I have sequence in clojure of theem
(1 2 3 4)
how can I get all the tails of sequence like
((1 2 3 4) (2 3 4) (3 4) (4) ())
Another way to get all tails is by using the reductions function.
user=> (def x '(1 2 3 4))
#'user/x
user=> (reductions (fn [s _] (rest s)) x x)
((1 2 3 4) (2 3 4) (3 4) (4) ())
user=>
If you want to do this with higher-level functions, I think iterate would work well here:
(defn tails [xs]
(concat (take-while seq (iterate rest xs)) '(()))
However, I think in this case it would be cleaner to just write it with lazy-seq:
(defn tails [xs]
(if-not (seq xs) '(())
(cons xs (lazy-seq (tails (rest xs))))))
Here is one way.
user=> (def x [1 2 3 4])
#'user/x
user=> (map #(drop % x) (range (inc (count x))))
((1 2 3 4) (2 3 4) (3 4) (4) ())
One way you can do that is by
(defn tails [coll]
(take (inc (count coll)) (iterate rest coll)))
(defn tails
[s]
(cons s (if-some [r (next s)]
(lazy-seq (tails r))
'(()))))
Yippee! Another one:
(defn tails [coll]
(if-let [s (seq coll)]
(cons coll (lazy-seq (tails (rest coll))))
'(())))
This is really just what reductions does under the hood. The best answer, by the way, is ez121sl's.
Related
Is there a function that could replace subsequences? For example:
user> (good-fnc [1 2 3 4 5] [1 2] [3 4 5])
;; => [3 4 5 3 4 5]
I know that there is clojure.string/replace for strings:
user> (clojure.string/replace "fat cat caught a rat" "a" "AA")
;; => "fAAt cAAt cAAught AA rAAt"
Is there something similar for vectors and lists?
Does this work for you?
(defn good-fnc [s sub r]
(loop [acc []
s s]
(cond
(empty? s) (seq acc)
(= (take (count sub) s) sub) (recur (apply conj acc r)
(drop (count sub) s))
:else (recur (conj acc (first s)) (rest s)))))
Here is a version that plays nicely with lazy seq inputs. Note that it can take an infinite lazy sequence (range) without looping infinitely as a loop based version would.
(defn sq-replace
[match replacement sq]
(let [matching (count match)]
((fn replace-in-sequence [[elt & elts :as sq]]
(lazy-seq
(cond (empty? sq)
()
(= match (take matching sq))
(concat replacement (replace-in-sequence (drop matching sq)))
:default
(cons elt (replace-in-sequence elts)))))
sq)))
#'user/sq-replace
user> (take 10 (sq-replace [3 4 5] ["hello, world"] (range)))
(0 1 2 "hello, world" 6 7 8 9 10 11)
I took the liberty of making the sequence argument the final argument, since this is the convention in Clojure for functions that walk a sequence.
My previous (now deleted) answer was incorrect because this was not as trivial as I first thought, here is my second attempt:
(defn seq-replace
[coll sub rep]
(letfn [(seq-replace' [coll]
(when-let [s (seq coll)]
(let [start (take (count sub) s)
end (drop (count sub) s)]
(if (= start sub)
(lazy-cat rep (seq-replace' end))
(cons (first s) (lazy-seq (seq-replace' (rest s))))))))]
(seq-replace' coll)))
I have the following snippet:
(defn explode [e]
(seq [e e e e]))
(defn f [coll]
(when-first [e coll]
(cons e
(lazy-seq (f (lazy-cat (next coll)
(explode e)))))))
When I try to access an element, I get a StackOverflow error:
user=> (nth (f (seq [1 2 3])) 1000)
3
user=> (nth (f (seq [1 2 3])) 10000)
StackOverflowError clojure.core/concat/fn--3923 (core.clj:678)
How can I structure this code in a way that doesn't blow the stack?
You'll have to keep track of the remaining work explicitly, perhaps like so:
(defn f [coll]
(letfn [(go [xs q]
(lazy-seq
(cond
(seq xs)
(cons (first xs)
(go (next xs) (conj q (explode (first xs)))))
(seq q)
(go (peek q) (pop q)))))]
(go coll clojure.lang.PersistentQueue/EMPTY)))
From the REPL:
(nth (f [1 2 3]) 1000)
;= 3
(nth (f [1 2 3]) 10000)
;= 2
;; f-orig is f as found in the question text
(= (take 1000 (f-orig [1 2 3])) (take 1000 (f [1 2 3])))
;= true
I need to take some amount of elements from a sequence based on some quantity rule. Here is a solution I came up with:
(defn take-while-not-enough
[p len xs]
(loop [ac 0
r []
s xs]
(if (empty? s)
r
(let [new-ac (p ac (first s))]
(if (>= new-ac len)
r
(recur new-ac (conj r (first s)) (rest s)))))))
(take-while-not-enough + 10 [2 5 7 8 2 1]) ; [2 5]
(take-while-not-enough #(+ %1 (%2 1)) 7 [[2 5] [7 8] [2 1]]) ; [[2 5]]
Is there any better way to achieve the same?
Thanks.
UPDATE:
Somebody posted that solution, but then removed it. It does the same is the answer that I accepted, but is more readable. Thank you, anonymous well-wisher!
(defn take-while-not-enough [reducer-fn limit data]
(->> (reductions reducer-fn 0 data) ; 1. the sequence of accumulated values
(map vector data) ; 2. paired with the original sequence
(take-while #(< (second %) limit)) ; 3. until a certain accumulated value
(map first))) ; 4. then extract the original values
My first thought is to view this problem as a variation on reduce and thus to break the problem into two steps:
count the number of items in the result
take that many from the input
I also took some liberties with the argument names:
user> (defn take-while-not-enough [reducer-fn limit data]
(take (dec (count (take-while #(< % limit) (reductions reducer-fn 0 data))))
data))
#'user/take-while-not-enough
user> (take-while-not-enough #(+ %1 (%2 1)) 7 [[2 5] [7 8] [2 1]])
([2 5])
user> (take-while-not-enough + 10 [2 5 7 8 2 1])
(2 5)
This returns a sequence and your examples return a vector, if this is important then you can add a call to vec
Something that would traverse the input sequence only once:
(defn take-while-not-enough [r v data]
(->> (rest (reductions (fn [s i] [(r (s 0) i) i]) [0 []] data))
(take-while (comp #(< % v) first))
(map second)))
Well, if you want to use flatland/useful, this is a kinda-okay way to use glue:
(defn take-while-not-enough [p len xs]
(first (glue conj []
(constantly true)
#(>= (reduce p 0 %) len)
xs)))
But it's rebuilding the accumulator for the entire "processed so far" chunk every time it decides whether to grow the chunk more, so it's O(n^2), which will be unacceptable for larger inputs.
The most obvious improvement to your implementation is to make it lazy instead of tail-recursive:
(defn take-while-not-enough [p len xs]
((fn step [acc coll]
(lazy-seq
(when-let [xs (seq coll)]
(let [x (first xs)
acc (p acc x)]
(when-not (>= acc len)
(cons x (step acc xs)))))))
0 xs))
Sometimes lazy-seq is straight-forward and self-explaining.
(defn take-while-not-enough
([f limit coll] (take-while-not-enough f limit (f) coll))
([f limit acc coll]
(lazy-seq
(when-let [s (seq coll)]
(let [fst (first s)
nacc (f acc fst)]
(when (< nxt-sd limit)
(cons fst (take-while-not-enough f limit nacc (rest s)))))))))
Note: f is expected to follow the rules of reduce.
What would be a more idiomatic way to partition a seq based on a seq of integers instead of just one integer?
Here's my implementation:
(defn partition-by-seq
"Return a lazy sequence of lists with a variable number of items each
determined by the n in ncoll. Extra values in coll are dropped."
[ncoll coll]
(let [partition-coll (mapcat #(repeat % %) ncoll)]
(->> coll
(map vector partition-coll)
(partition-by first)
(map (partial map last)))))
Then (partition-by-seq [2 3 6] (range)) yields ((0 1) (2 3 4) (5 6 7 8 9 10)).
Your implementation looks fine, but there could be a more simple solution which uses simple recursion wrapped in lazy-seq(and turns out to be more efficient) than using map and existing partition-by as in your case.
(defn partition-by-seq [ncoll coll]
(if (empty? ncoll)
'()
(let [n (first ncoll)]
(cons (take n coll)
(lazy-seq (partition-by-seq (rest ncoll) (drop n coll)))))))
A variation on Ankur's answer, with a minor addition of laziness and when-let instead of an explicit test for empty?.
(defn partition-by-seq [parts coll]
(lazy-seq
(when-let [s (seq parts)]
(cons
(take (first s) coll)
(partition-by-seq (rest s) (nthrest coll (first s)))))))
(first (reduce (fn [[r l] n]
[(conj r (take n l)) (drop n l)])
[[] (range)]
[2 3 6]))
=> [(0 1) (2 3 4) (5 6 7 8 9 10)]
I'm reading Programming Clojure now and I find out next example
(defn by-pairs [coll]
(let
[take-pair (fn [c] (when (next c) (take 2 c)))]
(lazy-seq
(when-let [pair (seq (take-pair coll))] ;seq calls here
(cons pair (by-pairs (rest coll)))))))
it breaks list into pairs, like
(println (by-pairs [1 2 1])) ((1 2) (2 1))
(println (by-pairs [1 2 1 3])) ((1 2) (2 1) (1 3))
(println (by-pairs [])) ()
(println (by-pairs [1])) ()
What I can not get is why we should invoke seq on take-pair result? So why we can not just write
(defn by-pairs [coll]
(let
[take-pair (fn [c] (when (next c) (take 2 c)))]
(lazy-seq
(when-let [pair (take-pair coll)]
(cons pair (by-pairs (rest coll)))))))
In witch cases there are will be different results or are there are any performance reasons?
Both the code are same and there will be no difference because next and take functions that are being applied to coll in take-pair function, do call seq on the passed parameter i.e next c will first call seq on c or try to check if it is an object which implements ISeq and same in being doing by the take function. So basically in this case if you don't call seq yourself, the next and take will call seq on it.