I need 2 threads: TC and TS, such that they are composed in two main sections each accessing shared data and the threads must to be synchronized. The synchronization should be like this:
The red codes are working with shared data U, but get U can be placed before the dashed rectangle on the TS thread, riht side.
The Xcurrent can be in TC or in TS the tasks, but is a shared hardware with send Ucurrent and get must be right after send was finished.
A dead lock appears and I can't figure out an elegant solution.
Thread TS:
#include <stdio.h> /* printf, scanf, NULL */
#include <stdlib.h> /* malloc, free, rand */
#define _USE_MATH_DEFINES
#include <math.h>
#include <windows.h>
#include <pthread.h>
#include <time.h>
// CRLT-C var
static int stop = 0;
// TIMEING vars
__int64 frequencyT, startT, endT = 0;
double baseAngleLast;
double pendulAngleLast;
// THREADING vars
bool startedS = false, Usent = false;
double * Ucmd;
pthread_mutex_t mutexU = PTHREAD_MUTEX_INITIALIZER;
pthread_mutex_t mutexBoard = PTHREAD_MUTEX_INITIALIZER;
unsigned int Ulenght = 6;
pthread_cond_t signal_to_read_state = PTHREAD_COND_INITIALIZER;
pthread_cond_t signal_to_read_cmd = PTHREAD_COND_INITIALIZER;
DWORD sleepTime = 30; // in milliseconds
int currentState = 3;
void *sendingCMD(void * )
{
double * U_tmp;
U_tmp = (double*)malloc(sizeof(double)*Ulenght);
startedS = true;
printf("Sin\n");
while (stop == 0)
{
printf("Smu-\n");
//get U
pthread_mutex_lock( &mutexU );
printf("Smu..\n");
pthread_cond_wait(&signal_to_read_cmd, &mutexU);
memcpy(U_tmp,Ucmd,sizeof(double)*Ulenght);
pthread_mutex_unlock( &mutexU );
printf("Smu+\n");
pthread_mutex_lock( &mutexBoard );
for (unsigned int i = 0; i<Ulenght; i++)
{
//send CMD signal
printf("%f ", U_tmp[i]);
if (i == Ulenght -1) printf("\n");
}
Sleep(sleepTime); // miliseconds
currentState = currentState + 1;
pthread_cond_signal(&signal_to_read_state);
pthread_mutex_unlock( &mutexBoard );
printf("Smb\n");
}
printf("Task S terminated. \n");
return (NULL);
}
void *computingU(void *)
{
double * U_tmp;
U_tmp = (double*)malloc(sizeof(double)*Ulenght);
int currentStateTMP =0;
bool fisrtLoop = true;
printf("Uin\n");
while (stop == 0)
{
printf("Umb- \n");
// get current state
pthread_mutex_lock( &mutexBoard );
if (!fisrtLoop)
{
printf("UmbFalse \n");
pthread_cond_wait(&signal_to_read_state, &mutexBoard);
}
else
{
printf("UmbTrue \n");
fisrtLoop=false;
}
currentStateTMP =currentState;
pthread_mutex_unlock( &mutexBoard );
printf("Umb+ \n");
pthread_mutex_lock( &mutexU );
for (unsigned int i=0;i<Ulenght;i++)
{
Ucmd[i] = Ucmd[i]+ (double)currentStateTMP/i;
}
pthread_cond_signal(&signal_to_read_cmd);
pthread_mutex_unlock( &mutexU );
printf("Umu\n");
}
return (NULL);
}
void signal_handler(int signal)
{
stop = 1;
}
int main(int argc, char* argv[])
{
//initializing output buffer to 0[V]
Ucmd= (double*)malloc(sizeof(double)*Ulenght);
for (unsigned int i=0;i<Ulenght;i++)
Ucmd[i] = 0;
//init threads
int rc1, rc2;
pthread_t threadU, threadS;
/* Create independent threads each of which will execute functionC */
if( (rc1=pthread_create( &threadU, NULL, &computingU, NULL)) ) {
printf("ThreadU creation failed: %d\n", rc1);
}
if( (rc2=pthread_create( &threadS, NULL, &sendingCMD, NULL)) )
{
printf("ThreadS creation failed: %d\n", rc2);
}
while (stop == 0);
printf("Main terminated, closing board in 10ms. \n");
Sleep(10);
return 0;
}
The blocking appears at:
TC at pthread_cond_wait(&signal_to_read_state, &mutexBoard);
TS at pthread_cond_wait(&signal_to_read_cmd, &mutexU);
btw why dose not recognize stackoverflow the code segment I pasted above in case i copy paste from a VS2010?
Related
I'm investigating the use of PThread.
The main process opens the camera and gets a matrix. Then calls the thread that running job in robot and I want it to be parallel. Basically it works and runs. But still feel unprofessional- because of the bool.
In the code below, this is an example (with fprintf).
I'd love to know how I can fix it without harm parallelism.
In the next code I do not show the call to the robot or camera opening.
There is a feeling that a mutex is needed.
#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>
#include <opencv2/opencv.hpp>
#include <unistd.h> /// for sleep
bool inThread = false;
void *print_message_function( void *ptr );
int main()
{
char mkey = 0;
pthread_t thread1;
char *message1 = "Thread 1";
int iret1;
cv::Mat bgr_image = imread("image.bmp",cv::IMREAD_COLOR);
while(mkey!=27){
if(!inThread){
inThread = true;
iret1 = pthread_create( &thread1, NULL, print_message_function, (void*) message1);
}
printf("In Main");
imshow("mat", bgr_image);
mkey = cv:: waitKey(5);
}
return 0;
}
void *print_message_function( void *ptr )
{
char *message;
message = (char *) ptr;
printf("%s \n", message);
sleep(2);
inThread = false;
pthread_exit(NULL);
}
The code works great and does not fall, but it seems unprofessional. Is there a chance that when you update the flag, it will check what is in the flag and fall?
inThread is concurrently read/written so its access shall be protected.
Using a mutex this can for example be done like follows.
Define a global mutex and initialise it:
pthread_mutex_t m = PTHREAD_MUTEX_INITIALIZER;
Include errno to be able to do convenient error checking/logging for the pthread_*() calls:
#include <errno.h>
Change this
if(!inThread){
inThread = true;
iret1 = pthread_create( &thread1, NULL, print_message_function, (void*) message1);
}
to become
errno = pthread_mutex_lock(&m);
if (errno) {
perror("pthread_mutex_lock() failed");
exit(EXIT_FAILURE);
}
if (!inThread) {
inThread = true;
errno = pthread_mutex_unlock(&m);
if (errno) {
perror("pthread_mutex_unlock() failed");
exit(EXIT_FAILURE);
}
...
}
else {
errno = pthread_mutex_unlock(&m);
if (errno) {
perror("pthread_mutex_unlock() failed");
exit(EXIT_FAILURE);
}
}
And change this
inThread = false;
to become
errno = pthread_mutex_lock(&m);
if (errno) {
perror("pthread_mutex_lock() failed");
exit(EXIT_FAILURE);
}
inThread = false;
errno = pthread_mutex_unlock(&m);
if (errno) {
perror("pthread_mutex_unlock() failed");
exit(EXIT_FAILURE);
}
I wanted to write simple multithread app in C/C++. Function funProducent produces 100 values and if random generated value is in given range, char is added to buffer. Function funKonzument comsumes values from buffer. Here is my code:
#include <stdlib.h>
#include <stdio.h>
#include <pthread.h>
#define BUFFER_LIMIT 20
struct struktura{
pthread_mutex_t mutex;
pthread_cond_t bufferNotFull;
pthread_cond_t bufferNotEmpty;
int bufferIndex;
char * buffer;
int junk;
};
void * funProducent(void *arg){
struktura * data = (struktura *) arg;
int i = 0;
while (i < 100) {
pthread_mutex_lock(&data->mutex);
if(data->bufferIndex == BUFFER_LIMIT - 1){
pthread_cond_wait(&data->bufferNotFull, &data->mutex);
}
int randomValue = (rand() % 20) + 1;
if( randomValue < 13 ){
data->buffer[++data->bufferIndex] = 'a';
printf("%2d : Producent at index %d added %c\n", i, data->bufferIndex, data->buffer[data->bufferIndex]);
pthread_cond_signal(&data->bufferNotEmpty);
} else {
data->junk++;
}
pthread_mutex_unlock(&data->mutex);
i++;
}
printf("producent is done\n");
}
void * funKonzument(void *arg){
struktura * data = (struktura *) arg;
int i = 0;
while (i + data->junk < 100) {
printf("%d\n", i + data->junk);
pthread_mutex_lock(&data->mutex);
if(data->bufferIndex < 0){
pthread_cond_wait(&data->bufferNotEmpty, &data->mutex);
}
printf("%2d : Konzument at index %d consumed %c\n", i, data->bufferIndex, data->buffer[data->bufferIndex]);
data->bufferIndex--;
pthread_cond_signal(&data->bufferNotFull);
pthread_mutex_unlock(&data->mutex);
i++;
}
printf("konzument is done\n");
}
int main(int argc, char** argv) {
pthread_t threadProducent, threadKonzument;
struktura threadData;
threadData.buffer = (char *) malloc(sizeof(char) * BUFFER_LIMIT);
threadData.bufferIndex = -1;
threadData.bufferNotFull = PTHREAD_COND_INITIALIZER;
threadData.bufferNotEmpty = PTHREAD_COND_INITIALIZER;
threadData.mutex = PTHREAD_MUTEX_INITIALIZER;
threadData.junk = 0;
pthread_create(&threadProducent, NULL, funProducent, &threadData);
pthread_create(&threadKonzument, NULL, funKonzument, &threadData);
pthread_join(threadProducent, NULL);
pthread_join(threadKonzument, NULL);
free(threadData.buffer);
pthread_mutex_destroy(&threadData.mutex);
pthread_cond_destroy(&threadData.bufferNotFull);
pthread_cond_destroy(&threadData.bufferNotEmpty);
return 0;
}
When I try to run this code, sometimes it stucks in funKonzument at this line:
pthread_cond_wait(&data->bufferNotEmpty, &data->mutex);
But...when I change condition in funProducent method from:
if( randomValue < 13 )
to
if( randomValue > 8 )
everything works fine. Is anyone able to explain me what magic difference is between this two conditions?
You are probably suffering from spurious wakes and some problem with the junk counter. I just removed that counter and added a cond wait loop function (and a little lock context manager) and then the hangings seems to have stopped.
#include <stdlib.h>
#include <stdio.h>
#include <pthread.h>
#include <stdexcept>
#include <functional>
#define BUFFER_LIMIT 20
struct struktura{
pthread_mutex_t mutex;
pthread_cond_t bufferNotFull;
pthread_cond_t bufferNotEmpty;
int bufferIndex;
char * buffer;
};
// a lock context manager
class mlock {
pthread_mutex_t* mtx;
public:
mlock(pthread_mutex_t& Mtx) :
mtx(&Mtx)
{
int rv=pthread_mutex_lock(mtx);
if(rv) throw std::runtime_error(std::to_string(rv));
}
mlock(const mlock&) = delete;
mlock(mlock&&) = delete;
mlock& operator=(const mlock&) = delete;
mlock& operator=(mlock&&) = delete;
~mlock() {
pthread_mutex_unlock(mtx);
}
};
// silly loop to take care of spurious wakes
void cwait(pthread_cond_t& c, pthread_mutex_t& m, std::function<bool()> f) {
while(f()) pthread_cond_wait(&c, &m);
}
void* funProducent(void *arg){
struktura* data = static_cast<struktura*>(arg);
int i = 0;
while(i < 100) {
mlock dummy(data->mutex);
cwait(data->bufferNotFull, data->mutex, [&](){return data->bufferIndex == BUFFER_LIMIT - 1;});
int randomValue = (rand() % 20) + 1;
if( randomValue < 13 ){
data->buffer[++data->bufferIndex] = 'a';
printf("%2d : Producent at index %d added %c\n", i, data->bufferIndex, data->buffer[data->bufferIndex]);
i++;
pthread_cond_signal(&data->bufferNotEmpty);
}
}
printf("producent is done\n");
return nullptr;
}
void* funKonzument(void *arg){
struktura* data = static_cast<struktura*>(arg);
int i = 0;
while(i < 100) {
mlock dummy(data->mutex);
cwait(data->bufferNotEmpty, data->mutex, [&](){return data->bufferIndex<0;});
printf("\t\t\t%2d : Konzument at index %d consumed %c\n", i, data->bufferIndex, data->buffer[data->bufferIndex]);
data->bufferIndex--;
i++;
pthread_cond_signal(&data->bufferNotFull);
}
printf("\t\t\tkonzument is done\n");
return nullptr;
}
int main() {
pthread_t threadProducent, threadKonzument;
struktura threadData;
threadData.buffer = (char *) malloc(sizeof(char) * BUFFER_LIMIT);
threadData.bufferIndex = -1;
threadData.bufferNotFull = PTHREAD_COND_INITIALIZER;
threadData.bufferNotEmpty = PTHREAD_COND_INITIALIZER;
threadData.mutex = PTHREAD_MUTEX_INITIALIZER;
pthread_create(&threadProducent, NULL, funProducent, &threadData);
pthread_create(&threadKonzument, NULL, funKonzument, &threadData);
pthread_join(threadProducent, NULL);
pthread_join(threadKonzument, NULL);
free(threadData.buffer);
pthread_mutex_destroy(&threadData.mutex);
pthread_cond_destroy(&threadData.bufferNotFull);
pthread_cond_destroy(&threadData.bufferNotEmpty);
return 0;
}
Need some help with PTHREADS. I want to keep over 1000 threads opened at any time, something like a thread pool. Here is the code :
/*
gcc -o test2 test2.cpp -static -lpthread -lstdc++
*/
#include <iostream>
#include <cstdlib>
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <cstring>
#include <stdexcept>
#include <cstdlib>
int NUM_THREADS = 2000;
int MAX_THREADS = 100;
int THREADSTACK = 65536;
struct thread_struct{
int arg1;
int arg2;
};
pthread_mutex_t mutex_;
static unsigned int thread_count = 0;
string exec(const char* cmd)
{
int DEBUG=0;
char buffer[5000];
string result = "";
FILE* pipe = popen(cmd, "r");
if (!pipe && DEBUG) throw runtime_error("popen() failed!");
try
{
while (!feof(pipe))
{
if (fgets(buffer, 128, pipe) != NULL)
{
result += buffer;
}
}
}
catch(...)
{
pclose(pipe);
throw;
}
pclose(pipe);
return result;
}
void *thread_test(void *arguments)
{
pthread_mutex_lock(&mutex_);
thread_count++;
pthread_mutex_unlock(&mutex_);
// long tid;
// tid = (long)threadid;
struct thread_struct *args = (thread_struct*)arguments;
/*
printf("ARG1=%d\n",args->arg1);
printf("ARG2=%d\n",args->arg2);
*/
int thread_id = (int) args->arg1;
/*
int random_sleep;
random_sleep = rand() % 10 + 1;
printf ("RAND=[%d]\n", random_sleep);
sleep(random_sleep);
*/
int random_sleep;
random_sleep = rand() % 10 + 5;
// printf ("RAND=[%d]\n", random_sleep);
char command[100];
memset(command,0,sizeof(command));
sprintf(command,"sleep %d",random_sleep);
exec(command);
random_sleep = rand() % 100000 + 500000;
usleep(random_sleep);
// simulation of a work between 5 and 10 seconds
// sleep(random_sleep);
// printf("#%d -> sleep=%d total_threads=%u\n",thread_id,random_sleep,thread_count);
pthread_mutex_lock(&mutex_);
thread_count--;
pthread_mutex_unlock(&mutex_);
pthread_exit(NULL);
}
int main()
{
// pthread_t threads[NUM_THREADS];
int rc;
int i;
usleep(10000);
srand ((unsigned)time(NULL));
unsigned int thread_count_now = 0;
pthread_attr_t attrs;
pthread_attr_init(&attrs);
pthread_attr_setstacksize(&attrs, THREADSTACK);
pthread_mutex_init(&mutex_, NULL);
for( i=0; i < NUM_THREADS; i++ )
{
create_thread:
pthread_mutex_lock(&mutex_);
thread_count_now = thread_count;
pthread_mutex_unlock(&mutex_);
// printf("thread_count in for = [%d]\n",thread_count_now);
if(thread_count_now < MAX_THREADS)
{
printf("CREATE thread [%d]\n",i);
struct thread_struct struct1;
struct1.arg1 = i;
struct1.arg2 = 999;
pthread_t temp_thread;
rc = pthread_create(&temp_thread, NULL, &thread_test, (void *)&struct1);
if (rc)
{
printf("Unable to create thread %d\n",rc);
sleep(1);
pthread_detach(temp_thread);
goto create_thread;
}
}
else
{
printf("Thread POOL full %d of %d\n",thread_count_now,MAX_THREADS);
sleep(1);
goto create_thread;
}
}
pthread_attr_destroy(&attrs);
pthread_mutex_destroy(&mutex_);
// pthread_attr_destroy(&attrs);
printf("Proccess completed!\n");
pthread_exit(NULL);
return 1;
}
After spawning 300 threads it begins to give
errors, return code from pthread_create() is 11, and after that keeps executing them one by one.
What im i doing wrong?
According to this website, error code 11 corresponds to EAGAIN which means according to this:
Insufficient resources to create another thread.
A system-imposed limit on the number of threads was encountered.
Hence to solve your problem either create less threads or wait for running ones to finish before creating new ones.
You can also change default thread stack size see pthread_attr_setstacksize
After terminating each thread using the below program, I need to print the remaining threads with ids every time, for which I am using GetExitCodeThread function but it is returning some garbage value.What could I be doing wrong?Also, how to print the remaining threads after getting the exitCode correct?
#define NUM_THREADS 10
#include <windows.h>
#include <stdio.h>
#include <process.h>
typedef struct
{
int Id;
HANDLE hTerminate;
} ThreadArgs;
unsigned _stdcall ThreadFunc( void *pArgs )
{
LPDWORD exitCode;
HANDLE hTerminate = ((ThreadArgs *)pArgs)->hTerminate;
int id = ((ThreadArgs *)pArgs)->Id;
// run until we are told to terminate while (1)
while(1)
{
// Check to see if we should terminate
if (WaitForSingleObject(hTerminate, 0) == WAIT_OBJECT_0)
{
// Terminate Thread - we call ResetEvent to
// return the terminate thread to its non-
// signaled state, then exit the while() loop
printf ("Terminating Thread %d\n", id);
GetExitCodeThread(hTerminate,exitCode);
printf("%d",exitCode);
ResetEvent(hTerminate);
break;
}
// we can do our work now ...
// simulate the case that it takes
// to do the work the thread has to do
Sleep(1000);
}
_endthreadex(0);
return 0;
}
int main(int argc, char* argv[])
{
int i=0;
unsigned int threadID[NUM_THREADS];
HANDLE hThread[NUM_THREADS];
ThreadArgs threadArgs[NUM_THREADS];
// Create 10 threads
printf("Total number of threads= %d\n", NUM_THREADS);
for (i = 0; i < NUM_THREADS;i++)
{
printf("Thread number %d \n",i);
}
for (int i = 0; i<NUM_THREADS;i++)
{
threadArgs[i].Id = i;
threadArgs[i].hTerminate = CreateEvent(NULL,TRUE,FALSE,NULL);
hThread[i] = (HANDLE)_beginthreadex(NULL,0,&ThreadFunc,&threadArgs[i], 0, &threadID[i]);
}
printf("To kill a thread (gracefully), press 0-9, "" then <Enter>. \n");
printf("Press any other key to exit.\n");
while (1)
{
int c = getc(stdin);
if (c == '\n')
continue;
if (c < '0' || c > '9')
break;
SetEvent(threadArgs[c -'0'].hTerminate);
}
return 0;
}
GetExitCodeThread() expects a HANDLE to a thread object, but you are passing it a HANDLE to an event object instead. You are also passing it an uninitialized pointer to write the exit code to. As such, GetExitCodeThread() is goes to fail with an error that you are ignoring, and the exit code will not be assigned any meaningful value.
Not that it matters, because GetExitCodeThread() is useless to call inside a thread that is still running, it will set the exit code to STILL_ACTIVE. You are supposed to call GetExitCodeThread() in a different thread than the one that is being terminated.
Try something more like this instead:
#include <windows.h>
#include <stdio.h>
#include <process.h>
#define MAX_THREADS 10
typedef struct
{
int Id;
DWORD dwThreadId;
HANDLE hThread;
HANDLE hTerminate;
} ThreadArgs;
unsigned __stdcall ThreadFunc( void *arg )
{
ThreadArgs *pArgs = (ThreadArgs *) arg;
// run until we are told to terminate while (1)
while(1)
{
// Check to see if we should terminate
if (WaitForSingleObject(pArgs->hTerminate, 0) == WAIT_OBJECT_0)
{
// Terminate Thread - exit the while() loop
printf ("Thread %d terminate signal detected\n", pArgs->Id);
break;
}
// we can do our work now ...
// simulate the case that it takes
// to do the work the thread has to do
Sleep(1000);
}
return 0;
}
int main(int argc, char* argv[])
{
int i;
ThreadArgs threadArgs[MAX_THREADS];
int numThreadsRunning = 0;
memset(&ThreadArgs, 0, sizeof(ThreadArgs));
// Create 10 threads
printf("Creating %d threads\n", MAX_THREADS);
for (i = 0; i < MAX_THREADS; ++i)
{
printf("Thread number %d: ", i);
threadArgs[i].Id = i;
threadArgs[i].hTerminate = CreateEvent(NULL, TRUE, FALSE, NULL);
threadArgs[i].hThread = (HANDLE) _beginthreadex(NULL, 0, &ThreadFunc, &threadArgs[i], 0, &threadArgs[i].dwThreadId);
if (threadArgs[i].hThread != NULL)
{
printf("Created\n");
++numThreadsRunning;
}
else
printf("Not Created!\n");
}
printf("Threads running: %d\n", numThreadsRunning);
printf("To kill a thread (gracefully), press 0-%d, then <Enter>.\n", MAX_THREADS-1);
printf("Press any other key to exit.\n");
while (1)
{
int c = getc(stdin);
if (c == '\n')
continue;
if ((c < '0') || (c > '9'))
break;
int id = c - '0';
if (threadArgs[id].hThread != NULL)
{
printf ("Signaling Thread %d to Terminate\n", id);
SetEvent(threadArgs[id].hTerminate);
WaitForSingleObject(threadArgs[id].hThread, INFINITE);
DWORD exitCode = 0;
GetExitCodeThread(threadArgs[id].hThread, &exitCode);
CloseHandle(threadArgs[id].hThread);
threadArgs[id].hThread = NULL;
printf ("Thread %d Terminated. Exit Code: %u\n", id, exitCode);
--numThreadsRunning;
printf ("Threads still running: %d\n", numThreadsRunning);
}
else
printf ("Thread %d is not running\n", id);
}
if (numThreadsRunning > 0)
{
printf ("Signaling remaining Threads to Terminate\n");
HANDLE hThreads[MAX_THREADS];
DWORD numThreads = 0;
for (i = 0; i < MAX_THREADS; ++i)
{
if (threadArgs[i].hThread != NULL)
{
hThreads[numThreads] = threadArgs[i].hThread;
++numThreads;
SetEvent(threadArgs[i].hTerminate);
}
}
WaitForMultipleObjects(numThreads, hThreads, TRUE, INFINITE);
for (i = 0; i < MAX_THREADS; ++i)
{
if (hThreads[i].hThread)
CloseHandle(hThreads[i].hThread);
if (hThreads[i].hTerminate)
CloseHandle(hThreads[i].hTerminate);
}
printf ("Threads Terminated\n");
}
return 0;
}
Have a look at this msdn article:
Traversing the Thread List
https://msdn.microsoft.com/en-us/library/windows/desktop/ms686852(v=vs.85).aspx
There is sample code on how to list the threads for a process.
~snip
#include <windows.h>
#include <tlhelp32.h>
#include <tchar.h>
// Forward declarations:
BOOL ListProcessThreads( DWORD dwOwnerPID );
void printError( TCHAR* msg );
int main( void )
{
ListProcessThreads(GetCurrentProcessId() );
return 0;
}
BOOL ListProcessThreads( DWORD dwOwnerPID )
{
HANDLE hThreadSnap = INVALID_HANDLE_VALUE;
THREADENTRY32 te32;
// Take a snapshot of all running threads
hThreadSnap = CreateToolhelp32Snapshot( TH32CS_SNAPTHREAD, 0 );
if( hThreadSnap == INVALID_HANDLE_VALUE )
return( FALSE );
// Fill in the size of the structure before using it.
te32.dwSize = sizeof(THREADENTRY32 );
// Retrieve information about the first thread,
// and exit if unsuccessful
if( !Thread32First( hThreadSnap, &te32 ) )
{
printError( TEXT("Thread32First") ); // Show cause of failure
CloseHandle( hThreadSnap ); // Must clean up the snapshot object!
return( FALSE );
}
// Now walk the thread list of the system,
// and display information about each thread
// associated with the specified process
do
{
if( te32.th32OwnerProcessID == dwOwnerPID )
{
_tprintf( TEXT("\n THREAD ID = 0x%08X"), te32.th32ThreadID );
_tprintf( TEXT("\n base priority = %d"), te32.tpBasePri );
_tprintf( TEXT("\n delta priority = %d"), te32.tpDeltaPri );
}
} while( Thread32Next(hThreadSnap, &te32 ) );
_tprintf( TEXT("\n"));
// Don't forget to clean up the snapshot object.
CloseHandle( hThreadSnap );
return( TRUE );
}
void printError( TCHAR* msg )
{
DWORD eNum;
TCHAR sysMsg[256];
TCHAR* p;
eNum = GetLastError( );
FormatMessage( FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS,
NULL, eNum,
MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), // Default language
sysMsg, 256, NULL );
// Trim the end of the line and terminate it with a null
p = sysMsg;
while( ( *p > 31 ) || ( *p == 9 ) )
++p;
do { *p-- = 0; } while( ( p >= sysMsg ) &&
( ( *p == '.' ) || ( *p < 33 ) ) );
// Display the message
_tprintf( TEXT("\n WARNING: %s failed with error %d (%s)"), msg, eNum, sysMsg );
}
I'm working on a school lab and we are instructed to create a recursive mutex lock for a counting program. I've written some code (which doesn't work), but I think that this is mostly because I do not understand the real idea behind using a recursive mutex lock. Could anyone elaborate what a recursive mutex lock should do/look like?
General Note: I'm not asking for an answer, just some clarification as to what recursive mutex lock should do.
Also, if anyone is curious, here is the code required for this. The code that I am editing/implementing is the recmutex.c.
recmutex.h
#include <pthread.h>
/*
* The recursive_mutex structure.
*/
struct recursive_mutex {
pthread_cond_t cond;
pthread_mutex_t mutex; //a non-recursive pthread mutex
pthread_t owner;
unsigned int count;
unsigned int wait_count;
};
typedef struct recursive_mutex recursive_mutex_t;
/* Initialize the recursive mutex object.
*Return a non-zero integer if errors occur.
*/
int recursive_mutex_init (recursive_mutex_t *mu);
/* Destroy the recursive mutex object.
*Return a non-zero integer if errors occur.
*/
int recursive_mutex_destroy (recursive_mutex_t *mu);
/* The recursive mutex object referenced by mu shall be
locked by calling pthread_mutex_lock(). When a thread
successfully acquires a mutex for the first time,
the lock count shall be set to one and successfully return.
Every time a thread relocks this mutex, the lock count
shall be incremented by one and return success immediately.
And any other calling thread can only wait on the conditional
variable until being waked up. Return a non-zero integer if errors occur.
*/
int recursive_mutex_lock (recursive_mutex_t *mu);
/* The recursive_mutex_unlock() function shall release the
recursive mutex object referenced by mu. Each time the owner
thread unlocks the mutex, the lock count shall be decremented by one.
When the lock count reaches zero, the mutex shall become available
for other threads to acquire. If a thread attempts to unlock a
mutex that it has not locked or a mutex which is unlocked,
an error shall be returned. Return a non-zero integer if errors occur.
*/
int recursive_mutex_unlock (recursive_mutex_t *mu);
recmutex.c: contains the functions for the recursive mutex
#include <stdio.h>
#include <pthread.h>
#include <errno.h>
#include "recmutex.h"
int recursive_mutex_init (recursive_mutex_t *mu){
int err;
err = pthread_mutex_init(&mu->mutex, NULL);
if(err != 0){
perror("pthread_mutex_init");
return -1;
}else{
return 0;
}
return 0;
}
int recursive_mutex_destroy (recursive_mutex_t *mu){
int err;
err = pthread_mutex_destroy(&mu->mutex);
if(err != 0){
perror("pthread_mutex_destroy");
return -1;
}else{
return 1;
}
return 0;
}
int recursive_mutex_lock (recursive_mutex_t *mu){
if(mutex_lock_count == 0){
pthread_mutex_lock(&mu->mutex);
mu->count++;
mu->owner = pthread_self();
printf("%s", mu->owner);
return 0;
}else if(mutex_lock_count > 0){
pthread_mutex_lock(&mu->mutex);
mu->count++;
mu->owner = pthread_self();
return 0;
}else{
perror("Counter decremented incorrectly");
return -1;
}
}
int recursive_mutex_unlock (recursive_mutex_t *mu){
if(mutex_lock_count <= 0){
printf("Nothing to unlock");
return -1;
}else{
mutex_lock_count--;
pthread_mutex_unlock(&mu->mutex);
return 0;
}
}
count_recursive.cc: The counting program mentioned above. Uses the recmutex functions.
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>
#include <unistd.h>
#include <assert.h>
#include <string.h>
#include "recmutex.h"
//argument structure for the thread
typedef struct _arg_{
int n1;
int n2;
int ntimes;
}Arg;
int count; //global counter
recursive_mutex_t mutex; //the recursive mutex
void do_inc(int n){
int ret;
if(n == 0){
return;
}else{
int c;
ret = recursive_mutex_lock(&mutex);
assert(ret == 0);
c = count;
c = c + 1;
count = c;
do_inc(n - 1);
ret = recursive_mutex_unlock(&mutex);
assert(ret == 0);
}
}
/* Counter increment function. It will increase the counter by n1 * n2 * ntimes. */
void inc(void *arg){
Arg * a = (Arg *)arg;
for(int i = 0; i < a->n1; i++){
for(int j = 0; j < a->n2; j++){
do_inc(a->ntimes);
}
}
}
int isPositiveInteger (const char * s)
{
if (s == NULL || *s == '\0' || isspace(*s))
return 0;
char * p;
int ret = strtol (s, &p, 10);
if(*p == '\0' && ret > 0)
return 1;
else
return 0;
}
int test1(char **argv){
printf("==========================Test 1===========================\n");
int ret;
//Get the arguments from the command line.
int num_threads = atoi(argv[1]); //The number of threads to be created.
int n1 = atoi(argv[2]); //The outer loop count of the inc function.
int n2 = atoi(argv[3]); //The inner loop count of the inc function.
int ntimes = atoi(argv[4]); //The number of increments to be performed in the do_inc function.
pthread_t *th_pool = new pthread_t[num_threads];
pthread_attr_t attr;
pthread_attr_init( &attr );
pthread_attr_setscope(&attr, PTHREAD_SCOPE_SYSTEM);
ret = recursive_mutex_init(&mutex);
assert(ret == 0);
printf("Start Test. Final count should be %d\n", num_threads * n1 * n2 * ntimes );
// Create threads
for(int i = 0; i < num_threads; i++){
Arg *arg = (Arg *)malloc(sizeof(Arg));
arg->n1 = n1;
arg->n2 = n2;
arg->ntimes = ntimes;
ret = pthread_create(&(th_pool[i]), &attr, (void * (*)(void *)) inc, (void *)arg);
assert(ret == 0);
}
// Wait until threads are done
for(int i = 0; i < num_threads; i++){
ret = pthread_join(th_pool[i], NULL);
assert(ret == 0);
}
if ( count != num_threads * n1 * n2 * ntimes) {
printf("\n****** Error. Final count is %d\n", count );
printf("****** It should be %d\n", num_threads * n1 * n2 * ntimes );
}
else {
printf("\n>>>>>> O.K. Final count is %d\n", count );
}
ret = recursive_mutex_destroy(&mutex);
assert(ret == 0);
delete [] th_pool;
return 0;
}
int foo(){
int ret;
printf("Function foo\n");
ret = recursive_mutex_unlock(&mutex);
assert(ret != 0);
return ret;
}
//test a thread call unlock without actually holding it.
int test2(){
int ret;
printf("\n==========================Test 2==========================\n");
pthread_t th;
pthread_attr_t attr;
pthread_attr_init( &attr );
pthread_attr_setscope(&attr, PTHREAD_SCOPE_SYSTEM);
ret = recursive_mutex_init(&mutex);
ret = pthread_create(&th, &attr, (void * (*)(void *))foo, NULL);
printf("Waiting for thread to finish\n");
ret = pthread_join(th, NULL);
assert(ret == 0);
return 0;
}
int main( int argc, char ** argv )
{
int ret;
count = 0;
if( argc != 5 ) {
printf("You must enter 4 arguments. \nUsage: ./count_recursive num_threads n1 n2 ntimes\n");
return -1;
}
if(isPositiveInteger(argv[1]) != 1 || isPositiveInteger(argv[2]) != 1 || isPositiveInteger(argv[3]) != 1 || isPositiveInteger(argv[4]) != 1 ){
printf("All the 4 arguments must be positive integers\n");
return -1;
}
test1(argv);
test2();
return 0;
}
The idea of a recursive mutex is that it can be successfully relocked by the thread that is currently holding the lock. For example:
if I had some mutexes like this (this is pseudocode):
mutex l;
recursive_mutex r;
In a single thread if I did this:
l.lock();
l.lock(); // this would hang the thread.
but
r.lock();
r.lock();
r.lock(); // this would all pass though with no issue.
In implimenting a recursive mutex you need to check what threadId has locked it, if it was locked, and if it matches the current thread id, return success.
The point of a recursive mutex, is to let you write this:
recursive_mutext_t rmutex;
void foo(...) {
recursive_lock_lock(&rmutex);
...
recursive_lock_unlock(&rmutex);
}
void bar(...) {
recursive_lock_lock(&rmutex);
...
foo(...);
...
recursive_lock_unlock(&rmutex);
}
void baz(...) {
...
foo(...);
...
}
The function foo() needs the mutex to be locked, but you want to be able to call it either from bar() where the same mutex is already locked, or from baz() where the mutex is not locked. If you used an ordinary mutex(), the thread would self-deadlock when foo() is called from bar() because the ordinary mutex lock() function will not return until the mutex is unlocked, and there's no other thread that will unlock it.
Your recursive_mutex_lock() needs to distinguish these cases; (1) The mutex is not locked, (2) the mutex is already locked, but the calling thread is the owner, and (3) the mutex is already locked by some other thread.
Case (3) needs to block the calling thread until the owner completely unlocks the mutex. At that point, it then converts to case (1). Here's a hint: Handle case (3) with a condition variable. That is to say, when the calling thread is not the owner, the calling thread should do a pthread_condition_wait(...) call.