C++ armadillo not correctly solving poorly conditioned matrix - c++

I have a relatively simple question regarding the linear solver built into Armadillo. I am a relative newcomer to C++ but have experience coding in other languages. I am solving a fluid flow problem by successive linearization, using the armadillo function Solve(A,b) to get the solution at each iteration.
The issue that I am running into is that my matrix is very ill-conditioned. The determinant is on the order of 10^-20 and the condition number is 75000. I know these are terrible conditions but it's what I've got. Does anyone know if it is possible to specify the precision in my A matrix and in the solve function to something beyond double (long double perhaps)? I know that there are double matrix classes in Armadillo but I haven't found any documentation for higher levels of precision.
To approach this from another angle, I wrote some code in Mathematica and the LinearSolve worked very well and the program converged to the correct answer. My reasoning is that Mathematica variables have higher precision which can handle the higher levels of rounding error.
If anyone has any insight on this, please let me know. I know there are other ways to approach a poorly conditioned matrix (like preconditioning and pivoting), but my work is more in the physics than in the actual numerical solution so I'm trying to steer clear of that.
EDIT: I just limited the precision in the Mathematica version to 15 decimal places and the program still converges. This leads me to believe it is NOT a variable precision question but rather an issue with the method.

As you said "your work is more in the physics": rather than trying to increase the accuracy, I would use the Moore-Penrose Pseudo-Inverse, which in Armadillo can be obtained by the function pinv. You should then experience a bit with the parameter tolerance to set it to a reasonable level.
The geometrical interpretation is as follows: bad condition numbers are due to the fact that the row/column-vectors are linearly dependent. In physics, such linearly dependencies usually have an origin which at least needs to be interpreted. The pseudoinverse first projects the matrix onto a lower dimensional space in which the vectors are "less linearly dependent" by dropping all singular vectors with singular values smaller than the parameter tolerance. The reulting matrix has a better condition number such that the standard inverse can be constructed with less problems.

Related

What solution quality can we expect for a linear programming solver?

I am trying to solve linear constraint satisfaction problems. So I grabbed the "GNU Linear Programming Kit," wrote my constraints, and let it loose on it with some simple objective function.
GLPK claimed to find a solution, but if I check it against the constraints, they are not satisfied. Namely an expression that should be <= 0 is actually around 1e-10. I.e., slightly greater than 0.
I can probably live with the issue, by setting up my constraints to return the Chebyshev centre of the polyhedron, but I wonder if such discrepancies are to be expected with linear programming solvers, or I should report it as a bug for the GLPK folks.
All LP solvers use feasibility and other tolerances. These are needed because floating-point computations are not exact. You can tighten them a bit, but in general, it is better not to touch them.
So, you should expect solutions with the following properties:
variables are slightly outside their bounds
constraints may be violated by a small amount
binary and integer variables are slightly non-integer

C++: Solve underdetermined linear system with lapack

Let's put it simple: I have an under-determined linear system of equations
Ax = b
and I want to get one valid solution, no matter which one of the infinite solutions for the system. And I want to get it as efficiently as possible.
I have checked general LAPACK routines and it seems that they cannot handle the under-determined case. For example, dgesv(), whose documentation is found here, will return and integer larger than 1 in INFO if the factor U, from PLU factorization, is singular, and it will not solve the system if that is the case.
I have also checked some routines for Linear Least Squares problems (LLS) (documentation here), which does exactly solve my problem, just not as efficiently as I wished. If the LLS problems I provide is under-determined, the LLS routine will return the vector that minimizes
||Ax-b||
Which is a valid solution. However, it is calculated as the solution to an optimization problem, and I was wondering if there is a more efficient way of obtaining a valid solution for my under-determined problem.
A similar question was made here, but I believe that my question is more concrete than that: I am using LAPACK, and I want to solve an under-determined system of linear equations as efficiently as possible.
For an under-determined system of equations:
The correct approach is to use singular value decomposition (SVD). Lapack offers singular value decomposition in the form of dgesvd.
To perform the SVD you will have to homogenize your problem to turn it into a matrix problem of the form: My = 0. This is easy to do by introducing another degree of freedom (another variable). This will transform the vector x -> y and matrix A -> M. When performing the SVD on the matrix M, the smallest singular vector will be the solution to your under-determined least squares problem.
I would recommend using matlab or octave to experiment before wasting time coding anything up.

c++ numerical analysis Accurate data structure?

Using double type I made Cubic Spline Interpolation Algorithm.
That work was success as it seems, but there was a relative error around 6% when very small values calculated.
Is double data type enough for accurate scientific numerical analysis?
Double has plenty of precision for most applications. Of course it is finite, but it's always possible to squander any amount of precision by using a bad algorithm. In fact, that should be your first suspect. Look hard at your code and see if you're doing something that lets rounding errors accumulate quicker than necessary, or risky things like subtracting values that are very close to each other.
Scientific numerical analysis is difficult to get right which is why I leave it the professionals. Have you considered using a numeric library instead of writing your own? Eigen is my current favorite here: http://eigen.tuxfamily.org/index.php?title=Main_Page
I always have close at hand the latest copy of Numerical Recipes (nr.com) which does have an excellent chapter on interpolation. NR has a restrictive license but the writers know what they are doing and provide a succinct writeup on each numerical technique. Other libraries to look at include: ATLAS and GNU Scientific Library.
To answer your question double should be more than enough for most scientific applications, I agree with the previous posters it should like an algorithm problem. Have you considered posting the code for the algorithm you are using?
If double is enough for your needs depends on the type of numbers you are working with. As Henning suggests, it is probably best to take a look at the algorithms you are using and make sure they are numerically stable.
For starters, here's a good algorithm for addition: Kahan summation algorithm.
Double precision will be mostly suitable for any problem but the cubic spline will not work well if the polynomial or function is quickly oscillating or repeating or of quite high dimension.
In this case it can be better to use Legendre Polynomials since they handle variants of exponentials.
By way of a simple example if you use, Euler, Trapezoidal or Simpson's rule for interpolating within a 3rd order polynomial you won't need a huge sample rate to get the interpolant (area under the curve). However, if you apply these to an exponential function the sample rate may need to greatly increase to avoid loosing a lot of precision. Legendre Polynomials can cater for this case much more readily.

How to optimize solution of nonlinear equations?

I have nonlinear equations such as:
Y = f1(X)
Y = f2(X)
...
Y = fn(X)
In general, they don't have exact solution, therefore I use Newton's method to solve them. Method is iteration based and I'm looking for way to optimize calculations.
What are the ways to minimize calculation time? Avoid calculation of square roots or other math functions?
Maybe I should use assembly inside C++ code (solution is written in C++)?
A popular approach for nonlinear least squares problems is the Levenberg-Marquardt algorithm. It's kind of a blend between Gauss-Newton and a Gradient-Descent method. It combines the best of both worlds (navigates well the search space for for ill-posed problems and converges quickly). But there's lots of wiggle room in terms of the implementation. For example, if the square matrix J^T J (where J is the Jacobian matrix containing all derivatives for all equations) is sparse you could use the iterative CG algorithm to solve the equation systems quickly instead of a direct method like a Cholesky factorization of J^T J or a QR decomposition of J.
But don't just assume that some part is slow and needs to be written in assembler. Assembler is the last thing to consider. Before you go that route you should always use a profiler to check where the bottlenecks are.
Are you talking about a number of single parameter functions to solve one at a time or a system of multi-parameter equations to solve together?
If the former, then I've often found that a finding a better initial approximation (from where the Newton-Raphson loop starts) can save more execution time than polishing the loop itself, because convergence in the loop can be slow initially but is fast later. If you know nothing about the functions then finding a decent initial approximation is hard, but it might be worth trying a few secant iterations first. You might also want to look at Brent's method
Consider using Rational Root Test in parallel. If impossible to use values of absolute precision then use closest to zero results as the best fit to continue by Newton method.
Once single root found, you may decrease the equation grade by dividing it with monom (x-root).
Dividing and rational root test are implemented here https://github.com/ohhmm/openmind/blob/sh/omnn/math/test/Sum_test.cpp#L260

Large matrix inversion methods

Hi I've been doing some research about matrix inversion (linear algebra) and I wanted to use C++ template programming for the algorithm , what i found out is that there are number of methods like: Gauss-Jordan Elimination or LU Decomposition and I found the function LU_factorize (c++ boost library)
I want to know if there are other methods , which one is better (advantages/disadvantages) , from a perspective of programmers or mathematicians ?
If there are no other faster methods is there already a (matrix) inversion function in the boost library ? , because i've searched alot and didn't find any.
As you mention, the standard approach is to perform a LU factorization and then solve for the identity. This can be implemented using the LAPACK library, for example, with dgetrf (factor) and dgetri (compute inverse). Most other linear algebra libraries have roughly equivalent functions.
There are some slower methods that degrade more gracefully when the matrix is singular or nearly singular, and are used for that reason. For example, the Moore-Penrose pseudoinverse is equal to the inverse if the matrix is invertible, and often useful even if the matrix is not invertible; it can be calculated using a Singular Value Decomposition.
I'd suggest you to take a look at Eigen source code.
Please Google or Wikipedia for the buzzwords below.
First, make sure you really want the inverse. Solving a system does not require inverting a matrix. Matrix inversion can be performed by solving n systems, with unit basis vectors as right hand sides. So I'll focus on solving systems, because it is usually what you want.
It depends on what "large" means. Methods based on decomposition must generally store the entire matrix. Once you have decomposed the matrix, you can solve for multiple right hand sides at once (and thus invert the matrix easily). I won't discuss here factorization methods, as you're likely to know them already.
Please note that when a matrix is large, its condition number is very likely to be close to zero, which means that the matrix is "numerically non-invertible". Remedy: Preconditionning. Check wikipedia for this. The article is well written.
If the matrix is large, you don't want to store it. If it has a lot of zeros, it is a sparse matrix. Either it has structure (eg. band diagonal, block matrix, ...), and you have specialized methods for solving systems involving such matrices, or it has not.
When you're faced with a sparse matrix with no obvious structure, or with a matrix you don't want to store, you must use iterative methods. They only involve matrix-vector multiplications, which don't require a particular form of storage: you can compute the coefficients when you need them, or store non-zero coefficients the way you want, etc.
The methods are:
For symmetric definite positive matrices: conjugate gradient method. In short, solving Ax = b amounts to minimize 1/2 x^T A x - x^T b.
Biconjugate gradient method for general matrices. Unstable though.
Minimum residual methods, or best, GMRES. Please check the wikipedia articles for details. You may want to experiment with the number of iterations before restarting the algorithm.
And finally, you can perform some sort of factorization with sparse matrices, with specially designed algorithms to minimize the number of non-zero elements to store.
depending on the how large the matrix actually is, you probably need to keep only a small subset of the columns in memory at any given time. This might require overriding the low-level write and read operations to the matrix elements, which i'm not sure if Eigen, an otherwise pretty decent library, will allow you to.
For These very narrow cases where the matrix is really big, There is StlXXL library designed for memory access to arrays that are mostly stored in disk
EDIT To be more precise, if you have a matrix that does not fix in the available RAM, the preferred approach is to do blockwise inversion. The matrix is split recursively until each matrix does fit in RAM (this is a tuning parameter of the algorithm of course). The tricky part here is to avoid starving the CPU of matrices to invert while they are pulled in and out of disk. This might require to investigate in appropiate parallel filesystems, since even with StlXXL, this is likely to be the main bottleneck. Although, let me repeat the mantra; Premature optimization is the root of all programming evil. This evil can only be banished with the cleansing ritual of Coding, Execute and Profile
You might want to use a C++ wrapper around LAPACK. The LAPACK is very mature code: well-tested, optimized, etc.
One such wrapper is the Intel Math Kernel Library.