I have a question about Eigen library in C++. Actually, I want to calculate inverse matrix of sparse matrix.
When I used Dense matrix in Eigen, I can use .inverse() operation to calculate inverse of dense matrix.
But in Sparse matrix, I cannot find inverse operation anywhere. Does anyone who know to calculate inverse of sparse matrix? help me.
You cannot do it directly, but you can always calculate it, using one of the sparse solvers. The idea is to solve A*X=I, where I is the identity matrix. If there is a solution, X will be your inverse matrix.
The eigen documentation has a page about sparse solvers and how to use them, but the basic steps are as follows:
SolverClassName<SparseMatrix<double> > solver;
solver.compute(A);
SparseMatrix<double> I(n,n);
I.setIdentity();
auto A_inv = solver.solve(I);
It's not mathematically meaningful.
A sparse matrix does not necessarily have a sparse inverse.
That's why the method is not available.
A small extension on #Soheib and #MatthiasB's answers, if you're using Eigen::SparseMatrix<float> it's better to use SparseLU rather than SimplicialLLT or SimplicialLDLT, they produced wrong answers with me on float matrices
Be warned that the inverse of a sparse matrix is not necessarily sparse, so if you're working with large matrices (which is likely, if you're using sparse representations) then this is going to be expensive. Think carefully about whether you really need the actual matrix inverse. If you're going to use the matrix inverse to solve a system of equations, then you don't need to actually compute the matrix inverse and multiply it out (use the method typically named solve and supply the right-hand-side of the equation). If you need the inverse of the Fisher matrix for covariances, try to approximate.
You can find a example about inverse of Sparse Complex Matrix
I used of SimplicialLLT class,
you can find other class from bellow
http://eigen.tuxfamily.org/dox-devel/group__TopicSparseSystems.html
This page can help you with proper class name for your work (spead, accuracy and dimmenssion of your Matrix)
////////////////////// In His Name \\\\\\\\\\\\\\\\\\\\\\\\\\\
#include <iostream>
#include <vector>
#include <Eigen/Dense>
#include <Eigen/Sparse>
using namespace std;
using namespace Eigen;
int main()
{
SparseMatrix< complex<float> > A(4,4);
for (int i=0; i<4; i++) {
for (int j=0; j<4; j++) {
A.coeffRef(i, i) = i+j;
}
}
A.insert(2,1) = {2,1};
A.insert(3,0) = {0,0};
A.insert(3,1) = {2.5,1};
A.insert(1,3) = {2.5,1};
SimplicialLLT<SparseMatrix<complex<float> > > solverA;
A.makeCompressed();
solverA.compute(A);
if(solverA.info()!=Success) {
cout << "Oh: Very bad" << endl;
}
SparseMatrix<float> eye(4,4);
eye.setIdentity();
SparseMatrix<complex<float> > inv_A = solverA.solve(eye);
cout << "A:\n" << A << endl;
cout << "inv_A\n" << inv_A << endl;
}
Related
I am actually trying to solve large sparse linear systems using C++ lib Eigen.
Sparse matrices are taken from this page. Each system as this structure: Ax = b where A is the sparse matrix (n x n), b is computed as A*xe with xe vector of dimension n containing only zeros. After computing x I need to compute the relative error between xe and x. I have written some code but I can't understand why the relative error is so high (1.49853e+08) at the end of the computation.
#include <iostream>
#include <Eigen/Dense>
#include <unsupported/Eigen/SparseExtra>
#include<Eigen/SparseCholesky>
#include <sys/time.h>
#include <sys/resource.h>
using namespace std;
using namespace Eigen;
int main()
{
SparseMatrix<double> mat;
loadMarket(mat, "/Users/anto/Downloads/ex15/ex15.mtx");
VectorXd xe = VectorXd::Constant(mat.rows(), 1);
VectorXd b = mat*xe;
SimplicialCholesky<Eigen::SparseMatrix<double> > chol(mat);
VectorXd x = chol.solve(b);
double relative_error = (x-xe).norm()/(xe).norm();
cout << relative_error << endl;
}
The matrix ex15 can be downloaded from this page. It is a symmetric, positive definite matrix. Can anyone help me to solve the problem? Thank you in advance for your help.
According to this page, ex15 is not full rank. You should check that each step went well:
SimplicialLDLT<Eigen::SparseMatrix<double> > chol(mat);
if(chol.info()!=Eigen::Success)
return;
VectorXd x = chol.solve(b);
if(chol.info()!=Eigen::Success)
return;
and then check that you got one solution (if it's not full rank and that at least one solution exists, then there exist a whole subspace of solutions):
cout << (mat*x-b).norm()/b.norm() << "\n";
I am trying to determine the eigenvalues and eigenvectors of a sparse array in Eigen. Since I need to compute all the eigenvectors and eigenvalues, and I could not get this done using the unsupported ArpackSupport module working, I chose to convert the system to a dense matrix and compute the eigensystem using SelfAdjointEigenSolver (I know my matrix is real and has real eigenvalues). This works well until I have matrices of size 1024*1024 but then I start getting deviations from the expected results.
In the documentation of this module (https://eigen.tuxfamily.org/dox/classEigen_1_1SelfAdjointEigenSolver.html) from what I understood it is possible to change the number of max iterations:
const int m_maxIterations
static
Maximum number of iterations.
The algorithm terminates if it does not converge within m_maxIterations * n iterations, where n denotes the size of the matrix. This value is currently set to 30 (copied from LAPACK).
However, I do not understand how do you implement this, using their examples:
SelfAdjointEigenSolver<Matrix4f> es;
Matrix4f X = Matrix4f::Random(4,4);
Matrix4f A = X + X.transpose();
es.compute(A);
cout << "The eigenvalues of A are: " << es.eigenvalues().transpose() << endl;
es.compute(A + Matrix4f::Identity(4,4)); // re-use es to compute eigenvalues of A+I
cout << "The eigenvalues of A+I are: " << es.eigenvalues().transpose() << endl
How would you modify it in order to change the maximum number of iterations?
Additionally, will this solve my problem or should I try to find an alternative function or algorithm to solve the eigensystem?
My thanks in advance.
Increasing the number of iterations is unlikely to help. On the other hand, moving from float to double will help a lot!
If that does not help, please, be more specific on "deviations from the expected results".
m_maxIterations is a static const int variable, and as such it can be considered an intrinsic property of the type. Changing such a type property usually would be done via a specific template parameter. In this case, however, it is set to the constant number 30, so it's not possible.
Therefore, you're only choice is to change the value in the header file and recompile your program.
However, before doing that, I would try the Singular Value Decomposition. According to the homepage, its accuracy is "Excellent-Proven". Moreover, it can overcome problems due to numerically not completely symmetric matrices.
I solved the problem by writing the Jacobi algorithm adapted from the Book Numerical Recipes:
void ROTATy(MatrixXd &a, int i, int j, int k, int l, double s, double tau)
{
double g,h;
g=a(i,j);
h=a(k,l);
a(i,j)=g-s*(h+g*tau);
a(k,l)=h+s*(g-h*tau);
}
void jacoby(int n, MatrixXd &a, MatrixXd &v, VectorXd &d )
{
int j,iq,ip,i;
double tresh,theta,tau,t,sm,s,h,g,c;
VectorXd b(n);
VectorXd z(n);
v.setIdentity();
z.setZero();
for (ip=0;ip<n;ip++)
{
d(ip)=a(ip,ip);
b(ip)=d(ip);
}
for (i=0;i<50;i++)
{
sm=0.0;
for (ip=0;ip<n-1;ip++)
{
for (iq=ip+1;iq<n;iq++)
sm += fabs(a(ip,iq));
}
if (sm == 0.0) {
break;
}
if (i < 3)
tresh=0.2*sm/(n*n);
else
tresh=0.0;
for (ip=0;ip<n-1;ip++)
{
for (iq=ip+1;iq<n;iq++)
{
g=100.0*fabs(a(ip,iq));
if (i > 3 && (fabs(d(ip))+g) == fabs(d[ip]) && (fabs(d[iq])+g) == fabs(d[iq]))
a(ip,iq)=0.0;
else if (fabs(a(ip,iq)) > tresh)
{
h=d(iq)-d(ip);
if ((fabs(h)+g) == fabs(h))
{
t=(a(ip,iq))/h;
}
else
{
theta=0.5*h/(a(ip,iq));
t=1.0/(fabs(theta)+sqrt(1.0+theta*theta));
if (theta < 0.0)
{
t = -t;
}
c=1.0/sqrt(1+t*t);
s=t*c;
tau=s/(1.0+c);
h=t*a(ip,iq);
z(ip)=z(ip)-h;
z(iq)=z(iq)+h;
d(ip)=d(ip)- h;
d(iq)=d(iq) + h;
a(ip,iq)=0.0;
for (j=0;j<ip;j++)
ROTATy(a,j,ip,j,iq,s,tau);
for (j=ip+1;j<iq;j++)
ROTATy(a,ip,j,j,iq,s,tau);
for (j=iq+1;j<n;j++)
ROTATy(a,ip,j,iq,j,s,tau);
for (j=0;j<n;j++)
ROTATy(v,j,ip,j,iq,s,tau);
}
}
}
}
}
}
the function jacoby receives the size of of the square matrix n, the matrix we want to calculate the we want to solve (a) and a matrix that will receive the eigenvectors in each column and a vector that is going to receive the eigenvalues. It is a bit slower so I tried to parallelize it with OpenMp (see: Parallelization of Jacobi algorithm using eigen c++ using openmp) but for 4096x4096 sized matrices what I did not mean an improvement in computation time, unfortunately.
Is there an distinct and effective way of finding eigenvalues and eigenvectors of a real, symmetrical, very large, let's say 10000x10000, sparse matrix in Eigen3? There is an eigenvalue solver for dense matrices but that doesn't make use of the property of the matrix e.g. it's symmetry. Furthermore I don't want to store the matrix in dense.
Or (alternative) is there a better (+better documented) library to do that?
For Eigen, there's a library named Spectra. As is described on its web page, Spectra is a redesign of the ARPACK library using C++ language.
Unlike Armadillo, suggested in another answer, Spectra does support long double and any other real floating-point type (e.g. boost::multiprecision::float128).
Here's an example of usage (same as the version in documentation, but adapted for experiments with different floating-point types):
#include <Eigen/Core>
#include <SymEigsSolver.h> // Also includes <MatOp/DenseSymMatProd.h>
#include <iostream>
#include <limits>
int main()
{
using Real=long double;
using Matrix=Eigen::Matrix<Real, Eigen::Dynamic, Eigen::Dynamic>;
// We are going to calculate the eigenvalues of M
const auto A = Matrix::Random(10, 10);
const Matrix M = A + A.transpose();
// Construct matrix operation object using the wrapper class DenseGenMatProd
Spectra::DenseSymMatProd<Real> op(M);
// Construct eigen solver object, requesting the largest three eigenvalues
Spectra::SymEigsSolver<Real,
Spectra::LARGEST_ALGE,
Spectra::DenseSymMatProd<Real>> eigs(&op, 3, 6);
// Initialize and compute
eigs.init();
const auto nconv = eigs.compute();
std::cout << nconv << " eigenvalues converged.\n";
// Retrieve results
if(eigs.info() == Spectra::SUCCESSFUL)
{
const auto evalues = eigs.eigenvalues();
std::cout.precision(std::numeric_limits<Real>::digits10);
std::cout << "Eigenvalues found:\n" << evalues << '\n';
}
}
Armadillo will do this using eigs_sym
Note that computing all the eigenvalues is a very expensive operation whatever you do, usually what is done is to find only the k largest, or smallest eigenvalues (which is what this will do).
I am working with the EIGEN 3.2 c++ Matrix library. I have a problem that requires my extracting the phase or angle information from a matrix of type Eigen::MatrixXcd. The problem involves my having a matrix of complex numbers that is the result of calculations in my code. I have the result M of dimension nsamp by nsamp where nsamp is an integer of size 256 (for example).
Hence, MatrixXcd M(nsamp, nsamp);
Now I want to extract the phase (or angle information) from M. I know that the complex analysis method of doing this is,
MatrixXcd ratio = M.imag().array().sin()/M.real().array().cos();
MatrixXd phase = M.real().array().atan();
However, there is no atan method in the Eigen library. So, as a work around I am using
MatrixXcd cosPhase = M.real().array().cos()/M.array().abs();
MatrixXd phase = M.real().array().acos();
The math is solid, but I am getting incorrect answers. I have looked at the imaginary component i.e.
MatrixXd phase = M.imag().array().acos();
and get answers that are "more correct," which does not make sense.
Has anyone in the community dealt with this before and what is your solution?
Many Thanks,
Robert
Well. For anyone seeing this. I figured out the answer to my own question. To calculate the phase contribution we need to calculate the phase using the 2*atan(imag/(sqrt(real^2+imag^2)+real)) algorithm.
This is some simple test code included using the armadillo library
#include <iostream>
#include <armadillo>
using namespace std;
using namespace arma;
int main(int argc, const char * argv[]) {
// calculate the phase content resulting from a complex field
// matrix of type Eigen::MatrixXcd
double pi = acos(-1);
mat phase(2,2);
phase << pi/2 << pi/2 << endr
pi/2 << pi/2 << endr;
// form the complex field
cx_mat complexField = cx_mat(cos(phase), sin(phase));
// calculate the phase using the tan2 identity
mat REAL = real(complexField);
mat IMAG = imag(complexField);
// calculate the phase using real component of complexField
mat phaseResult = 2*atan(IMAG/(sqrt(REAL%REAL+IMAG%IMAG)+REAL));
cout << phaseResult << "\n" << endl;
return 0;
}
Very likely the function did not exist at the time the question was asked, but the simplest solution is to call the arg() function.
Eigen::MatrixXcd mat = ...;
Eigen::MatrixXd phase = mat.array().arg(); // needs .array() since this works per element
If you ever need to calculate this manually, better use atan2(imag, real) instead of that complicated 2*atan(...) formula.
Is it actually possible to calculate the Matrix Exponential of a Complex Matrix in c / c++?
I've managed to take the product of two complex matrices using blas functions from the GNU Science Library. for matC = matA * matB:
gsl_blas_zgemm (CblasNoTrans, CblasNoTrans, GSL_COMPLEX_ONE, matA, matB, GSL_COMPLEX_ZERO, matC);
And I've managed to get the matrix exponential of a matrix by using the undocumented
gsl_linalg_exponential_ss(&m.matrix, &em.matrix, .01);
But this doesn't seems to accept complex arguments.
Is there anyway to do this? I used to think c++ was capable of anything. Now I think its outdated and cryptic...
Several options:
modify the gsl_linalg_exponential_ss code to accept complex matrices
write your complex NxN matrix as real 2N x 2N matrix
Diagonalize the matrix, take the exponential of the eigenvalues, and rotate the matrix back to the original basis
Using the complex matrix product that is available, implement the matrix exponential according to it's definition: exp(A) = sum_(n=0)^(n=infinity) A^n/(n!)
You have to check which methods are appropriate for your problem.
C++ is a general purpose language. As mentioned above, if you need specific functionality you have to find a library that can do it or implement it yourself. Alternatively you could use software like MatLab and Mathematica. If that's too expensive there are open source alternatives, e.g. Sage and Octave.
"I used to think c++ was capable of anything" - if a general-purpose language has built-in complex math in its core, then something is wrong with that language.
Fur such very specific tasks there is a well-accepted solution: libraries. Either write your own, or much better, use an already existing one.
I myself rarely need complex matrices in C++, I always used Matlab and similar tools for that. However, this http://www.mathtools.net/C_C__/Mathematics/index.html might be of interest to you if you know Matlab.
There are a couple other libraries which might be of help:
http://eigen.tuxfamily.org/index.php?title=Main_Page
http://math.nist.gov/lapack++/
I was also thinking to do the same, writing your complex NxN matrix as real 2N x 2N matrix is the best way to solve the problem, then use gsl_linalg_exponential_ss().
Suppose A=Ar+i*Ai, where A is the complex matrix and Ar and Ai are the real matrices. Then write the new matrix B=[Ar Ai ;-Ai Ar] (Here the matrix is written in matlab notation). Now calculate the exponential of B, that is eB=[eB1 eB2 ;eB3 eB4], then exponential of A is given by, eA=eB1+1i.*eB2
(summing the matrices eB1 and 1i.*eB2).
I have written a code to calculate the matrix exponential of the complex matrices with the gsl function, gsl_linalg_exponential_ss(&m.matrix, &em.matrix, .01);
Here you have the complete code, and the compilation results. I have checked the result with the Matlab and result agrees.
#include <stdio.h>
#include <gsl/gsl_matrix.h>
#include <gsl/gsl_linalg.h>
#include <gsl/gsl_complex.h>
#include <gsl/gsl_complex_math.h>
void my_gsl_complex_matrix_exponential(gsl_matrix_complex *eA, gsl_matrix_complex *A, int dimx)
{
int j,k=0;
gsl_complex temp;
gsl_matrix *matreal =gsl_matrix_alloc(2*dimx,2*dimx);
gsl_matrix *expmatreal =gsl_matrix_alloc(2*dimx,2*dimx);
//Converting the complex matrix into real one using A=[Areal, Aimag;-Aimag,Areal]
for (j = 0; j < dimx;j++)
for (k = 0; k < dimx;k++)
{
temp=gsl_matrix_complex_get(A,j,k);
gsl_matrix_set(matreal,j,k,GSL_REAL(temp));
gsl_matrix_set(matreal,dimx+j,dimx+k,GSL_REAL(temp));
gsl_matrix_set(matreal,j,dimx+k,GSL_IMAG(temp));
gsl_matrix_set(matreal,dimx+j,k,-GSL_IMAG(temp));
}
gsl_linalg_exponential_ss(matreal,expmatreal,.01);
double realp;
double imagp;
for (j = 0; j < dimx;j++)
for (k = 0; k < dimx;k++)
{
realp=gsl_matrix_get(expmatreal,j,k);
imagp=gsl_matrix_get(expmatreal,j,dimx+k);
gsl_matrix_complex_set(eA,j,k,gsl_complex_rect(realp,imagp));
}
gsl_matrix_free(matreal);
gsl_matrix_free(expmatreal);
}
int main()
{
int dimx=4;
int i, j ;
gsl_matrix_complex *A = gsl_matrix_complex_alloc (dimx, dimx);
gsl_matrix_complex *eA = gsl_matrix_complex_alloc (dimx, dimx);
for (i = 0; i < dimx;i++)
{
for (j = 0; j < dimx;j++)
{
gsl_matrix_complex_set(A,i,j,gsl_complex_rect(i+j,i-j));
if ((i-j)>=0)
printf("%d+%di ",i+j,i-j);
else
printf("%d%di ",i+j,i-j);
}
printf(";\n");
}
my_gsl_complex_matrix_exponential(eA,A,dimx);
printf("\n Printing the complex matrix exponential\n");
gsl_complex compnum;
for (i = 0; i < dimx;i++)
{
for (j = 0; j < dimx;j++)
{
compnum=gsl_matrix_complex_get(eA,i,j);
if (GSL_IMAG(compnum)>=0)
printf("%f+%fi\t ",GSL_REAL(compnum),GSL_IMAG(compnum));
else
printf("%f%fi\t ",GSL_REAL(compnum),GSL_IMAG(compnum));
}
printf("\n");
}
return(0);
}