Weka Time Series Forecast, More Attributes - data-mining

According to this link, it's explained how to create a forecast model based on date field and measures.
It's working in case when I do not put any other attributes. I need to forward more fields, like SKU no, PointOfSales no etc.
In those cases it returns me an error with 'bad sorting' message even it is sorted asc by date field.
Any help? Am I missing something simple?
EDIT:
working table:
DateField TIMESTAMP
Sales FLOAT
Non working table:
DateField TIMESTAMP
Sales FLOAT
SKU VARCHAR
PoS VARCHAR
Non-working ARFF sample
#relation 'C:\\Users\\admpentaho\\Desktop\\file1.arff'
#attribute dat_dok date 'yyyy/MM/dd HH:mm:ss.SSS'
#attribute sif_rob {0051S12,0312S13,0762S21,160047,160049,160051,160058,2101S11,250000,250001,250002,250003,250006,250007,250008,2562S12,280001,280002,280003,280004,280005,280006,280007,280008,280009,280010,280011,280012,280013,280014,280015,280017,280018,280019,280020,280021,280022,280023,280024,280027,280028,280043,280044,280045,280047,280049,280050,280053,'2810 S12',3081S21,370002,370003,370007,370015,50004,50005,50006,50007,50008,50015,50018,50019,50023,50034,50070,50073,50076,50077,50101,50103,50112,50116,50118,50138,50148,50149,50161,50185,50186,50196,50198,50199,50203,50204,50236,50238,50239,50240,50241,50242,50243,50244,50245,50246,50251,50252,50264,50272,50273,50274,50279,50295,50296,50299,50307,50308,70001,70003,70005,70006,70007,70008,70013,70014,70015,70016,70017,70018,70028,70029,70032,70033,70035,70039,70040,70042,70043,70044,70046,70048,70049,70065,70070,70073,70074,70078,70079,70085,70087,70088,70089,70092,70096,70097,70098,70100,70136,70137,70144,70156,70167,70168,70169,70241,702426,70243,70245,79003,900327,900334,900336,900353,900354,900356,900362,ALP3150,ALP3151,AM12012,AM12013,AM12014,AM12015,AM12016,AM12017,AM12018,AM12019,AM12050,AMAN57788,AMAN58725,BER3044,BER3047,BER3048,BER3054,BER3070,BIS10001,BIS10108,BIS10223,BIS10224,BIS10289,BIS10307,BIS10309,BIS10313,BIS10315,BIS10362,BIS10369,BIS10370,BIS10371,BIS10379,BIS10380,BIS11107,BIS11208,BIS11236,BIS11237,BIS11238,BIS11304,BIS11306,BIS11320,BIS11327,BIS12015,BIS12018,BIS12072,BIS12074,BIS12076,BIS12078,BIS12079,BIS12080,BIS12081,BIS12083,BIS12084,BIS12091,CAS3372,CAS3376,CAS3377,CAS3378,CAS3379,CE001,CE002,CE003,CE004,CE005,CE106348,CE701850,CE701852,DE0FX3176,DE0SI0012,DE0SI1034,DE0SI1041,DE0SW0209,DE0SX0007,DE0SX0011,DE0SX0012,DE0SX0015,DE0SX0034,DE0SX0041,DE0SX1093,DE0UA2112,DE0UD2100,DE0UN2103,DE0UN2104,DEGN20GN1,DEPA10985,DEPPE1976,DERI10850,DERI40853,DERI50854,DERI60855,DESE26919,DESG86916,DESOF4001,DESOL1001,DESOL2002,DMK3130,DMK3131,DMK3132,DMK3133,DMK8008,DON0006,DON0007,DON0008,DON0013,DON0016,E0111461,E0111463,E0111466,E0111505,E0111506,E0112153D,E0112215,E0112353,E0112488,E0112535,E0112536,E100378,E101119,E101280,E101327,E101331,E101599,E101661,E101661D,E101661K,E101685,E102033,E103896,E105309,E106347,E106348,E106353,E106354,E106356,E106357,E106358,E106359,E106360,E108758,E108759,E1100834,E1100912,E1101523,E1103885,E1104176,E1104579,E1105041,E1106190,E1106349,E1106350,E1106361,E1106362,E1106363,E1106831,E1108159,E1108551,E1109364,E1109697,E1109747,E1111521,E1200368,E1202281,E1202799,E1203602,E1208085,E1208086,E1208662,E1211522,E1308084,E1501017,E1501144,E1501145,E1501146,E1501545,E1502172,E1505223,E1505854,E1507020,E1507948,E1507950,E1601055,E1704580,E1705080,E2006333,E700784,E701153,E701154,E701155,E701197,E701197D,E701596,E701787,E701850,E701850D,E701852,E701852D,E701856,E701856D,E701858,E702665,E704253,E706522,E707095,E707454,E707461,E707605,E707617,E707856,E708265,E708266,E708373,E708374,E708375,E708678,E708685,E708988,E708989,E708990,E709361,E709671,E709884,E710598,EPAL,EVB-2000,EVB-2001,EVB-303,EVB-411,EVB-412,EVB-413,EVB-414,EVB-416,EVB-418,EVB-421,EVB-422,EVB-424,EVB-500293,EVB-500294,EVB-500295,EVB-500296,EVB-500297,EVB-500329,EVB-500330,EVB-500331,EVB-500396,EVB-500397,EVB-500399,EVB-500400,EVB-500402,EVB-500403,EVB-500404,EVB-500405,EVB-500717,EVB-500750,EVB-500751,EVB-500752,EVB-500756,EVB-500778,EVB-500781,EVB-501075,EVB-501076,EVB-502130,EVB-502140,EVB-502290,EVB-502291,EVB-502552,EVB-502680,EVB-502681,EVB-502682,EVB-502683,EVB-502897,EVB-502953,EVB-503051,EVB-503251,EVB-503252,EVB-503255,EVB-503283,EVB-503284,EVB-503290,EVB-503291,EVB-503651,EVB-503654,EVB-503781,EVB-K411,EVB-K413,EVB-K421,EVB-K422,EVB-K424,FI31002,FI31011,FLA000021,FLA000027,FLA000028,FLA000030,FLA000031,FLA000033,FLA000066,FLA000067,FLA000075,FLA000083,FLA000084,FLA000087,FLA000089,FLA000091,FLA000111,FLA000112,FLA000133,FLA000138,FLA000241,FLA000242,FLA000243,FLA000279,FLA000330,FLA000331,FLA000386,FLA000487,FLA000589,FLA000715,FLA000839,FLA001164,FLA001165,FLA001223,FLA001225,FLA001226,FLA001363,FLA001474,FLA001475,FLA001888,FLA001949,FLA002289,FLA002291,FLA002292,FLA002431,FLA002763,FLA002764,FLA002792,FLA002921,FLA002922,FLA002923,FLA002934,FLA002940,FLA002944,FLA002946,FLA002948,FLA002952,FLA002956,FLA002958,FLA002961,FLA002965,FLA002967,FLA002969,FLA002983,FLA002985,FLA002987,FLA002989,FLA002991,FLA002993,FLA003001,FLA003009,FLA003024,FLA003026,FLA003028,FLA003031,FLA003035,FLA003039,FLA003045,FLA003050,FLA003052,FLA003089,FLA003181,FLA003182,FLA003183,FLA003184,FLA003186,FLA003214,FLA003215,FLA003216,FLA003273,FLA003283,FLA003320,FLA003330,FLA003331,FLA003333,FLA003334,FLA003527,FLA003601,FLA003728,FLA003729,FLA003730,FLA003731,FLA003916,FLA003917,FLA003919,FLA003927,FLA003934,FLA004105,FLA004129,FLA004130,FLA004196,FLA004244,FLA004299,FLA004300,FLA004478,FLA004479,FLA004497,FLA004535,FLA004536,FLA004537,FLA004538,FLA004539,FLA004540,FLA004542,FLA004543,FLA004544,FLA004545,FLA004550,FLA004551,FLA004552,FLA004553,FLA004599,FLA004608,FLA004614,FLA005674,FLA006086,FLA006087,FLA290001,FRS064,GE17919,GE19948,GE19949,GEP61504,GL110000,GL210000,GL340100,GL360200,GL360201,GOR1120,GOR1213,GOR1301,GOR1308,GOR1311,GOR1315,GOR1316,GOR1339,GOR1340,GOR1341,GOR1604,GOR1817,GOR1852,GOR1854,GOR1902,GOR1905,GOR1906,GOR1907,GOR1912,GOR1913,GOR1927,GOR1929,GOR1930,GOR1932,GOR1933,GOR1934,GOR1942,GOR1944,GOR1945,GOR1947,GOR1948,GOR1952,H1834230,H2013212,H2017280,H2017283,H2017288,H2295500,H2295800,H2298188,H2395100,H2395166,H2395166A,H2395250A,H2395520A,H2395540,H2395566,H2395840,H2395866,H2395866A,H2494131,H2494241,H2494311,H2496131,H2496241,H2496311,H2498131,H2498241,H2498311,H2499231,H2499241,H2499311,H2817541,H2818541,H2819541,H2943251,H2961001,H2961101,H2961201,HLS001,HOC5006,HOC5007,HOC5108,HOC6008,HOC6009,HOC9000,HOC9001,HOC9002,HOC9007,HOC9009,HOC9015,HUG016,HUG017,HUG019,HUG020,HUG1607,HUGLS0102,HUGLS0103,J1423204,J1764002,J1764003,J1855405,J2061704,J2079703,J2080503,J2103103,J2103303,J2103603,J2129506,J2133406,J2141110,J2142209,J2144402,J2148404,J2265102,J2279902,J2318705,J2364102,J2364202,J2364702,J2364802,J2364902,J2372202,J2375802,J2423819,J2466503,J2500800,J2584509,J2584706,J2589804,J3098916,J3098917,J3101902,J3106903,J3166005,J3184001,J3185101,J3185401,J3276504,J3276805,J3277102,J3309702,J3328304,J3333602,J3362404,J3365006,J3369805,J3382502,J3398204,J3519004,J3646716,J3660202,J3666000,J3666400,J3682507,J3699704,J3803900,J3809405,J3834607,J3835107,J3841200,J3854102,J3854402,J3854702,J3855002,J3887401,J3897402,J3898002,J3922901,J3954502,J3983101,J3995301,J4010601,J4023602,J4023702,J4069403,J4100102,J4145904,J4146303,J4272302,J4290002,J4292000,J4292701,J4293401,J4307300,J4313100,J4318700,J431900,J4319000,J4346101,J43709,J4394702,J4432601,J4458601,J4459701,J4501700,J4670402,J4730908,J4736310,J4748307,J4775203A,J4775304A,J4789400,J4789502,J4952004,J4985800,J4993200,J4993300,J5217309,J5217907,J5218006,J5218106,J5218405,J5337500,J5462500,J5479200,J5705100,J5705200,J5705300,J5768200,J5768300,J5787900,J5800300,J5805000,J5806105,J5852100,J5883001,J6008100,J6008400,J6037300,J6041600,J6046200,J6047400,J6057301,J6057401,J6127800,J6148800,J6212700,J6213300,J6213800,J6213900,J6214000,J6214100,J6214200,J6214300,J6214400,J6214500,J6214600,J6214700,J6214800,J6214900,J6215300,J6215400,J6215600,J6215800,J6216000,J6216100,J6216200,J6216300,J6216400,J6216600,J6216700,J6217000,J6246000,J6250800,J6281000,J6287000,J6306700,J6307300,J6308600,J6309100,J6354503,J6390201,J6394600,J6424300,J6424400,J6428503,J6428901,J6454700,J6460700,J6463100,J6468500,J6479400,J6479600,J6489501,J6504800,J6504900,J6638000,J6651100,J6667301,J6673203,J6686800,J6705700,J6764800,J6766002,J6766100,J6777800,J6849200,J6849300,J6849400,J6849600,J6849900,J6889701,J702226,J702227,J702228,J702229,J7023900,J7125300,J7125700,J7144900,J7188400,J7290900,J7324500,J7519300,J7567700,J7567800,J7650100,J7650400,J7650400D,J7653400,J7653400D,J7656600,J7693500,J7696700,J7706600D,J7759001,J7759101,J7869100,J8003704,J8046100,J8060201,J8060500,J8083500,J8083600,J8083701,J8083901,J8084001,J8084100,J8084201,J8084300,J8084400,J838704,J838810,JCC003,JJB033,JJB035,JJB036,JJB047,JJB048,JJB049,JJB050,JJB051,JJB052,JJJB0030,JJJB010,JJJB0106,JJJB0114,JJJB0118,JJJB012,JJJB0120,JJJB0121,JJJB0124,JJJB0125,JJJB013,JJJB019,JJJB020,JJJBO20135,JJOB020415,JJRX503204,JO14007,JO14008,JO14009,JO14010,JO14011,JO14016,JO14017,JO14018,JO14019,JO14050,JOB006,JRE003,JRE004,JRE007,JRE008,JRE010,K3086160,K3158150,K3262010,K3270661,K3270670,K3415800,K3417600,K3482121,K3519880,K3527090,K3568140,K3570140,K3571140,K3697800,K3698210,K3745030,K3824120,K3855270,K4521020,K4584040,K4700430,K4725040,K4729010,K4739350,K4762230,K4762240,K4845030,K4845040,K4933950,K4933960,K4934100,K4934110,K4961350,K4961360,K4961450,K4961800,K4961810,K5016385,K5027020,K5110510,K5115120,K5605000,K5606000,KLBT0107,KLBT0108,KLFT0105,MI14045,MI14046,MI14047,MI14048,MP00314,MP00317,MP00331,MP00419,MP00580,MP00834,MP00999,MP01064,MP01084,MP01098,MP01152,MP01154,MP01214,MP01247,MP01254,MP01321,MP01369,MP01435,MP01455,MP01456,MP01543,MP01584,MP01593,MP01595,MP01600,MP01601,MP01605,MP01606,MP01608,MP01640,MP01645,MP01653,MP01689,MP01694,MP01701,MP01865,MP01866,MP02051,MP02059,MP02126,MP02183,MP02408,MP02410,MP02420,MP02459,MP02491,MP02563,MP02610,MP02615,MP02936,MP02952,MP02968,MP02974,MP02977,MP03017,MP03020,MP03263,MP04125,MP04261,MP04321,MP04474,MP04703,MP05206,MP05313,MP05314,MP05460,MP05462,MP05716,MP05768,MP06144,MP06145,MP06198,MP06339,MP06349,MP06436,MP06466,MP06467,MP06468,MP06609,MP06610,MP07183,MP07248,MP07249,MP07290,MP07313,MP07673,MP07696,MP07702,MP07876,MP08113,MP08119,MP08128,MP08136,MP08225,MP08247,MP08248,MP08302,MP08318,MP08416,MP08474,MP08476,MP08962,MP09019,MP09336,MP09540,MP09558,MP10118,MP11079,MP11085,MP11259,MP11543,MP11560,MP11664,MS008,PCF001,PCF003,PCF004,PCF005,PCOR001,PEB001,PEB002,PEB003,PEB004,PEB005,PEB006,PEB013,PEB014,PEB018,PEB019,PEB020,PFR004,PFR007,PFR008,PFRS004,PFRS005,PFRS007,PHUG003,PHUG004,PHUG005,PJ&J103,PJ&J105,PJ&J106,PJ&J107,PJ&J108,PJ&J110,PJ&J113,PJ&J114,PJ3185401,PJ4010601,PJ7519300,PJB001,PJB006,PJB007,PJB009,PJB010,PJB011,PJB012,PJB013,PJB014,PJB015,PJB019,PLM001,PLM002,PNT001,PO0045,PO0046,POB001,POB002,POB003,POB0033,POB004,POB005,POB006,POB010,POB011,POB012,PPJ5800300,RE13207,RE13208,RE13209,RE13210,RE13211,RE13212,RE13304,RE13307,RE13308,RE13309,RE13310,RE13311,RH2395540,RJ5217907,RJ5218006,RJ5218106,RJ5218405,RJ5986705,RJ6213300,RJ6213800,RJ6214000,RJ6214600,RJ6215800,RJ7759101,RS0107,RSKO004,RSKO005,RSKO006,RSKO007,RSKO008,RSKO009,RSKO010,RSKO011,RSKO012,RSKO013,RSKO014,RSKO015,RSKO016,RSKO017,SAN1220,SAN2000,SAN2003,SAN2029,SAN2201,SAN2302,SAN2400,SAN2401,SAN2502,SAN3256,SAN5029,SKO0001,SKO1013,SKO1064,SKO1381,SKO1382,SKO1411,SKO161,SKO163,SKO164,SKO169,SKO171,SKO1718,SKO1720,SKO2093,SKO2094,SKO3320,SKO3564,SKO3603,SKO3683,SKO3729,SKO3730,SKO3812,SKO4194,SKO4272,SKO4281,SKO611,SKO612,SKO706,SKO711,SKO724,SKO777,SKO944,SKO988,SP13200,SP13202,SP13203,SP13204,SP13205,SP13206,SP13300,SP13301,SP13302,SP13303,SP13306,TEFS11E27,UNI12215721,UNI14402415,UNI14520114,UNI14520312,UNI15440220,UNI15440321,UNI15440422,UNI15667103,UNI16661001,UNI16874401,UNI16874601,UNI17112413,UNI17137701,UNI17137901,UNI17139805,UNI17276602,UNI17783401,UNI18304712,UNI19047102,UNI19102908,UNI19249808,UNI19418414,UNI19421510,UNI19423004,UNI19461610,UNI19656103,UNI19905101,UNI26704201,UNI39047202,V0001,V0002,V1050001,V1050002,V1051001,V1051002,V1051011,V1052001,V1052002,V1052003,V1052007,V1052008,V1052009,V1052010,V1052011,V1052045,V1052046,V1052047,V1052048,V1053001,V1053002,V1053004,V1054001,V1054002,V1054004,V1055001,V1055002,V1100012,V1100013,V1100014,V1155001,V1155002,V1250001,V1250002,V1250003,V1250004,V1250005,V1250006,V1251001,V1251002,V1251003,V1251004,V1251023,V1251024,V1251032,V1251038,V1253001,V1253002,V1253003,V1253004,V1253005,V1253006,V1253007,V1253008,V1253019,V1254002,V1254003,V1254004,V1255001,V1255002,V1255003,V1255004,V1545001,V1545002,V1545003,V1545004,V1545005,V1545007,V1758001,V1758002,V1758003,V1758004,V1859001,V1859002,V1859003,V1859004,V1860001,V1860002,V1860003,V1946001,V1946002,V1946003,V1946006,V1947001,V2061001,V2061002,V2061003,V2061004,V2061005,V2061006,V2365002,V2365003,V2700007,V2800001,V2800002,V2800013,V2800014,V3300051,V3887001,V3887002,VA001,VA002,VA003,VA4103101412,VA4103101414,VA4106101412,VA4106101414,VA4703101436,VA4706101436,VA4903121412,VA4903121414,VA4906121412,VA4906121414,VA56703101402,VA56706101402,VA57666101451,VIPC001,WES3021,WES3024,WES3026,WES3031,WES3035,WES3069,WES3079,WES3080,ZOT1000,ZOT1001,ZOT1002,ZOT1003,ZOT1004,ZOT1005,ZOT1006,ZOT1009,ZOT1011,ZOT1013,ZOT1014,ZOT1043,ZOT1044,ZOT1045,ZOT1046,ZOT16003,ZOT16004,ZOT16005,ZOT2000,ZOT2001,ZOT2010,ZOT2025,ZOT2028,ZOT2043,ZOT2045,ZOT2046,ZOT2047,ZOT2047D,ZOT2108,ZOT2110,ZOT2402,ZOT2403,ZOT2405,ZOT2406,ZOT2407,ZOT3003,ZOT3004,ZOT3005,ZOT3014,ZOT3076,ZOT3106,ZOT3107,ZOT3108,ZOT3109,ZOT3135,ZOT3136,ZOT3137,ZOT3152,ZOT3153,ZOT3154,ZOT6006,ZOT6007,ZOT61396,ZOT9043,ZOT9044}
#attribute vred_rab numeric
#data
'2013/01/03 00:00:00.000',PHUG005,4255.3
'2013/01/03 00:00:00.000',PJ7519300,17708.2
'2013/01/03 00:00:00.000',PNT001,13780.7
'2013/01/09 00:00:00.000',GEP61504,1117.8
'2013/01/09 00:00:00.000',TEFS11E27,341.6
'2013/01/10 00:00:00.000',280001,-9000.7
'2013/01/10 00:00:00.000',280005,-2663

Related

Power BI Two Non Related Tables. Need to join based on date and return data

I have two tables in Power BI. I need to return the value from one table based on the the date range and employee_id of the original table. Can anyone assist me in how to do this? the Hierarchy_ID changes from Month to Month and is unique to the Employee_ID. I need to use the Employee_ID look at the Entry_Date and determine the Hierarchy_ID based on the start/end date of the Employee_ID. Below is an example of what I'm trying to accomplish:
enter image description here
Any assistance is appreciated.
Thanks

Date Table Returning zero values

I am pretty new to Power BI and DAX so I apologize if my vocabulary isn't entirely accurate, however I'm having trouble with the functionality of the program.
Goal: I would like to create a visual that returns the count of ID's based off of date using a date table 
Summary of Problem: I create a relationship between a date table and fact table. When creating a visual using the date table field [date], and fact table count of [Id's] the relationship between the date table seems to break and return nothing.
Details: I created a date table and created a relationship to a 'Lead' Database table using the respective "Date" field (in the Main date table) to the "CreatedDate" (in the 'Lead' table). Shown Below
*Uses a 1:Many relationship with a single crossfilter moving towards the 'Lead' table
When I pull in a table in the visualizations, using a the dimensions of 'Main Date Filter'[Date] and count of 'Lead'[Lead Id], it seems theres no relationship between the 'Main Date Filter'[Date] and 'Lead'[CreatedDate] because none of the dates populate and counts all the ID's into a blank date
Also I made sure to turn off filters off for this example and strip all relationships to just the lead object and date
Here are the further data types of each of the fields that are being related
Thank you for taking the time to find a solution and I appreciate the help as this simple problem has been driving me crazy!
Once again the goal is to just return the count of Id's per date and I don't understand why this is not working.

Dax SummarizeColumns with Filter On DateTime Field is not working

I am trying to get the data from SSAS tabular model with filter applied to the datetime field. Data stored in that field mm/dd/yyyy format like below.
1/16/2020 10:11:42 AM.
I wrote a dax query below to retrive the data..
evaluate SUMMARIZECOLUMNS('Campaign Summary Customer pool'[CALLPLACEDTIMEUTC],'Campaign Summary Customer pool'[AGENTID],'Campaign Summary Customer pool'[DIALER_SKILL],
DATESBETWEEN('Campaign Summary Customer pool'[CALLPLACEDUTC],date(2020,01,01),date(2020,09,09)),
"AGENT CALLS",COUNT('Campaign Summary Customer pool'[I3_IDENTITY]))
Got Error "Multiple values supplied for the CALLPLACEDTIMEUTC column" . This i understand because the filter expects a unique value & the field can multiple timestamps for same day.
So I tried below query,
evaluate SUMMARIZECOLUMNS('Campaign Summary Customer pool'[CALLPLACEDTIMEUTC],'Campaign Summary Customer pool'[AGENTID],'Campaign Summary Customer pool'[DIALER_SKILL],
FILTER(VALUES('Campaign Summary Customer pool'[CALLPLACEDTIMEUTC]),FORMAT('Campaign Summary Customer pool'[CALLPLACEDTIMEUTC],"dd/mm/yyyy") >= format(value(date(2020,09,08)),"dd/mm/yyyy")
&& format('Campaign Summary Customer pool'[CALLPLACEDTIMEUTC],"dd/mm/yyyy")< format(value(date(2020,09,09)),"dd/mm/yyyy")),
"AGENT CALLS",COUNT('Campaign Summary Customer pool'[I3_IDENTITY]))
This runs fine & but giving output with all date ranges available. Date filter is not working. Any suggesions/Alternative ways to extract date from the datetime field & apply filter on it?
Please check if you get properly formated date from your model
at first:
evaluate
row("x",format(value(date(2020,09,20)),"dd/mm/yyyy"),"Y",format(DATEVALUE("1/16/2020 10:11:42 AM"),"dd/mm/yyyy"))
Second:
evaulate
summarizecolumns(
'Campaign Summary Customer pool'[CALLPLACEDTIMEUTC],
FORMAT('Campaign Summary Customer pool'[CALLPLACEDTIMEUTC],"dd/mm/yyyy")
)
Maybe this will show you where the problem is.

Create table comparing Two Queries with identical fields/field names

I would like to create a table to compare Month To Date (MTD) Vs YTD Sales data metrics
I am using two queries:
1st query = YTD Sales data (Two fields: Sales and Quotes)
2nd query = MTD Sales Data (Two Fields: Sales and Quotes).
Each query has the same field names, just different data
I would like to output a table like the following
How to I create the above table? At the moment I can only create a table like the following:
The latter 1x4 table only works if I appropriately name the fields. But definitely isn’t what I want, because with enough fields, the table could go on forever.
Any help would be appreciated
In the query editor, create a label column for each table that labels what they are and then append the two tables together so you get something like this:
Then you can create a matrix visual with the Label column in the Columns field and the Sales and Quantity columns in the Values area.
Make sure you've switched "Show on Rows" to "On" under the Format > Values section of the Visualizations pane.

WEKA - Compute an average number of non-missing attributes per class attribute

I'm working with a dataset with a lot of missing values. For analytical purposes, I want to be able to compute the average number of non-missing attributes assigned to each class label in the following manner.
Having data like
#relation class
#attribute one {1,2}
#attribute two {1,2}
#attribute three {1,2}
#attribute class {human, animal}
#data
1,Na,Na,human
1,1,Na,human
Na,Na,2,animal
I want to be able to obtain a result like this.
Average non-missing attributes per class label:
- human = 1.5
- animal = 1
Is there any way of doing this in the WEKA explorer?