I have a set of points that I'm trying to sort in ccw order or cw order from their angle. I want the points to be sorted in a way that they could form a polygon with no splits in its region or intersections. This is difficult because in most cases, it would be a concave polygon.
point centroid;
int main( int argc, char** argv )
{
// I read a set of points into a struct point array: points[n]
// Find centroid
double sx = 0; double sy = 0;
for (int i = 0; i < n; i++)
{
sx += points[i].x;
sy += points[i].y;
}
centroid.x = sx/n;
centroid.y = sy/n;
// sort points using in polar order using centroid as reference
std::qsort(&points, n, sizeof(point), polarOrder);
}
// -1 ccw, 1 cw, 0 collinear
int orientation(point a, point b, point c)
{
double area2 = (b.x-a.x)*(c.y-a.y) - (b.y-a.y)*(c.x-a.x);
if (area2 < 0) return -1;
else if (area2 > 0) return +1;
else return 0;
}
// compare other points relative to polar angle they make with this point
// (where the polar angle is between 0 and 2pi)
int polarOrder(const void *vp1, const void *vp2)
{
point *p1 = (point *)vp1;
point *p2 = (point *)vp2;
// translation
double dx1 = p1->x - centroid.x;
double dy1 = p1->y - centroid.y;
double dx2 = p2->x - centroid.x;
double dy2 = p2->y - centroid.y;
if (dy1 >= 0 && dy2 < 0) { return -1; } // p1 above and p2 below
else if (dy2 >= 0 && dy1 < 0) { return 1; } // p1 below and p2 above
else if (dy1 == 0 && dy2 ==0) { // 3-collinear and horizontal
if (dx1 >= 0 && dx2 < 0) { return -1; }
else if (dx2 >= 0 && dx1 < 0) { return 1; }
else { return 0; }
}
else return -orientation(centroid,*p1,*p2); // both above or below
}
It looks like the points are sorted accurately(pink) until they "cave" in, in which case the algorithm skips over these points then continues.. Can anyone point me into the right direction to sort the points so that they form the polygon I'm looking for?
Raw Point Plot - Blue, Pink Points - Sorted
Point List: http://pastebin.com/N0Wdn2sm (You can ignore the 3rd component, since all these points lie on the same plane.)
The code below (sorry it's C rather than C++) sorts correctly as you wish with atan2.
The problem with your code may be that it attempts to use the included angle between the two vectors being compared. This is doomed to fail. The array is not circular. It has a first and a final element. With respect to the centroid, sorting an array requires a total polar order: a range of angles such that each point corresponds to a unique angle regardless of the other point. The angles are the total polar order, and comparing them as scalars provides the sort comparison function.
In this manner, the algorithm you proposed is guaranteed to produce a star-shaped polyline. It may oscillate wildly between different radii (...which your data do! Is this what you meant by "caved in"? If so, it's a feature of your algorithm and data, not an implementation error), and points corresponding to exactly the same angle might produce edges that coincide (lie directly on top of each other), but the edges won't cross.
I believe that your choice of centroid as the polar origin is sufficient to guarantee that connecting the ends of the polyline generated as above will produce a full star-shaped polygon, however, I don't have a proof.
Result plotted with Excel
Note you can guess from the nearly radial edges where the centroid is! This is the "star shape" I referred to above.
To illustrate this is really a star-shaped polygon, here is a zoom in to the confusing lower left corner:
If you want a polygon that is "nicer" in some sense, you will need a fancier (probably much fancier) algorithm, e.g. the Delaunay triangulation-based ones others have referred to.
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
struct point {
double x, y;
};
void print(FILE *f, struct point *p) {
fprintf(f, "%f,%f\n", p->x, p->y);
}
// Return polar angle of p with respect to origin o
double to_angle(const struct point *p, const struct point *o) {
return atan2(p->y - o->y, p->x - o->x);
}
void find_centroid(struct point *c, struct point *pts, int n_pts) {
double x = 0, y = 0;
for (int i = 0; i < n_pts; i++) {
x += pts[i].x;
y += pts[i].y;
}
c->x = x / n_pts;
c->y = y / n_pts;
}
static struct point centroid[1];
int by_polar_angle(const void *va, const void *vb) {
double theta_a = to_angle(va, centroid);
double theta_b = to_angle(vb, centroid);
return theta_a < theta_b ? -1 : theta_a > theta_b ? 1 : 0;
}
void sort_by_polar_angle(struct point *pts, int n_pts) {
find_centroid(centroid, pts, n_pts);
qsort(pts, n_pts, sizeof pts[0], by_polar_angle);
}
int main(void) {
FILE *f = fopen("data.txt", "r");
if (!f) return 1;
struct point pts[10000];
int n_pts, n_read;
for (n_pts = 0;
(n_read = fscanf(f, "%lf%lf%*f", &pts[n_pts].x, &pts[n_pts].y)) != EOF;
++n_pts)
if (n_read != 2) return 2;
fclose(f);
sort_by_polar_angle(pts, n_pts);
for (int i = 0; i < n_pts; i++)
print(stdout, pts + i);
return 0;
}
Well, first and foremost, I see centroid declared as a local variable in main. Yet inside polarOrder you are also accessing some centroid variable.
Judging by the code you posted, that second centroid is a file-scope variable that you never initialized to any specific value. Hence the meaningless results from your comparison function.
The second strange detail in your code is that you do return -orientation(centroid,*p1,*p2) if both points are above or below. Since orientation returns -1 for CCW and +1 for CW, it should be just return orientation(centroid,*p1,*p2). Why did you feel the need to negate the result of orientation?
Your original points don't appear form a convex polygon, so simply ordering them by angle around a fixed centroid will not necessarily result in a clean polygon. This is a non-trivial problem, you may want to research Delaunay triangulation and/or gift wrapping algorithms, although both would have to be modified because your polygon is concave. The answer here is an interesting example of a modified gift wrapping algorithm for concave polygons. There is also a C++ library called PCL that may do what you need.
But...if you really do want to do a polar sort, your sorting functions seem more complex than necessary. I would sort using atan2 first, then optimize it later once you get the result you want if necessary. Here is an example using lambda functions:
#include <algorithm>
#include <math.h>
#include <vector>
int main()
{
struct point
{
double x;
double y;
};
std::vector< point > points;
point centroid;
// fill in your data...
auto sort_predicate = [¢roid] (const point& a, const point& b) -> bool {
return atan2 (a.x - centroid.x, a.y - centroid.y) <
atan2 (b.x - centroid.x, b.y - centroid.y);
};
std::sort (points.begin(), points.end(), sort_predicate);
}
Related
Problem
I am writing a ray tracer as a use case for a specific machine learning approach in Computer Graphics.
My problem is that, when I try to find the intersection between a ray and a surface, the result is not exact.
Basically, if I am scattering a ray from point O towards a surface located at (x,y,z), where z = 81, I would expect the solution to be something like S = (x,y,81). The problem is: I get a solution like (x,y,81.000000005).
This is of course a problem, because following operations depend on that solution, and it needs to be the exact one.
Question
My question is: how do people in Computer Graphics deal with this problem? I tried to change my variables from float to double and it does not solve the problem.
Alternative solutions
I tried to use the function std::round(). This can only help in specific situations, but not when the exact solution contains one or more significant digits.
Same for std::ceil() and std::floor().
EDIT
This is how I calculate the intersection with a surface (rectangle) parallel to the xz axes.
First of all, I calculate the distance t between the origin of my Ray and the surface. In case my Ray, in that specific direction, does not hit the surface, t is returned as 0.
class Rectangle_xy: public Hitable {
public:
float x1, x2, y1, y2, z;
...
float intersect(const Ray &r) const { // returns distance, 0 if no hit
float t = (y - r.o.y) / r.d.y; // ray.y = t* dir.y
const float& x = r.o.x + r.d.x * t;
const float& z = r.o.z + r.d.z * t;
if (x < x1 || x > x2 || z < z1 || z > z2 || t < 0) {
t = 0;
return 0;
} else {
return t;
}
....
}
Specifically, given a Ray and the id of an object in the list (that I want to hit):
inline Vec hittingPoint(const Ray &r, int &id) {
float t; // distance to intersection
if (!intersect(r, t, id))
return Vec();
const Vec& x = r.o + r.d * t;// ray intersection point (t calculated in intersect())
return x ;
}
The function intersect() in the previous snippet of code checks for every Rectangle in the List rect if I intersect some object:
inline bool intersect(const Ray &r, float &t, int &id) {
const float& n = NUMBER_OBJ; //Divide allocation of byte of the whole scene, by allocation in byte of one single element
float d;
float inf = t = 1e20;
for (int i = 0; i < n; i++) {
if ((d = rect[i]->intersect(r)) && d < t) { // Distance of hit point
t = d;
id = i;
}
}
// Return the closest intersection, as a bool
return t < inf;
}
The coordinate is then obtained using the geometric interpolation between a line and a surface in the 3D space:
Vec& x = r.o + r.d * t;
where:
r.o: it represents the ray origin. It's defined as a r.o : Vec(float a, float b, float c)
r.d : this is the direction of the ray. As before: r.d: Vec(float d, float e, float f).
t: float representing the distance between the object and the origin.
You could look into using std::numeric_limits<T>::epsilon for your float/double comparison. And see if your result is in the region +-epsilon.
An alternative would be to not ray trace towards a point. Maybe just place relatively small box or sphere there.
I need to generate a sdf on a grid from a 2D mesh to represent the mesh as a closed body in cinder.
My first approach was to use a distance function (euclidean) to check if a gridpoint is close to a meshpoint and then set the value to - or +, but this resulted in bad resolution. Next I tried to add up distances to get a continuous distance field. which resulted in a blown up object.
I am not sure how to represent the the distance to a closed object described by a mesh (concav or convex). My current approach is described in the code below.
#include <iostream>
#include <fstream>
#include <string>
#include <Eigen/Dense>
#include <vector>
#include <algorithm>
#include <random>
using namespace std;
using namespace Eigen;
typedef Eigen::Matrix<double, 2, 1> Vector2;
typedef Eigen::Matrix<double, 3, 2> Vector32;
typedef std::vector<Vector2, Eigen::aligned_allocator<Vector2> > Vector2List;
typedef std::vector<Eigen::Vector3i, Eigen::aligned_allocator<Eigen::Vector3i> > Vector3iList;
typedef std::vector<Vector32> Vector32List;
typedef Eigen::Array<double, Eigen::Dynamic, Eigen::Dynamic> grid_t;
void f( Vector2List vertices, Vector3iList triangles)
{ // each entry of triangles describe which vertice point belongs
// to a triangle of the mesh
grid_t sdf = grid_t::Zero(resolution, resolution);
for (int x = 0; x < resolution; ++x) {
for (int y = 0; y < resolution; ++y) {
Vector2d pos((x + 0.5) / resolution, (y + 0.5) / resolution);
double dist = 1 / double(resolution*resolution);
double check = 100;
double val = 0;
for (std::vector<Vector2>::iterator mean = vertices.begin(); mean != vertices.end(); ++mean) {
//try sdf with euclidian distance function
check = (pos - *mean).squaredNorm();
if (check < dist) {
val = -1; break;
}
else {
val = 20;
}
}
val *= resolution;
static const double epsilon = 0.01;
if (abs(val) < epsilon) {
val = 0;
numberOfClamped++;
}
sdf(x, y) = val; //
}
}
}
It seems as if you have a slight misunderstanding of what the SDF actually is. So let me start with this.
The Signed Distance Function is a function over 2D space that gives you the distance of the respective point to the closest point on the mesh. The distance is positive for points outside of the mesh and negative for points inside (or the other way around). Naturally, points directly on the mesh will have zero distance. We can represent this function formally as:
sdf(x, y) = distance
This is a continuous function and we need a discrete representation that we can work with. A common choice is to use a uniform grid like the one that you want to use. We then sample the SDF at the grid points. Once we have distance values for all our grid points, we can interpolate the SDF between them to get the SDF everywhere. Note that each sample corresponds to a single point and not an area (e.g., a cell).
With this in mind, let us take a look at your code:
Vector2d pos((x + 0.5) / resolution, (y + 0.5) / resolution);
This depends on how the grid point indices map to global coordinates. It might be correct. However, it looks as if it assumes that sample positions are located in the middle of the respective cells. Again, this might be correct, but I assume the + 0.5 should be left away.
for (std::vector<Vector2>::iterator mean = vertices.begin(); mean != vertices.end(); ++mean)
This is an approximation of the SDF. It calculates the closest vertex of the mesh and not the closest point (which may lie on an edge). For dense meshes, this should be fine. If you have coarse meshes, you should iterate the edges and calculate the closest points on these.
if (check < dist) {
val = -1; break;
} else {
val = 20;
}
I don't really know what this is. As explained above, the value of the SDF is the signed distance. Not some arbitrary value. Also the sign should not correspond to whether the mesh is close to the grid position. So, what you should have done instead is:
if(check < val * val) {
//this point is closer than the current closest point
val = std::sqrt(check); //set to absolute distance
if(*mean is inside the mesh)
val *= -1; //invert the sign
}
And finally, this piece:
val *= resolution;
static const double epsilon = 0.01;
if (abs(val) < epsilon) {
val = 0;
numberOfClamped++;
}
Again, I don't know what this is supposed to do. Just leave it away.
everyone I want to do a function in a class Polygon who will be save the size of every sides of the polygon in a vector of double. My polygon is build thanks to the class Point. So I success to know how many point I have in my polygon and to print the drawing of the polygon to the screen. But the function to get the sides of every sides of the polygon thanks to the point, I still have not succeeded
This is my class Point :
Point::Point(double x, double y)
{
_x = x;
_y = y;
}
Point::Point(const Point& other)
{
_x = other._x;
_y = other._y;
}
double Point::getX() const
{
return _x;
}
double Point::getY() const
{
return _y;
}
double Point::distance(const Point& other)
{
return sqrt((getX() - other._x) * (getX() - other._x) + (getY() - other._y) *(getY() - other._y));
}
This is my header of class Polygon :
class Polygon
{
public:
Polygon();
~Polygon();
int numOfPoints() const;
vector<Point> getPoints() const;
vector<double> getSides() const;
protected:
std::vector<Point> _points;
};
and the cpp of Polygon :
Polygon::Polygon(){}
Polygon::~Polygon(){}
int Polygon::numOfPoints() const
{
return _points.size();
}
vector<Point> Polygon::getPoints() const
{
return _points;
}
vector<double> Polygon::getSides() const
{
vector<double> sides;
}
So I dont know how can I get the size of every sides thanks to class Point. I think it can be do thanks to the function distance of point, but I don't know how. If you can help me.
Thanks You !
First the small point: The following avoids double calculation of the differences (though compiler might optimise, it's better not to rely on it for doing so...).
double Point::distance(const Point& other)
{
double dx = _x - other._x;
double dy = _y - other._y;
return sqrt(dx * dx + dy * dy);
}
Then you have to iterate over all the points; you need at least two to have any distances at all, but two is the degenerate case (one distance only, all other numbers n result in n distances...):
vector<double> Polygon::getSides() const
{
vector<double> sides;
if(points.size() > 2)
{
sides.reserve(points.size());
std::vector<Point>::iterator end = points.end() - 1;
for(std::vector<Point>::iterator i = points.begin(); i != end; ++i)
sides.push_back(i->distance(*(i + 1)));
}
if(points.size() >= 2)
sides.push_back(points.front().distance(points.back()));
return sides;
}
Explanation:
if(points.size() > 2)
Only if we have more than two points, so triangle at least, we have true polyone. We now calculate the distances of this one, e. g. for a square ABCD the distances AB, BC, CD. Note that the distance DA is yet missing...
sides.reserve(points.size());
A polygon with n points has n sides. This prevents reallocation.
std::vector<Point>::iterator end = points.end() - 1;
end() points one past the end. Want to calculate distances i, i+1, so last element must be skipped.
for(std::vector<Point>::iterator i = points.begin(); i != end; ++i)
sides.push_back(i->distance(*(i + 1)));
Now calculating the distances...
if(points.size() >= 2)
sides.push_back(points.front().distance(points.back()));
This catches two cases: For true polygones this adds the last side closing it (in the example above: DA). Additionally, it handles the degenerate case of a single line (i = 2).
Actually, this could have been placed as well in front of the for loop. My variant calculates for points ABCD AB BC CD DA, the alternative DA, AB, BC, CD.
You might have noticed that we reserve only in the case of a true polygone. In the degenerate case, we are only inserting a single element, so it does not matter if we allocate the inner array before via reserve or at inserting the element...
Oh, and if you want to save a line of code:
for(std::vector<Point>::iterator i = points.begin() + 1; i != points.end(); ++i)
sides.push_back(i->distance(*(i - 1)));
Effectively the same, just reverted the points (calculating BA instead of AB).
You should iterate over the points in the polygon, calculating the distance to the previous point.
Something like the following should work (untested):
vector<double> Polygon::getSides() const {
vector<double> sides;
for(auto it = this->_points.begin(); it != this->_points.end(); it++) {
if(it == this->_points.begin())
sides.push_back(it->distance(*(this->_points.end() - 1)));
else
sides.push_back(it->distance(*(it - 1)));
}
return sides;
}
This starts at the first point and calculates the distance to the last point. For each point after that it calculates the distance to the previous point. Each time adding the distance to the output vector.
Note that I have assumed that the polygon is closed, i.e. the first point is connected to the last point. If the polygon contains no points, the return vector will be empty. If it contains only one point, it will contain a single element [0]. This results from calculating the distance from a point to the same point.
See this tutorial for more info on iterating over vectors: http://www.cprogramming.com/tutorial/stl/iterators.html
I'm attempting to determine if a specific point lies inside a polyhedron. In my current implementation, the method I'm working on take the point we're looking for an array of the faces of the polyhedron (triangles in this case, but it could be other polygons later). I've been trying to work from the info found here: http://softsurfer.com/Archive/algorithm_0111/algorithm_0111.htm
Below, you'll see my "inside" method. I know that the nrml/normal thing is kind of weird .. it's the result of old code. When I was running this it seemed to always return true no matter what input I give it. (This is solved, please see my answer below -- this code is working now).
bool Container::inside(Point* point, float* polyhedron[3], int faces) {
Vector* dS = Vector::fromPoints(point->X, point->Y, point->Z,
100, 100, 100);
int T_e = 0;
int T_l = 1;
for (int i = 0; i < faces; i++) {
float* polygon = polyhedron[i];
float* nrml = normal(&polygon[0], &polygon[1], &polygon[2]);
Vector* normal = new Vector(nrml[0], nrml[1], nrml[2]);
delete nrml;
float N = -((point->X-polygon[0][0])*normal->X +
(point->Y-polygon[0][1])*normal->Y +
(point->Z-polygon[0][2])*normal->Z);
float D = dS->dot(*normal);
if (D == 0) {
if (N < 0) {
return false;
}
continue;
}
float t = N/D;
if (D < 0) {
T_e = (t > T_e) ? t : T_e;
if (T_e > T_l) {
return false;
}
} else {
T_l = (t < T_l) ? t : T_l;
if (T_l < T_e) {
return false;
}
}
}
return true;
}
This is in C++ but as mentioned in the comments, it's really very language agnostic.
The link in your question has expired and I could not understand the algorithm from your code. Assuming you have a convex polyhedron with counterclockwise oriented faces (seen from outside), it should be sufficient to check that your point is behind all faces. To do that, you can take the vector from the point to each face and check the sign of the scalar product with the face's normal. If it is positive, the point is behind the face; if it is zero, the point is on the face; if it is negative, the point is in front of the face.
Here is some complete C++11 code, that works with 3-point faces or plain more-point faces (only the first 3 points are considered). You can easily change bound to exclude the boundaries.
#include <vector>
#include <cassert>
#include <iostream>
#include <cmath>
struct Vector {
double x, y, z;
Vector operator-(Vector p) const {
return Vector{x - p.x, y - p.y, z - p.z};
}
Vector cross(Vector p) const {
return Vector{
y * p.z - p.y * z,
z * p.x - p.z * x,
x * p.y - p.x * y
};
}
double dot(Vector p) const {
return x * p.x + y * p.y + z * p.z;
}
double norm() const {
return std::sqrt(x*x + y*y + z*z);
}
};
using Point = Vector;
struct Face {
std::vector<Point> v;
Vector normal() const {
assert(v.size() > 2);
Vector dir1 = v[1] - v[0];
Vector dir2 = v[2] - v[0];
Vector n = dir1.cross(dir2);
double d = n.norm();
return Vector{n.x / d, n.y / d, n.z / d};
}
};
bool isInConvexPoly(Point const& p, std::vector<Face> const& fs) {
for (Face const& f : fs) {
Vector p2f = f.v[0] - p; // f.v[0] is an arbitrary point on f
double d = p2f.dot(f.normal());
d /= p2f.norm(); // for numeric stability
constexpr double bound = -1e-15; // use 1e15 to exclude boundaries
if (d < bound)
return false;
}
return true;
}
int main(int argc, char* argv[]) {
assert(argc == 3+1);
char* end;
Point p;
p.x = std::strtod(argv[1], &end);
p.y = std::strtod(argv[2], &end);
p.z = std::strtod(argv[3], &end);
std::vector<Face> cube{ // faces with 4 points, last point is ignored
Face{{Point{0,0,0}, Point{1,0,0}, Point{1,0,1}, Point{0,0,1}}}, // front
Face{{Point{0,1,0}, Point{0,1,1}, Point{1,1,1}, Point{1,1,0}}}, // back
Face{{Point{0,0,0}, Point{0,0,1}, Point{0,1,1}, Point{0,1,0}}}, // left
Face{{Point{1,0,0}, Point{1,1,0}, Point{1,1,1}, Point{1,0,1}}}, // right
Face{{Point{0,0,1}, Point{1,0,1}, Point{1,1,1}, Point{0,1,1}}}, // top
Face{{Point{0,0,0}, Point{0,1,0}, Point{1,1,0}, Point{1,0,0}}}, // bottom
};
std::cout << (isInConvexPoly(p, cube) ? "inside" : "outside") << std::endl;
return 0;
}
Compile it with your favorite compiler
clang++ -Wall -std=c++11 code.cpp -o inpoly
and test it like
$ ./inpoly 0.5 0.5 0.5
inside
$ ./inpoly 1 1 1
inside
$ ./inpoly 2 2 2
outside
If your mesh is concave, and not necessarily watertight, that’s rather hard to accomplish.
As a first step, find the point on the surface of the mesh closest to the point. You need to keep track the location, and specific feature: whether the closest point is in the middle of face, on the edge of the mesh, or one of the vertices of the mesh.
If the feature is face, you’re lucky, can use windings to find whether it’s inside or outside. Compute normal to face (don't even need to normalize it, non-unit-length will do), then compute dot( normal, pt - tri[0] ) where pt is your point, tri[0] is any vertex of the face. If the faces have consistent winding, the sign of that dot product will tell you if it’s inside or outside.
If the feature is edge, compute normals to both faces (by normalizing a cross-product), add them together, use that as a normal to the mesh, and compute the same dot product.
The hardest case is when a vertex is the closest feature. To compute mesh normal at that vertex, you need to compute sum of the normals of the faces sharing that vertex, weighted by 2D angles of that face at that vertex. For example, for vertex of cube with 3 neighbor triangles, the weights will be Pi/2. For vertex of a cube with 6 neighbor triangles the weights will be Pi/4. And for real-life meshes the weights will be different for each face, in the range [ 0 .. +Pi ]. This means you gonna need some inverse trigonometry code for this case to compute the angle, probably acos().
If you want to know why that works, see e.g. “Generating Signed Distance Fields From Triangle Meshes” by J. Andreas Bærentzen and Henrik Aanæs.
I have already answered this question couple years ago. But since that time I’ve discovered much better algorithm. It was invented in 2018, here’s the link.
The idea is rather simple. Given that specific point, compute a sum of signed solid angles of all faces of the polyhedron as viewed from that point. If the point is outside, that sum gotta be zero. If the point is inside, that sum gotta be ±4·π steradians, + or - depends on the winding order of the faces of the polyhedron.
That particular algorithm is packing the polyhedron into a tree, which dramatically improves performance when you need multiple inside/outside queries for the same polyhedron. The algorithm only computes solid angles for individual faces when the face is very close to the query point. For large sets of faces far away from the query point, the algorithm is instead using an approximation of these sets, using some numbers they keep in the nodes of that BVH tree they build from the source mesh.
With limited precision of FP math, and if using that approximated BVH tree losses from the approximation, that angle will never be exactly 0 nor ±4·π. But still, the 2·π threshold works rather well in practice, at least in my experience. If the absolute value of that sum of solid angles is less than 2·π, consider the point to be outside.
It turns out that the problem was my reading of the algorithm referenced in the link above. I was reading:
N = - dot product of (P0-Vi) and ni;
as
N = - dot product of S and ni;
Having changed this, the code above now seems to work correctly. (I'm also updating the code in the question to reflect the correct solution).
How can I sort an array of points/vectors by counter-clockwise increasing angle from a given axis vector?
For example:
If 0 is the axis vector I would expect the sorted array to be in the order 2, 3, 1.
I'm reasonably sure it's possible to do this with cross products, a custom comparator, and std::sort().
Yes, you can do it with a custom comparator based on the cross-product. The only problem is that a naive comparator won't have the transitivity property. So an extra step is needed, to prevent angles either side of the reference from being considered close.
This will be MUCH faster than anything involving trig. There's not even any need to normalize first.
Here's the comparator:
class angle_sort
{
point m_origin;
point m_dreference;
// z-coordinate of cross-product, aka determinant
static double xp(point a, point b) { return a.x * b.y - a.y * b.x; }
public:
angle_sort(const point origin, const point reference) : m_origin(origin), m_dreference(reference - origin) {}
bool operator()(const point a, const point b) const
{
const point da = a - m_origin, db = b - m_origin;
const double detb = xp(m_dreference, db);
// nothing is less than zero degrees
if (detb == 0 && db.x * m_dreference.x + db.y * m_dreference.y >= 0) return false;
const double deta = xp(m_dreference, da);
// zero degrees is less than anything else
if (deta == 0 && da.x * m_dreference.x + da.y * m_dreference.y >= 0) return true;
if (deta * detb >= 0) {
// both on same side of reference, compare to each other
return xp(da, db) > 0;
}
// vectors "less than" zero degrees are actually large, near 2 pi
return deta > 0;
}
};
Demo: http://ideone.com/YjmaN
Most straightforward, but possibly not the optimal way is to shift the cartesian coordinates to be relative to center point and then convert them to polar coordinates. Then just subtract the angle of the "starting vector" modulo 360, and finally sort by angle.
Or, you could make a custom comparator for just handling all the possible slopes and configurations, but I think the polar coordinates are little more transparent.
#include <iostream>
#include <cmath>
#include <algorithm>
using namespace std;
struct Point {
static double base_angle;
static void set_base_angle(double angle){
base_angle = angle;
}
double x;
double y;
Point(double x, double y):x(x),y(y){}
double Angle(Point o = Point(0.0, 0.0)){
double dx = x - o.x;
double dy = y - o.y;
double r = sqrt(dx * dx + dy * dy);
double angle = atan2(dy , dx);
angle -= base_angle;
if(angle < 0) angle += M_PI * 2;
return angle;
}
};
double Point::base_angle = 0;
ostream& operator<<(ostream& os, Point& p){
return os << "Point(" << p.x << "," << p.y << ")";
}
bool comp(Point a, Point b){
return a.Angle() < b.Angle();
}
int main(){
Point p[] = { Point(-4., -4.), Point(-6., 3.), Point(2., -4.), Point(1., 5.) };
Point::set_base_angle(p[0].Angle());
sort(p, p + 4, comp);
Point::set_base_angle(0.0);
for(int i = 0;i< 4;++i){
cout << p[i] << " angle:" << p[i].Angle() << endl;
}
}
DEMO
Point(-4,-4) angle:3.92699
Point(2,-4) angle:5.17604
Point(1,5) angle:1.3734
Point(-6,3) angle:2.67795
Assuming they are all the same length and have the same origin, you can sort on
struct sorter {
operator()(point a, point b) const {
if (a.y > 0) { //a between 0 and 180
if (b.y < 0) //b between 180 and 360
return false;
return a.x < b.x;
} else { // a between 180 and 360
if (b.y > 0) //b between 0 and 180
return true;
return a.x > b.x;
}
}
//for comparison you don't need exact angles, simply relative.
}
This will quickly sort them from 0->360 degress. Then you find your vector 0 (at position N), and std::rotate the results left N elements. (Thanks TomSirgedas!)
This is an example of how I went about solving this. It converts to polar to get the angle and then is used to compare them. You should be able to use this in a sort function like so:
std::sort(vectors.begin(), vectors.end(), VectorComp(centerPoint));
Below is the code for comparing
struct VectorComp : std::binary_function<sf::Vector2f, sf::Vector2f, bool>
{
sf::Vector2f M;
IntersectComp(sf::Vector2f v) : M(v) {}
bool operator() ( sf::Vector2f o1, sf::Vector2f o2)
{
float ang1 = atan( ((o1.y - M.y)/(o1.x - M.x) ) * M_PI / 180);
float ang2 = atan( (o2.y - M.y)/(o2.x - M.x) * M_PI / 180);
if(ang1 < ang2) return true;
else if (ang1 > ang2) return false;
return true;
}
};
It uses sfml library but you can switch any vector/point class instead of sf::Vector2f. M would be the center point. It works great if your looking to draw a triangle fan of some sort.
You should first normalize each vector, so each point is in (cos(t_n), sin(t_n)) format.
Then calculating the cos and sin of the angles between each points and you reference point. Of course:
cos(t_n-t_0)=cos(t_n)cos(t_0)+sin(t_n)sin(t_0) (this is equivalent to dot product)
sin(t_n-t_0)=sin(t_n)cos(t_0)-cos(t_n)sin(t_0)
Only based on both values, you can determine the exact angles (-pi to pi) between points and reference point. If just using dot product, clockwise and counter-clockwise of same angle have same values. One you determine the angle, sort them.
I know this question is quite old, and the accepted answer helped me get to this, still I think I have a more elegant solution which also covers equality (so returns -1 for lowerThan, 0 for equals, and 1 for greaterThan).
It is based on the division of the plane to 2 halves, one from the positive ref axis (inclusive) to the negative ref axis (exclusive), and the other is its complement.
Inside each half, comparison can be done by right hand rule (cross product sign), or in other words - sign of sine of angle between the 2 vectors.
If the 2 points come from different halves, then the comparison is trivial and is done between the halves themselves.
For an adequately uniform distribution, this test should perform on average 4 comparisons, 1 subtraction, and 1 multiplication, besides the 4 subtractions done with ref, that in my opinion should be precalculated.
int compareAngles(Point const & A, Point const & B, Point const & ref = Point(0,0)) {
typedef decltype(Point::x) T; // for generality. this would not appear in real code.
const T sinA = A.y - ref.y; // |A-ref|.sin(angle between A and positive ref-axis)
const T sinB = B.y - ref.y; // |B-ref|.sin(angle between B and positive ref-axis)
const T cosA = A.x - ref.x; // |A-ref|.cos(angle between A and positive ref-axis)
const T cosB = B.x - ref.x; // |B-ref|.cos(angle between B and positive ref-axis)
bool hA = ( (sinA < 0) || ((sinA == 0) && (cosA < 0)) ); // 0 for [0,180). 1 for [180,360).
bool hB = ( (sinB < 0) || ((sinB == 0) && (cosB < 0)) ); // 0 for [0,180). 1 for [180,360).
if (hA == hB) {
// |A-ref|.|B-ref|.sin(angle going from (B-ref) to (A-ref))
T sinBA = sinA * cosB - sinB * cosA;
// if T is int, or return value is changed to T, it can be just "return sinBA;"
return ((sinBA > 0) ? 1 : ((sinBA < 0) ? (-1) : 0));
}
return (hA - hB);
}
If S is an array of PointF, and mid is the PointF in the centre:
S = S.OrderBy(s => -Math.Atan2((s.Y - mid.Y), (s.X - mid.X))).ToArray();
will sort the list in order of rotation around mid, starting at the point closest to (-inf,0) and go ccw (clockwise if you leave out the negative sign before Math).