My code is like following, basically I am using some external library and embed some class objects from this library to myClass, then do things with OBJ,
#include "extern_lib.h" //some library
class myClass
{
public:
extern_class *obj1;
extern_class *obj2;
double arr[3];
};
int main()
{
myClass *OBJ= new myClass();
OBJ->obj1 = new extern_class(arg1...);
OBJ->obj2 = new extern_class(arg2...);
//do something like
OBJ->obj1->extern_fun1(arg1...);
OBJ->obj2->extern_fun2(arg2...);
//delete
delete OBJ;
return 0;
}
I would like to know,
1- in order to free all the objects, is it enough to delete OBJ?
2- is there better ways to write this code?
No, it is not enough. You have to call delete for every new you place in your code explicitely.
Use smart pointers like std::unique_ptr or better, use RAII. To clarify that: smart pointers and RAII are not even only better ways of doing so, they are the ways of doing it correctly in modern C++.
Here's an adequate example with RAII:
#include "extern_lib.h"
class myClass
{
public: // note that public members are possibly bad design (depending on your situation)
extern_class obj1;
extern_class obj2;
double arr[3];
};
int main()
{
myClass foo;
foo.obj1.extern_fun(arg1...);
foo.obj2.extern_fun(arg2...);
return 0;
}
Please note that it's not possible to use RAII in every situation. If you run into such, use smart pointers as stated:
#include "extern_lib.h"
class myClass
{
public: // note that public members are possibly bad design (depending on your situation)
std::unique_ptr<extern_class> obj1;
std::unique_ptr<extern_class> obj2;
double arr[3];
};
int main()
{
myClass foo;
foo.obj1 = std::unique_ptr<extern_class>(new extern_class(arg1...));
foo.obj2 = std::unique_ptr<extern_class>(new extern_class(arg2...));
foo.obj1->extern_fun(arg1...);
foo.obj2->extern_fun(arg2...);
return 0;
}
In order to free all the objects, is it enough to delete OBJ?
No, this will produce a resource leak as the (default) destructor of myClass doesn't care about deleting the pointer members.
Is there better ways to write this code?
Yes, use smart pointers. For example:
class myClass
{
public:
std::unique_ptr<extern_class> obj1;
std::unique_ptr<extern_class> obj2;
double arr[3];
};
In general, try to make resources owned by classes. That is, allocate them in the constructor and deallocate them in the destructor. The standard library's smart pointers will already do that job for you. Avoid managing more than one resource inside a single class.
By the way: If your example is not contrived and you are really not using polymorphism at all, then just get rid of all those news and simply use variables with automatic storage duration. C++ is not Java.
Update: Here is (one way of) how to get rid of new if polymorphism is not needed:
class myClass
{
public:
extern_class obj1;
extern_class obj2;
double arr[3];
myClass(type arg1a, ..., type arg2a, ...) : obj1(arg1a, ...), obj2(arg2a, ...)
// ^^^^ member initializer list ^^^^
{
}
};
The key is to create the member objects as part of the process of creating myClass by using a so-called member initializer list. If you are programming C++11, prefer writing obj1 {arg1a, ...}, obj2 {arg2a, ...} for consistency. (The old syntax still works equally well, however.)
Likewise in your main function:
int
main()
{
myClass mc(arg1a, ..., arg2a, ...); // (1)
mc.obj1.extern_func(...);
mc.obj2.extern_func(...);
return 0; // (2)
}
At line (1), we create an instance of myClass on the stack using our new constructor that will create the members obj1 and obj2 correctly. The compiler-generated default constructor of myClass will correctly destruct mc.obj1 and mc.obj2 as mc goes out of scope on line (2). Again, in C++11 line (1) can be written more cleanly as myClass mc {arg1a, ..., arg2a, ...};.
Related
I have such code:
class A
{
public:
A(void);
~A(void)
{
delete b;
delete c;
delete d;
// ...
}
private:
B* b;
C* c;
D* d;
// ...
};
//A.cpp
A(void) : b(new B()), c(new C()), d(new D()) //...
{
}
Class A takes ownership over own objects b, c, d ...
What is the best way to keep these objects? I guess, that usage of std::unique_ptr<B/C/D> type will be suitable for this way. For example, it allows to don't care about carefull writing of destructor.
it allows to don't care about carefull writing of destructor.
More than that.
Your code is not exception-safe. For example, if new D() failed by exception being thrown, delete b and delete c won't be executed and memory will leak, because destructor won't be called if constructor fails. Smart pointers can help you to avoid this kind of situation.
Holding raw pointer as members you need to implement destructor carefully, and copy constructor and assignment etc too. See What is The Rule of Three? and Rule-of-Three becomes Rule-of-Five with C++11?.
Best is to keep everything by value. If it fits*, and does not need to be hidden**. If it does not fit or needs to be hidden first preference is std::unique_ptr***, second preference (if ownership has to be shared) is std::shared_ptr. And only as a last resort (example for which I cannot even think up). You would actually have raw pointers and manage lifetime yourself, with risk of memory errors and leaks.
* - sometimes you want to be able to have parent object on stack by value and child objects are, say, large arrays which, if stored by value would overflow the stack
** - sometimes you don't want to show what child objects really are (because they are complex, say boost.fusion adapted classes. Then you would want some form of PIMPL idiom:
class.hpp
struct b;
struct A { std::unique_ptr<b> b_; A(); ~A(); }
class.cpp:
struct b { ... }
A::A() = default;
A::~A() = default;
*** - automatic management of dynamically allocated members with unique_ptr
struct A {
std::unique_ptr<b> b_;
A(...):
b_(std::make_unique<b>(...)) {}
};
I think it's worth mentioning that if you do not want to transfer ownership, you must use const std::unique_ptr. Using a non-const std:unique_ptr allows to transfer it to another std:unique_ptr.
I've got a background in C and am trying to get my head around C++ classes and how the destructors get called as objects leave scope. As a side note, given the nature of what I am trying to do, I would rather not use STL structures like std::array<> or std::vector<> for the data containers I present below.
Here's a high level overview of my understanding. Given some class:
class some_class{
public:
int * member;
size_t n_members;
some_class(size_t count) ...
~some_class() ...
// a member function or operator overload
// that returns an instance of some_class
some_class do_something()
}
...
some_class * container;
// Some scope
{
some_class foo = some_class();
some_class * bar = new some_class();
container[0] = bar;
}
When some_class foo leaves the scope, its destructor gets called. If I wanted to store a pointer to an instance of some_class into container outside of the scope, I need to instantiate some_class bar on the heap so that memory does not immediately get de-allocated upon leaving scope - just like I would in C.
Now, the purpose of some_class is to hold an arbitrarily large amount of data and so int * member needs to be allocated on the heap.
Given above, the constructor and destructor for some_class() will look something like this:
// some_class constructor
some_class::some_class(size_t count) : n_members(count){
member = new int[count];
}
// some_class destructor
some_class::~some_class(){
delete[] member;
}
Now my problem becomes apparent: If I need to add an instance of some_class returned from the do_something() method, I am guaranteed to have a memory error (in this case, a double-free) because do_something() returns a stack-allocated some_class:
some_class * container = new some_class[n];
// Some scope
{
some_class foo = some_class();
some_class bar = foo.do_something();
container[0] = &bar; // <-- I know this is stupid but that's the point of this question
}
delete[] container;
My way around this is to make foo.do_something() return a pointer to an instance of some_class. Of course, not a solution. How would one properly address such a situation in true C++ way?
For example, one thing I've been reading up on was the use of shared pointers or unique pointers (or smart pointers in general). However, my understanding is that using these pointers requires you to have instantiated your object in the heap. It also really doesn't help the whole issue about requiring foo.do_something() to return a pointer.
Anyways, any thoughts would be appreciated.
Smart pointer can be used to hold pointer inside some_class like this:
#include <memory>
class some_class{
public:
// smart pointer instead of raw pointer
std::unique_ptr<int[]> member;
size_t n_members;
some_class(size_t count = 0) : member(new int[count]), n_members(count) {}
// destructor not needed
// a member function or operator overload
// that returns an instance of some_class
some_class do_something();
};
int main()
{
int n = 3;
// smart pointer instead of raw pointer
std::unique_ptr<some_class[]> container(new some_class[n]);
{
some_class foo = some_class(10);
some_class bar = foo.do_something();
// use std::move to transfer pointer ownership
container[0] = std::move(bar);
}
// no need to delete
}
I used to be proficient in C++, but moved to Java long ago and my C++ is rusty now :(.
One thing you can do is create a constructor that accepts a member of the class. Inside it, just copy the properties to your new instance. (Also it is possible to make it with a static method instead of overloading the constructor).
some_class::some_class(some_class* obj){
member = obj->member;
n_members = obj->n_members;
}
So you can do this in your code:
some_class * container;
// Some scope
{
some_class foo = some_class();
some_class * bar = new some_class();
container = new some_class(bar);
}
Hope it works for you.
I've stared using smart pointer and trying to wrap my head around best uses for it. I've read plenty of articles but I'm confused on which to use in the following example. I've included a shared_ptr and unique_ptrexamples to show what I'm trying to accomplish:
class A
public:
A();
private:
unique_ptr<B> ptrB;
unique_ptr<SomeObject> ptrUnique;
shared_ptr<SomeObject> ptrShared;
A::A()
{
ptrB(new B());
ptrUnique(new SomeObject());
ptrB->PassUnique(ptrUnique);
ptrShared(new SomeObject());
ptrB->PassShared(ptrShared);
}
class B:
public:
void PassUnique(unique_ptr<SomeObject> &ptr_unique);
void PassShared(weak_ptr<SomeObject> &ptr_weak);
void DoSomething();
private:
unique_ptr<SomeObject> ptrUnique;
weak_ptr<SomeObject> ptrWeak;
B::PassUnique(unique_ptr<SomeObject> &ptr_unique)
{
ptrUnique = ptr_unique;
}
B::PassShared(weak_ptr<SomeObject> &ptr_weak)
{
ptrWeak = ptr_weak;
}
B::DoSomething()
{
ptrUnique->SomeMethod();
shared_ptr<SomeObject> ptr1 = ptrWeak.lock();
ptr1->SomeMethod();
}
SomeObject class can be any class. A good example is a database handle that I pass from the parent class A were it was originally initiated to multiple class like B. And from B to C if it exists. My question is if I'm passing a unique_ptr as a reference will setting for example ptrUnqiue = ptr_unique in B:PassUnique create a copy which then is not correct? Or should this be done via shared_ptr? This understanding is what is confusing with smart pointers for me and would appreciate clarification.
Well, this is a question of lifetime. Do you need SomeObject to outlive A? Do B send or is being use outside of this context? You have to decide when your objects dies. If you think SomeObject exists only in this context, I would recommend A to be the owner, as it allocate the resource, and be to old a raw pointer to SomeObject. I would look like this:
class A
public:
A();
private:
unique_ptr<B> ptrB;
unique_ptr<SomeObject> ptrUnique;
};
A::A()
{
ptrB(new B());
ptrUnique(new SomeObject());
ptrB->PassUnique(*ptrUnique);
}
class B:
pubic:
void PassUnique(SomeObject& obj);
void DoSomething();
private:
SomeObject* ptrUnique;
};
B::PassUnique(SomeObject& obj)
{
ptrUnique = &obj;
}
B::DoSomething()
{
ptrUnique->SomeMethod();
}
There is no such thing as
ptrUnique = ptr_unique;
If you need SomeObject to be used and owned outside of this structure, then go with std::shared_ptr like you did. There were no errors with your std::shared_ptr code.
Answer is basically what would be a lifetime of the pointer in the A, B and/or C. Think of it as ranges, [A...a), [B...b) and [C...c). If [B...b) is always within [A...a) and [C...c) is always within [B...b), they have like a Russian dolls hierarchy, then passing down ref-to-ptr is ok. If ranges overlap and changes wildly so you don't really control where last ptr will be destructed and object will be deleted, you'd have to go with shared_ptr.
I'm a beginner to c++ so there are a lot of things quite not clear in my mind.
I have this code I need to write and in a class I make a constructor.
However, I don't need any parameters because I read from a file-stream inside the constructor. So my questions are:
1.Can I make a constructor like this:
class myClass {
private:
string title;
string organizer;
public:
myClass() {
title = stringRead();
organizer = stringRead();
}
}
where stringRead() is a function I have written to read from my file??
2.How do I call it afterwards when I need it? I know that the default constructror is being called like that:
myClass A;
A = myClass();
Is it the same?
3.If I have a pointer, how do I call the constructor again? This doesn't seem like it should be right...
myClass *B;
B = myClass();
Thanks in advance! =D
1) This constructor will work but you should favor using an initialization list (assuming stringRead() isn't a member function of myClass
class myClass {
private:
string title;
string organizer;
public:
myClass()
: title(stringRead()),
organizer(stringRead())
{ }
};
2) myClass A; is what you should be doing. You could alternatively have auto A = myClass(); which, after optimizations, will be the same thing. Without optimizations a temporary will be constructed, and then A will be move constructed from it, so this won't work with unmovable objects (your object is movable)
3) If you want to use a raw pointer then you would use
myClass *ptr = new myClass;
// bunch of code
delete ptr;
However, you'd be better using a smart pointer to control its lifetime. This way you won't need to manually delete
std::unique_ptr<myClass> ptr(new myClass);
or make_unique in c++14
auto ptr = std::make_unique<myClass>();
And of course use a shared_ptr if you have shared ownership
I think it's OK to assign the value returned by a function to a member of a class.
You can initialize it as you suggested (with myClass A;)
When you use pointers, you need myClass *k=new myClass();. You should remember to delete the object you created with delete k;.
Your constructor is fine, so long as the functions used within it are globals or static functions of this or another class.
myClass A; will invoke the constructor you have written.
To use a pointer, you need B = new myClass(). That will also call the same constructor. Don't forget to delete B at some point else you'll leak memory.
Do bear in mind that if an exception is thrown in a constructor then the destructor is not called.
Yes, you can, but it might not be the best approach. Reading from input can fail, failure in a constructor is often a non-recoverable event you'll want to handle. A good approach is reading the values outside the costructor, handling errors and calling the constructor only when you have "everything ready". Like this:
class myClass {
private:
string _title;
string _organizer;
public:
myClass(const string &title, const string &organizer) {
_title = title;
_organizer = organizer;
}
or, by using a more idiomatic C++ initializer list:
class myClass {
private:
string _title;
string _organizer;
public:
myClass(const string &title, const string &organizer):
_title(title), _organizer(organizer) {}
}
and then, somewhere else:
string title = stringRead();
string organizer = stringRead();
myClass A(title, organizer);
No, in this snippet:
myClass A;
A = myClass();
two different things happen: at line 1 the default constructor is called; at line 2, a temporary object is constructed (again, by calling the default constructor) and then assigned to A using the (rval for C++11) copy operator. This expression:
myClass A;
calls the default constructor. If you have parameters:
myClass A(title, organizer);
Nope, this does not even work. A pointer is not an object, you have to allocate the object. At that point, you can get a pointer to it:
myClass A;
myClass *B = &A;
you could also resort to dynamic allocation:
myClass *B = new myClass;
in this case, either remember to call delete B somewhere else or wrap B in a smart pointer:
std::unique_ptr<myClass> B(new myClass());
I have't coded in c++ for some time and I got stuck when I tried to compile this simple snippet:
class A
{
public:
void f() {}
};
int main()
{
{
A a;
a.f(); // works fine
}
{
A *a = new A();
a.f(); // this doesn't
}
}
It's a pointer, so instead try:
a->f();
Basically the operator . (used to access an object's fields and methods) is used on objects and references, so:
A a;
a.f();
A& ref = a;
ref.f();
If you have a pointer type, you have to dereference it first to obtain a reference:
A* ptr = new A();
(*ptr).f();
ptr->f();
The a->b notation is usually just a shorthand for (*a).b.
A note on smart pointers
The operator-> can be overloaded, which is notably used by smart pointers. When you're using smart pointers, then you also use -> to refer to the pointed object:
auto ptr = make_unique<A>();
ptr->f();
Allow an analysis.
#include <iostream> // not #include "iostream"
using namespace std; // in this case okay, but never do that in header files
class A
{
public:
void f() { cout<<"f()\n"; }
};
int main()
{
/*
// A a; //this works
A *a = new A(); //this doesn't
a.f(); // "f has not been declared"
*/ // below
// system("pause"); <-- Don't do this. It is non-portable code. I guess your
// teacher told you this?
// Better: In your IDE there is prolly an option somewhere
// to not close the terminal/console-window.
// If you compile on a CLI, it is not needed at all.
}
As a general advice:
0) Prefer automatic variables
int a;
MyClass myInstance;
std::vector<int> myIntVector;
1) If you need data sharing on big objects down
the call hierarchy, prefer references:
void foo (std::vector<int> const &input) {...}
void bar () {
std::vector<int> something;
...
foo (something);
}
2) If you need data sharing up the call hierarchy, prefer smart-pointers
that automatically manage deletion and reference counting.
3) If you need an array, use std::vector<> instead in most cases.
std::vector<> is ought to be the one default container.
4) I've yet to find a good reason for blank pointers.
-> Hard to get right exception safe
class Foo {
Foo () : a(new int[512]), b(new int[512]) {}
~Foo() {
delete [] b;
delete [] a;
}
};
-> if the second new[] fails, Foo leaks memory, because the
destructor is never called. Avoid this easily by using
one of the standard containers, like std::vector, or
smart-pointers.
As a rule of thumb: If you need to manage memory on your own, there is generally a superiour manager or alternative available already, one that follows the RAII principle.
Summary: Instead of a.f(); it should be a->f();
In main you have defined a as a pointer to object of A, so you can access functions using the -> operator.
An alternate, but less readable way is (*a).f()
a.f() could have been used to access f(), if a was declared as:
A a;
a is a pointer. You need to use->, not .