I'm trying to solve the following problem:
A rectangular paper sheet of M*N is to be cut down into squares such that:
The paper is cut along a line that is parallel to one of the sides of the paper.
The paper is cut such that the resultant dimensions are always integers.
The process stops when the paper can't be cut any further.
What is the minimum number of paper pieces cut such that all are squares?
Limits: 1 <= N <= 100 and 1 <= M <= 100.
Example: Let N=1 and M=2, then answer is 2 as the minimum number of squares that can be cut is 2 (the paper is cut horizontally along the smaller side in the middle).
My code:
cin >> n >> m;
int N = min(n,m);
int M = max(n,m);
int ans = 0;
while (N != M) {
ans++;
int x = M - N;
int y = N;
M = max(x, y);
N = min(x, y);
}
if (N == M && M != 0)
ans++;
But I am not getting what's wrong with this approach as it's giving me a wrong answer.
I think both the DP and greedy solutions are not optimal. Here is the counterexample for the DP solution:
Consider the rectangle of size 13 X 11. DP solution gives 8 as the answer. But the optimal solution has only 6 squares.
This thread has many counter examples: https://mathoverflow.net/questions/116382/tiling-a-rectangle-with-the-smallest-number-of-squares
Also, have a look at this for correct solution: http://int-e.eu/~bf3/squares/
I'd write this as a dynamic (recursive) program.
Write a function which tries to split the rectangle at some position. Call the function recursively for both parts. Try all possible splits and take the one with the minimum result.
The base case would be when both sides are equal, i.e. the input is already a square, in which case the result is 1.
function min_squares(m, n):
// base case:
if m == n: return 1
// minimum number of squares if you split vertically:
min_ver := min { min_squares(m, i) + min_squares(m, n-i) | i ∈ [1, n/2] }
// minimum number of squares if you split horizontally:
min_hor := min { min_squares(i, n) + min_squares(m-i, n) | i ∈ [1, m/2] }
return min { min_hor, min_ver }
To improve performance, you can cache the recursive results:
function min_squares(m, n):
// base case:
if m == n: return 1
// check if we already cached this
if cache contains (m, n):
return cache(m, n)
// minimum number of squares if you split vertically:
min_ver := min { min_squares(m, i) + min_squares(m, n-i) | i ∈ [1, n/2] }
// minimum number of squares if you split horizontally:
min_hor := min { min_squares(i, n) + min_squares(m-i, n) | i ∈ [1, m/2] }
// put in cache and return
result := min { min_hor, min_ver }
cache(m, n) := result
return result
In a concrete C++ implementation, you could use int cache[100][100] for the cache data structure since your input size is limited. Put it as a static local variable, so it will automatically be initialized with zeroes. Then interpret 0 as "not cached" (as it can't be the result of any inputs).
Possible C++ implementation: http://ideone.com/HbiFOH
The greedy algorithm is not optimal. On a 6x5 rectangle, it uses a 5x5 square and 5 1x1 squares. The optimal solution uses 2 3x3 squares and 3 2x2 squares.
To get an optimal solution, use dynamic programming. The brute-force recursive solution tries all possible horizontal and vertical first cuts, recursively cutting the two pieces optimally. By caching (memoizing) the value of the function for each input, we get a polynomial-time dynamic program (O(m n max(m, n))).
This problem can be solved using dynamic programming.
Assuming we have a rectangle with width is N and height is M.
if (N == M), so it is a square and nothing need to be done.
Otherwise, we can divide the rectangle into two other smaller one (N - x, M) and (x,M), so it can be solved recursively.
Similarly, we can also divide it into (N , M - x) and (N, x)
Pseudo code:
int[][]dp;
boolean[][]check;
int cutNeeded(int n, int m)
if(n == m)
return 1;
if(check[n][m])
return dp[n][m];
check[n][m] = true;
int result = n*m;
for(int i = 1; i <= n/2; i++)
int tmp = cutNeeded(n - i, m) + cutNeeded(i,m);
result = min(tmp, result);
for(int i = 1; i <= m/2; i++)
int tmp = cutNeeded(n , m - i) + cutNeeded(n,i);
result = min(tmp, result);
return dp[n][m] = result;
Here is a greedy impl. As #David mentioned it is not optimal and is completely wrong some cases so dynamic approach is the best (with caching).
def greedy(m, n):
if m == n:
return 1
if m < n:
m, n = n, m
cuts = 0
while n:
cuts += m/n
m, n = n, m % n
return cuts
print greedy(2, 7)
Here is DP attempt in python
import sys
def cache(f):
db = {}
def wrap(*args):
key = str(args)
if key not in db:
db[key] = f(*args)
return db[key]
return wrap
#cache
def squares(m, n):
if m == n:
return 1
xcuts = sys.maxint
ycuts = sys.maxint
x, y = 1, 1
while x * 2 <= n:
xcuts = min(xcuts, squares(m, x) + squares(m, n - x))
x += 1
while y * 2 <= m:
ycuts = min(ycuts, squares(y, n) + squares(m - y, n))
y += 1
return min(xcuts, ycuts)
This is essentially classic integer or 0-1 knapsack problem that can be solved using greedy or dynamic programming approach. You may refer to: Solving the Integer Knapsack
Related
I attempted this SPOJ problem.
Problem:
AMR10J - Mixing Chemicals
There are N bottles each having a different chemical. For each chemical i, you have determined C[i] which means that mixing chemicals i and C[i] causes an explosion. You have K distinct boxes. In how many ways can you divide the N chemicals into those boxes such that no two chemicals in the same box can cause an explosion together?
INPUT
The first line of input is the number of test cases T. T test cases follow each containing 2 lines.
The first line of each test case contains 2 integers N and K.
The second line of each test case contains N integers, the ith integer denoting the value C[i]. The chemicals are numbered from 0 to N-1.
OUTPUT
For each testcase, output the number of ways modulo 1,000,000,007.
CONSTRAINTS
T <= 50
2 <= N <= 100
2 <= K <= 1000
0 <= C[i] < N
For all i, i != C[i]
SAMPLE INPUT
3
3 3
1 2 0
4 3
1 2 0 0
3 2
1 2 0
SAMPLE OUTPUT
6
12
0
EXPLANATION
In the first test case, we cannot mix any 2 chemicals. Hence, each of the 3 boxes must contain 1 chemical, which leads to 6 ways in total.
In the third test case, we cannot put the 3 chemicals in the 2 boxes satisfying all the 3 conditions.
The summary of the problem, given a set of chemicals and a set of boxes, count how many possible ways to place these chemicals in boxes such that no chemicals will explode.
At first I used brute force method to solve the problem, I recursively place chemicals in boxes and count valid configurations, I got TLE at my first attempt.
Later I learned that the problem can be solved with graph colouring.
I can represent chemicals as vertexes and there'a an edge between chemicals if they cannot be placed each other.
And the set of boxes can be used as vertex colours, all I need to do was to count how many different valid colourings of the graph.
I applyed this concept to solve the problem unfortunately I got TLE again. I don't know how to improve my code, I need help.
code:
#include <bits/stdc++.h>
#define MAXN 100
using namespace std;
const int mod = (int) 1e9 + 7;
int n;
int k;
int ways;
void greedy_coloring(vector<int> adj[], int color[])
{
int u = 0;
for (; u < n; ++u)
if (color[u] == -1)//found first uncolored vertex
break;
if (u == n)//no uncolored vertexex means all vertexes are colored
{
ways = (ways + 1) % mod;
return;
}
bool available[k];
memset(available, true, sizeof(available));
for (int v : adj[u])
if (color[v] != -1)//if the adjacent vertex colored, make its color unavailable
available[color[v]] = false;
for (int c = 0; c < k; ++c)
if (available[c])
{
color[u] = c;
greedy_coloring(adj, color);
color[u] = -1;//don't forgot to reset the color
}
}
int main()
{
ios_base::sync_with_stdio(false);
cin.tie(NULL);
int T;
cin >> T;
while (T--)
{
cin >> n >> k;
vector<int> adj[n];
int c[n];
for (int i = 0; i < n; ++i)
{
cin >> c[i];
adj[i].push_back(c[i]);
adj[c[i]].push_back(i);
}
ways = 0;
int color[n];
memset(color, -1, sizeof(color));
greedy_coloring(adj, color);
cout << ways << "\n";
}
return 0;
}
Counting the number of colorings in a general graph is #P-hard, but this graph has some special structure, which I'll exploit in a minute after I enumerate some basic properties of counting colorings. The first observation is that, if the graph has a node with no neighbors, if we delete that node, the number of colorings decreases by a factor of k. The second observation is that, if a node has exactly one neighbor and we delete it, the number of colorings decreases by a factor of k-1. The third is that the number of colorings is equal to the product of the number of colorings for each connected component. The fourth is that we can delete all but one parallel edge.
Using these properties, it suffices to determine a formula for each connected component of the 2-core of this graph, which is a simple cycle of some length. Let P(n) and C(n) be the number of ways to color a path or cycle respectively with n nodes. We use the basic properties above to find
P(n) = k (k-1)^(n-1).
Finding a formula for C(n) I think requires the deletion contraction formula, which leads to a recurrence
C(3) = k (k-1) (k-2), i.e., three nodes of different colors;
C(n) = P(n) - C(n-1) = k (k-1)^(n-1) - C(n-1).
Multiply the above recurrence by (-1)^n.
(-1)^3 C(3) = -k (k-1) (k-2)
(-1)^n C(n) = (-1)^n k (k-1)^(n-1) - (-1)^n C(n-1)
= (-1)^n k (k-1)^(n-1) + (-1)^(n-1) C(n-1)
(-1)^n C(n) - (-1)^(n-1) C(n-1) = (-1)^n k (k-1)^(n-1)
Let D(n) = (-1)^n C(n).
D(3) = -k (k-1) (k-2)
D(n) - D(n-1) = (-1)^n k (k-1)^(n-1)
Now we can write D(n) as a telescoping sum:
D(n) = [sum_{i=4}^n (D(n) - D(n-1))] + D(3)
D(n) = [sum_{i=4}^n (-1)^n k (k-1)^(n-1)] - k (k-1) (k-2).
Break it down as two geometric sums which then cancel nicely.
D(n) = [sum_{i=4}^n (-1)^n ((k-1) + 1) (k-1)^(n-1)] - k (k-1) (k-2)
= sum_{i=4}^n (1-k)^n - sum_{i=4}^n (1-k)^(n-1) - k (k-1) (k-2)
= (1-k)^n - (1-k)^3 - k (k-1) (k-2)
= (1-k)^n - (1 - 3k + 3k^2 - k^3) - (2k - 3k^2 + k^3)
= (1-k)^n - (1-k)
C(n) = (-1)^n (1-k)^n - (-1)^n (1-k)
= (k-1)^n + (-1)^n (k-1).
Note that after removing all parallel edges, we can have at most n edges. This means that in any one connected component we can only see one cycle (and simple at that), which makes the combinatorics rather straightforward. (Cycles are only dependent on how many edges each node can spawn, which is capped at 1.)
Second example:
k = 3
<< 0 <-- 3
/ ^
/ ^
1 --> 2
Since cycles are self contained, any connection to one removes the possibility of another. In the example above, we cannot make a second cycle involving node 3 by adding more nodes, and the same issue would extend to any subsequent connected nodes.
It should be enough, therefore, to perform a search, separating out connected components and marking their node count and whether they contain a cycle. Given a connected component, where c of the nodes are part of a cycle and m nodes are not, we have the following formula (David Eisenstat helped me correct my combinatoric for the count of colourings of a cycle):
if the component has a cycle:
[(k - 1)^c + (-1)^c * (k - 1)] *
(k - 1)^(m)
otherwise:
k * (k - 1)^(m - 1)
As David Eisenstat noted, multiply all these results for the final tally.
I want calculate
(a^n % k - b^m %k)%k
But a^n and b^m can be very large
Bigmod(bigmod(a^n)-bigmod(b^m)) ?
I have tried to calculate bigmod(a^n) - bigmod(b^m) and then used bigmod for the subtraction result then I realized it gave a wrong answer!
is there any to calculate this ?
#include<cstdio>
using namespace std;
template<class T>T big_mod(T n,T p,T m)
{
if(p==0)
return (T)1;
T x=big_mod(n,p/2,m);
x=(x*x)%m;
if(p&1)
x=(x*n)%m;
return x;
}
int main()
{
long long int a=37,b=26,m=10,n=20,mod=1000000008,x,y,z;
x=big_mod(a,m,mod);
y=big_mod(b,n,mod);
z=((x%mod-y%mod)%mod);
cout<<z;
}
How can i calculate bigmod(bigmod(a^n)-bigmod(b^m)) ?
Let your modulus be k. Your expression is equivalent to:
((a^n) % k - (b^m) % k + k) % k
You need to add k because the subtraction can lead to a negative result. This will make it positive, without affecting the result, since k % k == 0.
To compute (x^y) % k, use the exponentiation by squaring algorithm and make sure you take the modulo at each step:
x^y % k = ((x^(y / 2))^2) % k if y is even
(x*x^(y - 1)) % k else
For your code, assuming everything else works, you just need to change this line:
z=((x%mod-y%mod)%mod);
to this:
z=((x%mod-y%mod+mod)%mod);
How to find sum of evenly spaced Binomial coefficients modulo M?
ie. (nCa + nCa+r + nCa+2r + nCa+3r + ... + nCa+kr) % M = ?
given: 0 <= a < r, a + kr <= n < a + (k+1)r, n < 105, r < 100
My first attempt was:
int res = 0;
int mod=1000000009;
for (int k = 0; a + r*k <= n; k++) {
res = (res + mod_nCr(n, a+r*k, mod)) % mod;
}
but this is not efficient. So after reading here
and this paper I found out the above sum is equivalent to:
summation[ω-ja * (1 + ωj)n / r], for 0 <= j < r; and ω = ei2π/r is a primitive rth root of unity.
What can be the code to find this sum in Order(r)?
Edit:
n can go upto 105 and r can go upto 100.
Original problem source: https://www.codechef.com/APRIL14/problems/ANUCBC
Editorial for the problem from the contest: https://discuss.codechef.com/t/anucbc-editorial/5113
After revisiting this post 6 years later, I'm unable to recall how I transformed the original problem statement into mine version, nonetheless, I shared the link to the original solution incase anyone wants to have a look at the correct solution approach.
Binomial coefficients are coefficients of the polynomial (1+x)^n. The sum of the coefficients of x^a, x^(a+r), etc. is the coefficient of x^a in (1+x)^n in the ring of polynomials mod x^r-1. Polynomials mod x^r-1 can be specified by an array of coefficients of length r. You can compute (1+x)^n mod (x^r-1, M) by repeated squaring, reducing mod x^r-1 and mod M at each step. This takes about log_2(n)r^2 steps and O(r) space with naive multiplication. It is faster if you use the Fast Fourier Transform to multiply or exponentiate the polynomials.
For example, suppose n=20 and r=5.
(1+x) = {1,1,0,0,0}
(1+x)^2 = {1,2,1,0,0}
(1+x)^4 = {1,4,6,4,1}
(1+x)^8 = {1,8,28,56,70,56,28,8,1}
{1+56,8+28,28+8,56+1,70}
{57,36,36,57,70}
(1+x)^16 = {3249,4104,5400,9090,13380,9144,8289,7980,4900}
{3249+9144,4104+8289,5400+7980,9090+4900,13380}
{12393,12393,13380,13990,13380}
(1+x)^20 = (1+x)^16 (1+x)^4
= {12393,12393,13380,13990,13380}*{1,4,6,4,1}
{12393,61965,137310,191440,211585,203373,149620,67510,13380}
{215766,211585,204820,204820,211585}
This tells you the sums for the 5 possible values of a. For example, for a=1, 211585 = 20c1+20c6+20c11+20c16 = 20+38760+167960+4845.
Something like that, but you have to check a, n and r because I just put anything without regarding about the condition:
#include <complex>
#include <cmath>
#include <iostream>
using namespace std;
int main( void )
{
const int r = 10;
const int a = 2;
const int n = 4;
complex<double> i(0.,1.), res(0., 0.), w;
for( int j(0); j<r; ++j )
{
w = exp( i * 2. * M_PI / (double)r );
res += pow( w, -j * a ) * pow( 1. + pow( w, j ), n ) / (double)r;
}
return 0;
}
the mod operation is expensive, try avoiding it as much as possible
uint64_t res = 0;
int mod=1000000009;
for (int k = 0; a + r*k <= n; k++) {
res += mod_nCr(n, a+r*k, mod);
if(res > mod)
res %= mod;
}
I did not test this code
I don't know if you reached something or not in this question, but the key to implementing this formula is to actually figure out that w^i are independent and therefore can form a ring. In simpler terms you should think of implement
(1+x)^n%(x^r-1) or finding out (1+x)^n in the ring Z[x]/(x^r-1)
If confused I will give you an easy implementation right now.
make a vector of size r . O(r) space + O(r) time
initialization this vector with zeros every where O(r) space +O(r) time
make the first two elements of that vector 1 O(1)
calculate (x+1)^n using the fast exponentiation method. each multiplication takes O(r^2) and there are log n multiplications therefore O(r^2 log(n) )
return first element of the vector.O(1)
Complexity
O(r^2 log(n) ) time and O(r) space.
this r^2 can be reduced to r log(r) using fourier transform.
How is the multiplication done, this is regular polynomial multiplication with mod in the power
vector p1(r,0);
vector p2(r,0);
p1[0]=p1[1]=1;
p2[0]=p2[1]=1;
now we want to do the multiplication
vector res(r,0);
for(int i=0;i<r;i++)
{
for(int j=0;j<r;j++)
{
res[(i+j)%r]+=(p1[i]*p2[j]);
}
}
return res[0];
I have implemented this part before, if you are still cofused about something let me know. I would prefer that you implement the code yourself, but if you need the code let me know.
What is fastest way to calculate the first n satisfying the equation
a^n mod m = 1
Here a,n,m can be prime or composite
mod : is the modulus operator
What is wrong with the direct way:
int mod_order(int m, int a) {
for(int n = 1, an = a; n != m; n++, an = an * a % m) if(an % m == 1) return n;
return -1;
}
If gcd(a,m)>1, then there is no such n. (Obvious)
Otherwise, if m is prime, n=m-1. (Proof)
Otherwise (and as more general case), n=ф(m), where ф is Euler's totient function. (Proof)
As you can see, computing ф(m) is essentially the same as factorization of m. This can be done in sqrt(m) time or faster, depending on how convoluted is the algorithm you use. Simple one:
int phi(m){
if(m==1) return 1;
for(int d=2; d*d<m; ++d){
if(m%d != 0) continue;
int deg = 1; long acc=1;
for(; m%(acc*d)==0; ++deg) acc*=d;
acc /= d;
return phi(m/acc)*acc*(d-1)/d;
}
return m-1;
}
Upd: My bad. a^(ф(m)) = 1 (mod m), but there can be lesser value of n (for a=1, n=1, no difference what m is; for a=14, m=15, n=2). n is divisor of ф(m), but efficiently computing least possible n seems to be tricky. Task can be divided, by using this theorem (minimal n is least common multiple for all degrees for respective remainders). But when m is prime or has big enough prime divisor, and there is only one a (as opposed to computing n for many different a with the same m), we're kind of out of options. You may want to look at 1, 2.
I'm looking for an algorithm to find two integer values x,y such that their product is as close as possible to a given double k while their difference is low.
Example: The area of a rectangle is k=21.5 and I want to find the edges length of that rectangle with the constraint that they must be integer, in this case some of the possible solutions are (excluding permutations) (x=4,y=5),(x=3,y=7) and the stupid solution (x=21,y=1)
In fact for the (3,7) couple we have the same difference as for the (21,1) couple
21.5-3*7=0.5 = 21.5-21*1
while for the (4,5) couple
21.5-4*5=1.5
but the couple (4,5) is preferable because their difference is 1, so the rectangle is "more squared".
Is there a method to extract those x,y values for which the difference is minimal and the difference of their product to k is also minimal?
You have to look around square root of the number in question. For 21.5 sqrt(21.5) = 4.6368 and indeed the numbers you found are just around this value.
You want to minimize
the difference of the factors X and Y
the difference of the product X × Y and P.
You have provided an example where these objectives contradict each other. 3 × 7 is closer to 21 than 4 × 5, but the latter factors are more square. Thus, there cannot be any algorithm which minimizes both at the same time.
You can weight the two objectives and transform them into one, and then solve the problem via non-linear integer programming:
min c × |X × Y - P| + d × |X – Y|
subject to X, Y ∈ ℤ
X, Y ≥ 0
where c, d are non-negative numbers that define which objective you value how much.
Take the square root, floor one integer, ceil the other.
#include <iostream>
#include <cmath>
int main(){
double real_value = 21.5;
int sign = real_value > 0 ? 1 : -1;
int x = std::floor(std::sqrt(std::abs(real_value)));
int y = std::ceil(std::sqrt(std::abs(real_value)));
x *= sign;
std::cout << x << "*" << y << "=" << (x*y) << " ~~ " << real_value << "\n";
return 0;
}
Note that this approach only gives you a good distance between x and y, for example if real_value = 10 then x=3 and y=4, but the product is 12. If you want to achieve a better distance between the product and the real value you have to adjust the integers and increase their difference.
double best = DBL_MAX;
int a, b;
for (int i = 1; i <= sqrt(k); i++)
{
int j = round(k/i);
double d = abs(k - i*j);
if (d < best)
{
best = d;
a = i;
b = j;
}
}
Let given double be K.
Take floor of K, let it be F.
Take 2 integer arrays of size F*F. Let they be Ar1, Ar2.
Run loop like this
int z = 0 ;
for ( int i = 1 ; i <= F ; ++i )
{
for ( int j = 1 ; j <= F ; ++j )
{
Ar1[z] = i * j ;
Ar2[z] = i - j ;
++ z ;
}
}
You got the difference/product pairs for all the possible numbers now. Now assign some 'Priority value' for product being close to value K and some other to the smaller difference. Now traverse these arrays from 0 to F*F and find the pair you required by checking your condition.
For eg. Let being closer to K has priority 1 and being smaller in difference has priority .5. Consider another Array Ar3 of size F*F. Then,
for ( int i = 0 ; i <= F*F ; ++i )
{
Ar3[i] = (Ar1[i] - K)* 1 + (Ar2[i] * .5) ;
}
Traverse Ar3 to find the greatest value, that will be the pair you are looking for.