != pF)
{
char outp[1000];
int i;
int retsofar=0;
for(i=0;i<5;++i)
retsofar+=sprintf_s(outp+retsofar, 1000-retsofar, "%6d,\n", ob1.getArr()[i]);
fputs(outp, pF);
fclose(pF);
}
you are trying to print the addresses of arrays returned by ob1.getArr() and probe() methods. Every time you are getting different addresses. If you want to print array, use loop.
In probe(), you are creating an array on stack and simply returning it's pointer. It is not safe. When it goes out of scope, its values can be overwritten and you may get un expected behaviour. So create that array on heap.

Memory leak error?

For a simple assignment to do with dynamic memory and copy constructors, my prof has assigned us a simple assignment, but I get an error during the second time my delete [] happens.
header file:
class Stream {
int len;
char *hold;
char* newmem(int);
public:
Stream ();
Stream (int);
Stream(const char *);
~Stream ( );
void operator=(const Stream &);
Stream(const Stream &);
friend void show(Stream);
void operator<<(const char*);
};
it should be fairly simple. here is my code:
#include <iostream>
#include <new>
#include <cstring>
using namespace std;
#include "stream.h"
char* Stream::newmem(int x) {
char * tmp;
try {
tmp = new char[x];
}
catch(std::bad_alloc) {
tmp = NULL;
}
if(tmp)
cout << "newmem: " << (void *) tmp << endl;
return tmp;
}
Stream::Stream ( ) {
len = 1000;
hold = newmem(len);
if (hold)
strcpy (hold, "");
}
Stream::Stream(int n) {
len = n;
hold = newmem(len);
if (hold)
strcpy (hold,"");
}
Stream::Stream(const char * dat) {
len = strlen(dat) +1;
hold = newmem(len);
if (hold)
strcpy(hold,dat);
}
Stream::Stream(const Stream &from) {
cout << "in the copy constructor, allocating new memory..." << endl;
cout << "original pointer address is: " << (void *) from.hold << endl;
cin.get( );
len=from.len;
hold=newmem(len +1);
cout << "new pointer address is: " << (void *) hold << endl;
cin.get( );
if(hold)
strcpy (hold,from.hold);
}
Stream::~Stream ( ) {
cout << "destruct: " << (void *) hold << endl;
cin.get( );
if (hold)
delete [] hold;
}
void Stream::operator= (const Stream &from) {
if(hold)
delete [ ] hold;
len = from.len;
hold=newmem(len +1);
if (hold)
strcpy(hold,from.hold);
}
void show (Stream prt) {
cout << "String is: " << prt.hold << endl << "Length is: " << prt.len << endl;
}
void Stream::operator<< (const char *data) {
int dlen = strlen(data);
for (int i=0 ; i<=len && i<=dlen ; i++) {
hold[i] = data[i];
}
}
int main( ) {
char data[ ] = "Growing up it all seems so one-sided;"
"Opinions all provided;"
"The future pre-decided;"
"Detached and subdivided;"
"In the mass production zone!"
"-Neil Peart- \"Subdivisions\"";
Stream x1, x2(25), x3;
x1 << data;
x2 << data;
show(x1);
show(x2);
x3 = x2;
show(x3);
return 0;
}
and my output / error:
in the copy constructor, allocating new memory...
original pointer address is: 0x804c008
new pointer address is: 0x804c808
String is: Growing up it all seems so one-sided;Opinions all provided;The future pre-decided;Detached and subdivided;In the mass production zone!-Neil Peart-Subdivisions"
Length is: 1000
destruct: 0x804c808
in the copy constructor, allocating new memory...
original pointer address is: 0x804c3f8
new pointer address is: 0x804c808
String is: Growing up it all seems so
Length is: 25
destruct: 0x804c808
*** glibc detected *** a.out: free(): invalid pointer: 0x0804c808 ***
The for loop in the operator<< has two off-by-one errors:
for (int i=0 ; i<=len
allows i==len, but the only valid indices of hold are 0..(len-1). So, you can write one off the end.
Secondly, as thiton pointed out, it doesn't copy the \0 terminator even if there is space.
A correct implementation might look like:
void Stream::operator<< (const char *data) {
int source_len = strlen(data);
int copy_len = min(source_len, len-1); // allow for terminator
for (int i=0; i<copy_len; i++) {
hold[i] = data[i];
}
hold[copy_len] = '\0';
}
although it'd be better practise to simply use strncpy.
Note that the idiom of using half-open (or one-past-the-end) ranges is standard not only in direct array indexing, but also with C++ iterators. So, you should always expect to see
for (i=0; i<n; ++i) {
or
for (i = begin; i != end; ++i) {
and should generally treat closed-range loops like yours as a smell that warrants further investigation.
First a little self-help advice: The most important tool for catching memory access errors is valgrind. Run it on your program, and you'll get a warning every time you try to access unallocated or uninitialized memory. It's no substitute for knowledge, but the next best thing.
While I get different output than you get, errors seem to interact here:
The operator<< has an off-by-one error in the range check. It writes one byte too much (hold[len]).
operator<< does never write the terminating null byte. Both errors are invoked by x2 << data.
When the copy constructor tries to copy the string from x2, strcpy finds no terminating null byte and both reads right off the end of x2.hold and writes past the end of x3.hold. The latter has the potential for unbounded corruption and probably caused your error.
Whenever you deal with C strings, make very, very sure to get termination right. The fixed version is:
void Stream::operator<< (const char *data) {
int dlen = strlen(data);
hold[len-1] = 0;
for (int i=0 ; i < len-1 && i <= dlen ; i++) {
hold[i] = data[i];
}
}
Or, using the std library:
void Stream::operator<< (const char *data) {
strncpy(hold, data, len);
hold[len-1] = 0;
}