Assign std::vector address of another std::vector - c++

I'm writing a program to balance chemical equations. The program works by taking the equation string, splitting it up into a std::vector with a size of two based upon the equal sign, then parses the left side separatedEquation[0] and the right side separatedEquation[1] into another set of std::vector's leftHalf and rightHalf respectively.
Problem
I have a function Equation::filterEquation that parses the separatedEquation for the element names. I want to use a temporary vector that points to the address of either leftHalf or rightHalf. I know this is probably confusing, but here's my code and what I'mt trying to do. I think I need to use pointers, but I've never had to use pointers before and am not efficient with them.
void Equation::filterEquation()
{
for(int i=0; i<separatedEquation.size(); i++) //i = index of separated equation
{
int index=0;
std::vector<std::string> equationHalf;
if(i==0)
equationHalf = leftHalf; //set equationHalf to the address of leftHalf
if(i==1)
equationHalf = rightHalf; //set equationHalf to the address of rightHalf
for (std::string::iterator it = separatedEquation[i].begin(); it!=separatedEquation[i].end(); ++it, index++)
{
//Elements are set up so that He = Helium, while H = Hydrogen. This separates the elements based upon upper and lowercae
bool UPPER_LETTER = isupper(separatedEquation[i][index]); //true if character is upperCase
bool NEXT_LOWER_LETTER = islower(separatedEquation[i][index+1]); //true if next is lowerCase
if (UPPER_LETTER)// if the character is an uppercase letter
{
if (NEXT_LOWER_LETTER)
{
std::string temp = separatedEquation[i].substr(index, 2);//add THIS capital and next lowercase
equationHalf.push_back(temp); // add temp to vector
}
else if (UPPER_LETTER && !NEXT_LOWER_LETTER) //used to try and prevent number from getting in
{
std::string temp = separatedEquation[i].substr(index, i);
equationHalf.push_back(temp);
}
}
}
}
}

In the general sense you would replace:
std::vector<std::string> equationHalf;
...
equationHalf = leftHalf // same for rightHalf
with
std::vector<std::string>* equationHalf;
...
equationHalf = &leftHalf // same for rightHalf
And then replace any instance of equationHalf. with equationHalf->.
Though, in your case, I might consider seriously reconsidering your design, for instance breaking out the code that operations on equationHalf into a function and passing it a reference to the vector to operate on such as void doStuff(std::vector<std::string> & equationHalf), then simply calling doStuff(leftHalf) and doStuff(rightHalf).

Related

Logical error. Elements in std::string not replaced properly with for loop

I'm currently doing a programming exercise from a C++ book for beginners. The task reads as follows: "Write a function that reverses the characters in a text string by using two pointers. The only function parameter shall be a pointer to the string."
My issue is that I haven't been able to make the characters swap properly, see the output below. (And I also made the assumption that the function parameter doesn't count, hence why I'm technically using three pointers).
I am almost certain that the problem has to do with the for loop. I wrote this pseudocode:
Assign value of element number i in at_front to the 1st element in transfer_back.
Assign value of element number elem in at_back to element number i in at_front.
Assign value of the 1st element in transfer_back to element number elem in at_back.
Increment i, decrement elem. Repeat loop until !(i < elem)
I wasn't sure whether of not I was supposed to take the null terminator into account. I tried writing (elem - 1) but that messed up with the characters even more so I've currently left it as it is.
#include <iostream>
#include <string>
using namespace std;
void strrev(string *at_front) {
string *transfer_back = at_front, *at_back = transfer_back;
int elem = 0;
while(at_back->operator[](elem) != '\0') {
elem++;
}
for(int i = 0; i < elem; i++) {
transfer_back->operator[](0) = at_front->operator[](i);
at_front->operator[](i) = at_back->operator[](elem);
at_back->operator[](elem) = transfer_back->operator[](0);
elem--;
}
}
int main() {
string str = "ereh txet yna";
string *point_str = &str;
strrev(point_str);
cout << *point_str << endl;
return 0;
}
Expected output: "any text here"
Terminal window: "xany text her"
The fact that the 'x' has been assigned to the first element is something I haven't been able to grasp.
Here is the correct answer
void strrev(string *at_front) {
string *at_back = at_front;
char transfer_back;
int elem = 0;
while(at_back->operator[](elem) != '\0') {
elem++;
}
for(int i = 0; i <elem; i++) {
transfer_back = at_front->operator[](i);
at_front->operator[](i) = at_back->operator[](elem);
at_back->operator[](elem) = transfer_back;
elem--;
}
}
Let me explain why you have that error. string *transfer_back = at_front those two are pointed to the same reference, that is why when you change transfer_back->operator[](0) = at_front->operator[](i);this change will reflect in at_front string as well.
"Write a function that reverses the characters in a text string by using two pointers. The only function parameter shall be a pointer to the string."
This sounds to me like the question addresses C strings but not std::string.
Assuming my feeling is right, this could look like:
#include <iostream>
#include <string>
void strrev(char *at_front) {
char *at_back = at_front;
if (!*at_back) return; // early out in edge case
// move at_back to end (last char before 0-terminator)
while (at_back[1]) ++at_back;
// reverse by swapping contents of front and back
while (at_front < at_back) {
std::swap(*at_front++, *at_back--);
}
}
int main() {
char str[] = "ereh txet yna";
strrev(str);
std::cout << str << '\n';
return 0;
}
Output:
any text here
Live Demo on coliru
Note:
I stored the original string in a char str[].
If I had used char *str = "ereh txet yna"; I had assigned an address of a constant string to str. This feels very wrong as I want to modify the contents of str which must not be done on constants.
strrev():
The at_back[1] reads the next char after address in at_back. For a valid C string, this should be always possible as I excluded the empty string (consisting of 0-terminator only) before.
The swapping loop moves at_front as well as at_back. As the pointer is given as value, this has no "destructive" effect outside of strrev().
Concerning std::swap(*at_front++, *at_back--);:
The swapping combines access to pointer contents with pointer increment/decrement, using postfix-increment/-decrement. IMHO, one of the rare cases where the postfix operators are useful somehow.
Alternatively, I could have written:
std::swap(*at_front, *at_back); ++at_front; --at_back;
Please, note that std::string is a container class. A pointer to the container cannot be used to address its contained raw string directly. For this, std::string provides various access methods like e.g.
std::string::operator[]()
std::string::at()
std::string::data()
etc.

"String Iterators Incompatible" error message when running bubble sort program

I am a beginner trying to bubble sort a vector of objects in C++. My goal is to sort the vector by member variables of each object element's member variable. So in the end, I would like the attributes off all the vector elements to be the same, just sorted in a different order. When I run the program, I get the following message:
Here is my code:
void sortInventory(vector<Vehicle> &carList)
{
bool swap;
Vehicle temp;
do
{
swap = false;
for (int count = 0; count < carList.size(); count++)
{
transform(carList[count].getVIN().begin(), carList[count].getVIN().end(), carList[count].getVIN().begin(), ::tolower);
if (carList[count].getVIN() > carList[count + 1].getVIN())
{
temp = carList[count];
carList[count] = carList[count + 1];
carList[count + 1] = temp;
swap = true;
}
}
} while (swap);
}
Here is my class declaration:
class Vehicle
{
private:
string VIN;
public:
string getVIN();
void setVIN(string);
};
Here is my class implementation:
string Vehicle::getVIN()
{ return VIN; }
void Vehicle::setVIN(string input)
{ VIN = input; }
By the way, I am aware that I am not using efficient methods, but I am just starting to learn the language and I am learning to write the code.
I asked a question similar to this here. However, none of the answers got me to where I wanted to go, although I feel like I am going in the right direction.
This line of code attempts to convert the string for the VIN into lowercase text, but fails:
transform(carList[count].getVIN().begin(),
carList[count].getVIN().end(),
carList[count].getVIN().begin(),
::tolower);
Each call to getVIN() results in a separate string instance. Since the iterators are not from the same string instance, the failure is the result.
You don't show how you populate your carList, but one possible way to fix this is to save the VIN in lowercase at the time you save the VIN in the carList.
As jxh says, your transform line fails because you are making iterators to separate string objects. Why not try making the transform a separate routine?
If you want to be fancy you can define it inside the sort routine as a lambda function. Or you can just make it a separate routine defined separately.
// returns a lower case version of the string
std::string lower_case(std::string VIN_number){
auto begin = std::begin(VIN_number);
auto end = std::end(VIN_number);
// Your code acting on one fixed string
std::transform(begin, end, begin, ::tolower);
return VIN_number;
}
Then when you do your comparison, do something like
if ( lower_case(carList[count].getVIN()) > lower_case(carList[count + 1]).getVIN()) )

Why does my array element retrieval function return random value?

I am trying to make an own simple string implementation in C++. My implementation is not \0 delimited, but uses the first element in my character array (the data structure I have chosen to implement the string) as the length of the string.
In essence, I have this as my data structure: typedef char * arrayString; and I have got the following as the implementation of some primal string manipulating routines:
#include "stdafx.h"
#include <iostream>
#include "new_string.h"
// Our string implementation will store the
// length of the string in the first byte of
// the string.
int getLength(const arrayString &s1) {
return s1[0] - '0';
}
void append_str(arrayString &s, char c) {
int length = getLength(s); // get the length of our current string
length++; // account for the new character
arrayString newString = new char[length]; // create a new heap allocated string
newString[0] = length;
// fill the string with the old contents
for (int counter = 1; counter < length; counter++) {
newString[counter] = s[counter];
}
// append the new character
newString[length - 1] = c;
delete[] s; // prevent a memory leak
s = newString;
}
void display(const arrayString &s1) {
int max = getLength(s1);
for (int counter = 1; counter <= max; counter++) {
std::cout << s1[counter];
}
}
void appendTest() {
arrayString a = new char[5];
a[0] = '5'; a[1] = 'f'; a[2] = 'o'; a[3] = 't'; a[4] = 'i';
append_str(a, 's');
display(a);
}
My issue is with the implementation of my function getLength(). I have tried to debug my program inside Visual Studio, and all seems nice and well in the beginning.
The first time getLength() is called, inside the append_str() function, it returns the correct value for the string length (5). When it get's called inside the display(), my own custom string displaying function (to prevent a bug with std::cout), it reads the value (6) correctly, but returns -42? What's going on?
NOTES
Ignore my comments in the code. It's purely educational and it's just me trying to see what level of commenting improves the code and what level reduces its quality.
In get_length(), I had to do first_element - '0' because otherwise, the function would return the ascii value of the arithmetic value inside. For instance, for decimal 6, it returned 54.
This is an educational endeavour, so if you see anything else worth commenting on, or fixing, by all means, let me know.
Since you are getting the length as return s1[0] - '0'; in getLength() you should set then length as newString[0] = length + '0'; instead of newString[0] = length;
As a side why are you storing the size of the string in the array? why not have some sort of integer member that you store the size in. A couple of bytes really isn't going to hurt and now you have a string that can be more than 256 characters long.
You are accessing your array out of bounds at couple of places.
In append_str
for (int counter = 1; counter < length; counter++) {
newString[counter] = s[counter];
}
In the example you presented, the starting string is "5foti" -- without the terminating null character. The maximum valid index is 4. In the above function, length has already been set to 6 and you are accessing s[5].
This can be fixed by changing the conditional in the for statement to counter < length-1;
And in display.
int max = getLength(s1);
for (int counter = 1; counter <= max; counter++) {
std::cout << s1[counter];
}
Here again, you are accessing the array out of bounds by using counter <= max in the loop.
This can be fixed by changing the conditional in the for statement to counter < max;
Here are some improvements, that should also cover your question:
Instead of a typedef, define a class for your string. The class should have an int for the length and a char* for the string data itself.
Use operator overloads in your class "string" so you can append them with + etc.
The - '0' gives me pain. You subtract the ASCII value of 42 from the length, but you do not add it as a character. Also, the length can be 127 at maximum, because char goes from -128 to +127. See point #1.
append_str changes the pointer of your object. That's very bad practice!
Ok, thank you everyone for helping me out.
The problem appeared to be inside the appendTest() function, where I was storing in the first element of the array the character code for the value I wanted to have as a size (i.e storing '5' instead of just 5). It seems that I didn't edit previous code that I had correctly, and that's what caused me the issues.
As an aside to what many of you are asking, why am I not using classes or better design, it's because I want to implement a basic string structure having many constraints, such as no classes, etc. I basically want to use only arrays, and the most I am affording myself is to make them dynamically allocated, i.e resizable.

Copy elements of an old array of pointers into new array of pointers?

I need some assistance with a C++ project. What I have to do is remove the given element from an array of pointers. The technique taught to me is to create a new array with one less element and copy everything from the old array into the new one except for the specified element. After that I have to point the old array towards the new one.
Here's some code of what I have already:
I'm working with custom structs by the way...
Data **values = null; // values is initialized in my insert function so it is
// populated
int count; // this keeps track of values' length
bool remove(Data * x) {
Data **newArray = new Data *[count - 1];
for (int i = 0; i < count; i++) {
while (x != values[i]) {
newArray[i] = values[i];
}
count -= 1;
return true;
}
values = newArray;
return false;
}
So far the insert function works and outputs the populated array, but when I run remove all it does is make the array smaller, but doesn't remove the desired element. I'm using the 0th element every time as a control.
This is the output I've been getting:
count=3 values=[5,6,7] // initial insertion of 5, 6, 7
five is a member of collection? 0
count=3 values=[5,6] // removal of 0th element aka 5, but doesn't work
five is a member of collection? 0
count=4 values=[5,6,5] // re-insertion of 0th element (which is stored in
five is a member of collection? 0 // my v0 variable)
Could anyone nudge me in the right direction towards completing this?
First of all, your code is leaking memory like no good! Next you only copy the first element and not even that if the first element happens to be the one you want to remove. Also, when you return from your function, you haven't changed your internal state at all. You definitely want to do something along the lines of
Data** it = std::find(values, values + count, x);
if (it != values + count) {
std::copy(it + 1, values + count, it);
--count;
return true;
}
return false;
That said, if anybody taught you to implement something like std::vector<T> involving reallocations on every operation, it is time to change schools! Memory allocations are relatively expensive and you want to avoid them. That is, when implementing something like a std::vector<T> you, indeed, want to implement it like a std::vector<T>! That is you keep an internal buffer of potentially more element than there are and remember how many elements you are using. When inserting a new element, you only allocate a new array if there is no space in the current array (not doing so would easily result in quadratic complexity even when always adding elements at the end). When removing an element, you just move all the trailing objects one up and remember that there is one less object in the array.
Try this:
bool remove(Data * x)
{
bool found = false;
// See if x is in the array.
for (int i = 0; i < count; i++) {
if (x != values[i]) {
found = true;
break;
}
}
if (!found)
{
return false;
}
// Only need to create the array if the item to be removed is present
Data **newArray = new Data *[count - 1];
// Copy the content to the new array
int newIndex = 0;
for (int i = 0; i < count; i++)
{
if (x != values[i])
newArray[newIndex++] = values[i];
}
// Now change the pointers.
delete[] values;
count--;
values = newArray;
return true;
}
Note that there's an underlying assumption that if x is present in the array then it's there only once! The code will not work for multiple occurrences, that's left to you, seeing as how this is a school exercise.

C++ exam on string class implementation

I just took an exam where I was asked the following:
Write the function body of each of the methods GenStrLen, InsertChar and StrReverse for the given code below. You must take into consideration the following;
How strings are constructed in C++
The string must not overflow
Insertion of character increases its length by 1
An empty string is indicated by StrLen = 0
class Strings {
private:
char str[80];
int StrLen;
public:
// Constructor
Strings() {
StrLen=0;
};
// A function for returning the length of the string 'str'
int GetStrLen(void) {
};
// A function to inser a character 'ch' at the end of the string 'str'
void InsertChar(char ch) {
};
// A function to reverse the content of the string 'str'
void StrReverse(void) {
};
};
The answer I gave was something like this (see bellow). My one of problem is that used many extra variables and that makes me believe am not doing it the best possible way, and the other thing is that is not working....
class Strings {
private:
char str[80];
int StrLen;
int index; // *** Had to add this ***
public:
Strings(){
StrLen=0;
}
int GetStrLen(void){
for (int i=0 ; str[i]!='\0' ; i++)
index++;
return index; // *** Here am getting a weird value, something like 1829584505306 ***
}
void InsertChar(char ch){
str[index] = ch; // *** Not sure if this is correct cuz I was not given int index ***
}
void StrRevrse(void){
GetStrLen();
char revStr[index+1];
for (int i=0 ; str[i]!='\0' ; i++){
for (int r=index ; r>0 ; r--)
revStr[r] = str[i];
}
}
};
I would appreciate if anyone could explain me roughly what is the best way to have answered the question and why. Also how come my professor closes each class function like " }; ", I thought that was only used for ending classes and constructors only.
Thanks a lot for your help.
First, the trivial }; question is just a matter of style. I do that too when I put function bodies inside class declarations. In that case the ; is just an empty statement and doesn't change the meaning of the program. It can be left out of the end of the functions (but not the end of the class).
Here's some major problems with what you wrote:
You never initialize the contents of str. It's not guaranteed to start out with \0 bytes.
You never initialize index, you only set it within GetStrLen. It could have value -19281281 when the program starts. What if someone calls InsertChar before they call GetStrLen?
You never update index in InsertChar. What if someone calls InsertChar twice in a row?
In StrReverse, you create a reversed string called revStr, but then you never do anything with it. The string in str stays the same afterwords.
The confusing part to me is why you created a new variable called index, presumably to track the index of one-past-the-last character the string, when there was already a variable called StrLen for this purpose, which you totally ignored. The index of of one-past-the-last character is the length of the string, so you should just have kept the length of the string up to date, and used that, e.g.
int GetStrLen(void){
return StrLen;
}
void InsertChar(char ch){
if (StrLen < 80) {
str[StrLen] = ch;
StrLen = StrLen + 1; // Update the length of the string
} else {
// Do not allow the string to overflow. Normally, you would throw an exception here
// but if you don't know what that is, you instructor was probably just expecting
// you to return without trying to insert the character.
throw std::overflow_error();
}
}
Your algorithm for string reversal, however, is just completely wrong. Think through what that code says (assuming index is initialized and updated correctly elsewhere). It says "for every character in str, overwrite the entirety of revStr, backwards, with this character". If str started out as "Hello World", revStr would end up as "ddddddddddd", since d is the last character in str.
What you should do is something like this:
void StrReverse() {
char revStr[80];
for (int i = 0; i < StrLen; ++i) {
revStr[(StrLen - 1) - i] = str[i];
}
}
Take note of how that works. Say that StrLen = 10. Then we're copying position 0 of str into position 9 of revStr, and then position 1 of str into position 9 of revStr, etc, etc, until we copy position StrLen - 1 of str into position 0 of revStr.
But then you've got a reversed string in revStr and you're still missing the part where you put that back into str, so the complete method would look like
void StrReverse() {
char revStr[80];
for (int i = 0; i < StrLen; ++i) {
revStr[(StrLen - 1) - i] = str[i];
}
for (int i = 0; i < StrLen; ++i) {
str[i] = revStr[i];
}
}
And there are cleverer ways to do this where you don't have to have a temporary string revStr, but the above is perfectly functional and would be a correct answer to the problem.
By the way, you really don't need to worry about NULL bytes (\0s) at all in this code. The fact that you are (or at least you should be) tracking the length of the string with the StrLen variable makes the end sentinel unnecessary since using StrLen you already know the point beyond which the contents of str should be ignored.
int GetStrLen(void){
for (int i=0 ; str[i]!='\0' ; i++)
index++;
return index; // *** Here am getting a weird value, something like 1829584505306 ***
}
You are getting a weird value because you never initialized index, you just started incrementing it.
Your GetStrLen() function doesn't work because the str array is uninitialized. It probably doesn't contain any zero elements.
You don't need the index member. Just use StrLen to keep track of the current string length.
There are lots of interesting lessons to learn by this exam question. Firstly the examiner is does not appear to a fluent C++ programmer themselves! You might want to look at the style of the code, including whether the variables and method names are meaningful as well as some of the other comments you've been given about usage of (void), const, etc... Do the method names really need "Str" in them? We are operating with a "Strings" class, after all!
For "How strings are constructed in C++", well (like in C) these are null-terminated and don't store the length with them, like Pascal (and this class) does. [#Gustavo, strlen() will not work here, since the string is not a null-terminated one.] In the "real world" we'd use the std::string class.
"The string must not overflow", but how does the user of the class know if they try to overflow the string. #Tyler's suggestion of throwing a std::overflow_exception (perhaps with a message) would work, but if you are writing your own string class (purely as an exercise, you're very unlikely to need to do so in real life) then you should probably provide your own exception class.
"Insertion of character increases its length by 1", this implies that GetStrLen() doesn't calculate the length of the string, but purely returns the value of StrLen initialised at construction and updated with insertion.
You might also want to think about how you're going to test your class. For illustrative purposes, I added a Print() method so that you can look at the contents of the class, but you should probably take a look at something like Cpp Unit Lite.
For what it's worth, I'm including my own implementation. Unlike the other implementations so far, I have chosen to use raw-pointers in the reverse function and its swap helper. I have presumed that using things like std::swap and std::reverse are outside the scope of this examination, but you will want to familiarise yourself with the Standard Library so that you can get on and program without re-inventing wheels.
#include <iostream>
void swap_chars(char* left, char* right) {
char temp = *left;
*left = *right;
*right = temp;
}
class Strings {
private:
char m_buffer[80];
int m_length;
public:
// Constructor
Strings()
:m_length(0)
{
}
// A function for returning the length of the string 'm_buffer'
int GetLength() const {
return m_length;
}
// A function to inser a character 'ch' at the end of the string 'm_buffer'
void InsertChar(char ch) {
if (m_length < sizeof m_buffer) {
m_buffer[m_length++] = ch;
}
}
// A function to reverse the content of the string 'm_buffer'
void Reverse() {
char* left = &m_buffer[0];
char* right = &m_buffer[m_length - 1];
for (; left < right; ++left, --right) {
swap_chars(left, right);
}
}
void Print() const {
for (int index = 0; index < m_length; ++index) {
std::cout << m_buffer[index];
}
std::cout << std::endl;
}
};
int main(int, char**) {
Strings test_string;
char test[] = "This is a test string!This is a test string!This is a test string!This is a test string!\000";
for (char* c = test; *c; ++c) {
test_string.InsertChar(*c);
}
test_string.Print();
test_string.Reverse();
test_string.Print();
// The output of this program should look like this...
// This is a test string!This is a test string!This is a test string!This is a test
// tset a si sihT!gnirts tset a si sihT!gnirts tset a si sihT!gnirts tset a si sihT
return 0;
}
Good luck with the rest of your studies!
void InsertChar(char ch){
str[index] = ch; // *** Not sure if this is correct cuz I was not given int index ***
}
This should be something more like
str[strlen-1]=ch; //overwrite the null with ch
str[strlen]='\0'; //re-add the null
strlen++;
Your teacher gave you very good hints on the question, read it again and try answering yourself. Here's my untested solution:
class Strings {
private:
char str[80];
int StrLen;
public:
// Constructor
Strings() {
StrLen=0;
str[0]=0;
};
// A function for returning the length of the string 'str'
int GetStrLen(void) {
return StrLen;
};
// A function to inser a character 'ch' at the end of the string 'str'
void InsertChar(char ch) {
if(StrLen < 80)
str[StrLen++]=ch;
};
// A function to reverse the content of the string 'str'
void StrReverse(void) {
for(int i=0; i<StrLen / 2; ++i) {
char aux = str[i];
str[i] = str[StrLen - i - 1];
str[StrLen - i - 1] = aux;
}
};
};
When you init the char array, you should set its first element to 0, and the same for index. Thus you get a weird length in GetStrLen since it is up to the gods when you find the 0 you are looking for.
[Update] In C/C++ if you do not explicitly initialize your variables, you usually get them filled with random garbage (the content of the raw memory allocated to them). There are some exceptions to this rule, but the best practice is to always initialize your variables explicitly. [/Update]
In InsertChar, you should (after checking for overflow) use StrLen to index the array (as the comment specifies "inser a character 'ch' at the end of the string 'str'"), then set the new terminating 0 character and increment StrLen.
You don't need index as a member data. You can have it a local variable if you so please in GetStrLen(): just declare it there rather than in the class body. The reason you get a weird value when you return index is because you never initialized it. To fix that, initialize index to zero in GetStrLen().
But there's a better way to do things: when you insert a character via InsertChar() increment the value of StrLen, so that GetStrLen() need only return that value. This will make GetStrLen() much faster: it will run in constant time (the same performance regardless of the length of string).
In InsertChar() you can use StrLen as you index rather than index, which we already determined is redundant. But remember that you must make sure the string terminates with a '\0' value. Also remember to maintain StrLen by incrementing it to make GetStrLen()'s life easier. In addition, you must take the extra step in InsertChar() to avoid a buffer overflow. This happens when the user inserts a character to the string when the length of the string is alreay 79 characters. (Yes, 79: you must spend one character on the terminating null).
I don't see an instruction as to how to behave when that happens, so it must be up to your good judgment call. If the user tries to add the 80th character you might ignore the request and return, or you might set an error flag -- it's up to you.
In your StrReverse() function you have a few mistakes. First, you call GetStrLen() but ignore its return value. Then why call it? Second, you're creating a temporary string and work on that, rather than on the string member of the class. So your function doesn't change the string member, when it should in fact reverse it. And last, you could reverse the string faster by iterating through half of it only.
Work on the member data string. To reverse a string you can swap the first element (character) of the string with its last (not the terminating null, the character just before that!), the second element with the second-to-last and so on. You're done when you arrive at the middle of the string. Don't forget that the string must terminate with a '\0' character.
While you were solving the exam it would also be a good opportunity to teach your instructor a think or two about C++: we don't say f(void) because that belongs to the old days of C89. In C++ we say f(). We also strive in C++ to use class initializer lists whenever we can. Also remind your instructor how important const-correctness is: when a function shouldn't change the object is should be marked as such. int GetStrLen(void) should be int GetStrLen() const.
You don't need to figure out the length. You already know it it is strLen. Also there was nothing in the original question to indicate that the buffer should contain a null terminated string.
int GetStrLen(void){
return strLen;
}
Just using an assertion here but another option is to throw an exception.
void InsertChar(char ch){
assert(strLen < 80);
str[strLen++] = ch;
}
Reversing the string is just a matter of swapping the elements in the str buffer.
void StrRevrse(void){
int n = strLen >> 1;
for (int i = 0; i < n; i++) {
char c = str[i];
str[i] = str[strLen - i];
str[strLen - i] = c;
}
}
I would use StrLen to track the length of the string. Since the length also indicates the end of the string, we can use that for inserting:
int GetStrLen(void) {
return StrLen;
}
int InsertChar(char ch)
{
if (strLen < sizeof(str))
{
str[StrLen] = ch;
++strLen;
}
}
void StrReverse(void) {
for (int n = 0; n < StrLen / 2; ++n)
{
char tmp = str[n];
str[n] = str[StrLen - n - 1];
str[StrLen - n - 1] = tmp;
}
}
first of all why on you use String.h for the string length?
strlen(char[] array) returns the Lenght or any char array to a int.
Your function return a werid value because you never initialize index, and the array has zero values, first initilize then execute your method.