shared_ptr member and copy constructors - c++

I'm writing a C++ library and would like one of its classes to be implicitly shared. Unfortunately I'm getting a bit confused with its implementation. I want to use std::shared_ptr to store the data and I'm wondering if the code below is missing anything.
// MyClass.h
class MyClass
{
public:
MyClass (void);
private:
class Data;
std::shared_ptr<Data> mData;
};
// MyClass.cc
class MyClass::Data
{
public:
Data (void) { ptr = NULL; }
~Data (void) { delete ptr; }
int* ptr;
};
MyClass::MyClass (void)
: mData (new MyClass::Data())
{
mData->ptr = new int(5);
}
Looking at other people's code I noticed they added copy/move constructors/operators (using std::move, etc) and an empty destructor. One of the comments mentioned that MyClass needs an empty destructor so that MyClass::Data's destructor gets noticed by the compiler. Is any of this really necessary or is the above code good enough? are the default copy/move constructors/operators and destructors good enough?

Your code is fine. You might want to declare a copy constructor in case you want to deep-copy the data, but that kind of defeats the purpose of using a shared pointer.
The empty destructor comment is complete BS. If you don't provide a destructor, a default one will be used - in any case the destructors of the member classes will always be called.
When you see people needing to explicitly default their destructors (and assignment operators) in MyClass.cc, that's because they're using std::unique_ptr instead of std::shared_ptr. If you switch to using std::unique_ptr<Data>, you'll see the compiler-provided destructor etc. will barf when they can't find a definition for ~Data in scope. But std::shared_ptr is not allowed to barf.

Related

C++ Semantics of calling reset on a unique pointer in a destructor

Say we have a simple struct with a unique pointer in a hpp file:
struct SomeType
{
SomeType() = default;
~SomeType();
std::unique_ptr<int> ptr;
};
In the cpp we then have:
SomeType::~SomeType()
{
ptr.reset();
}
Is this destructor somehow useful or just superfluous?
Is there any chance of a double delete or other unwanted side-effects on memory/heap?
If that's the only line of code in the destructor it is unnecessary, it will happen either way. All members destructors are called after the parent destructor automatically.
It may be useful if you have some other stuff to do in the destructor and/or the exact order of actions is important.
Double deletion will not happen.

Unique Pointers and The Rule of 3

I often find myself using unique pointers in C++ when I want polymorphic behaviour. I typically implement pure abstract classes something like the below:
class A {
public:
virtual A* clone() const = 0; // returns a pointer to a deep copy of A
// other methods go here
};
The clone method comes in handy when I want to embellish another class with its own instance of A, for example:
#include <memory>
class B {
private:
std::unique_ptr<A> a_ptr;
public:
// ctor
B(const A& a) {
a_ptr = std::unique_ptr<A>(a.clone());
//...
}
// copy ctor
B(const B& other) : B(*other.a_ptr) {}
};
I invariably end up implementing the copy constructor in B to avoid a compiler error (MSVC gives a vague message about attempting to reference a deleted function), which makes complete sense because of the unique pointer. My questions can be summarised as follows:
Do I actually need the copy constructor in B? Perhaps there's a better pattern that would allow me to avoid it altogether.
If yes to 1, can I stop there? Will I ever need to implement the other default functions? I.e. is there any scenario where I need a default constructor and destructor also?
In practice, whenever I feel I need to implement the default functions, I typically implement a move-constructor alongside the other three; I usually use the copy-and-swap-idiom (as per GManNickG's answer in this thread). I assume this wouldn't change anything, but maybe I am wrong!
Thanks a lot!
First, I think the signature of your clone function could be
virtual std::unique_ptr<A> clone() = 0;
as you want deep copies of A instances and exclusive ownership within B. Second, you indeed have to define a copy constructor for your class when you want it to be copyable. Same for an assignment operator. This is due to the fact that std::unique_ptr is a move-only type, which hinders the compiler to generate default implementations.
Other special member functions are not needed, though they might make sense. The compiler won't generate move constructor and move assignment operator for you (as you ship your own copy/assignment functions), though in your case, you can = default; them easily. The destructor can equally well be defined with = default;, which would be in line with the core guidelines.
Note that defining the destructor via = default should be done in a translation unit, as std::unique_ptr requires the full type do be known upon freeing its resource.
Whether you need a default constructor totally depends on how yo want to use the class B.
As #lubgr mentioned in his answer, You should return unique_ptr not a raw one from the clone function. Anyway, going to Your questions:
Do You need a copy constructor in B? Well it depends on Your use cases, but if You copy objects of class B You may need one. But as You said, You do it quite often, so it would be wise to consider more generic approach. One of these would be creating a wrapper for unique_ptr which would have copy constructor and which would make a deep copy of this pointer in this copy constructor.
Consider following example:
template<class T>
class unique_ptr_wrap {
public:
unique_ptr_wrap(std::unique_ptr< T > _ptr) : m_ptr(std::move(_ptr)){}
unique_ptr_wrap(const unique_ptr_wrap &_wrap){
m_ptr = _wrap->clone();
}
unique_ptr_wrap(unique_ptr_wrap &&_wrap){
m_ptr = std::move(_wrap.m_ptr);
}
T *operator->() const {
return m_ptr.get();
}
T &operator*() const {
return *m_ptr;
}
private:
std::unique_ptr< T > m_ptr;
};
This again depends on Your needs. I personally would recommend overloading move constructor as well, to make it use less dynamic allocations (but this may be premateure optimization which is root of all evil).

Array class member initialization in C++

I have the following code snippet:
#include <iostream>
using namespace std;
class A {
int* data;
int size;
public:
A(int s):size(s)
{
data = new int[size];
}
A() {
data = nullptr;
}
~A() {
if (data) delete [] data;
}
};
class B {
A a[2];
public:
B() {
a[0] = A(10);
a[1] = A(11);
}
};
int main(int argc, char *argv[]) {
B b;
}
In the C++ code above, I have class A which has an array member int* data, and the (de)allocation of memory are handled by (de)constructor. The I created class B which has an array of class A of fixed length as a data member.
My question is: how to elegantly initialise the member A a[2]? In the code above, the A(10) and A(11) are created on the stack, when jumping out of the scope, their destructors will be called, hence the data comes invalid. When jumping of the main function's scope, the pointers held by a[2] will be deallocated twice, causing the error:
pointer being freed was not allocated.
One possible solution is to carefully design a copy constructor and a move constructor, by doing so the above coding paradigm could work.
Another solution I've tried is to initialise the array in the initialization list of class B:
B() : a { A(10), A(11) }
This solution works and I don't really tell the underlying mechanism of initialization list. I think it must be quite different from simply construct and copy. I really expected some experts could give an elaborate explanation of this mechanism. Of course, this solution is ugly hard-coded and not flexible.
So I wonder if there are some programming paradigms in C++ to tackle this design problem?
In the code above, the A(10) and A(11) are created on the stack
They are temporary objects. It is not specified where they are created or if they're created at all.
when jumping out of the scope, their destructors will be called
The destructor of each temporary will be called after the corresponding move assignment statement ends.
One possible solution is to carefully design a copy constructor and a move constructor, by doing so the above coding paradigm could work.
And {copy,move} assignment operator too. You should always do that when the implicitly declared ones don't do the right thing. And they never do the right thing if you delete something in the destructor.
Another solution I've tried is to initialise the array in the initialization list of class B
This solution works and I don't really tell the underlying mechanism of initialization list. I think it must be quite different from simply construct and copy.
The bug in the original code is badly behaving move assignment operator of A. Since the initialization list never move assigns from a temporary, it never triggers the bug.
This is actually the more elegant way to construct a that you asked for. Not because it avoids the bug, but because avoiding unnecessary moving is good thing, intrinsically.
So I wonder if there are some programming paradigms in C++ to tackle this design problem?
Yes. RAII and Single responsibility principle. Unless your class does nothing else, besides managing the memory pointed by data, it should not be managing the memory. Instead, it should delegate the memory management to a RAII object. In this case, you should use a std::vector member.
class A {
std::vector<int> data;
public:
A(int s):data(s) {}
A() = default;
};
Using an initializer list to construct B::a, like this:
class B {
A a[2];
public:
B() : a({10, 11}){
}
};
The ideal answer would be to force A to use movements instead of copies, or on a copy to allocate new space for the item. Of the two, the most efficient is the former and so I will expand on it below:
Forcing movement can be done in two fashions:
Delete the copy constructor and copy operator=, and implement your own move constructor and operator=
Consistently use std::move and std::swap.
Of these, the former is superior in that you will be unable to accidentally copy the class, but with the latter the fact that you are moving will be more evident.
To delete the default copy methods do:
class A {
A( const A& a ) = delete;
A& operator =( const A& a ) = delete;
}

RAII - Class Pointers and Scope

I want to gain a better understanding of how to implement the RAII idiom with my classes, through an example: What the recommended method is for ensuring pointers are free()'d properly in my class?
I have a class which should exist for the duration of the program. In the spirit of RAII and because I need to pass a reference to this class to other classes, I am holding it in a shared_ptr (not sure it actually needs to be held in a shared_ptr, but for fun, it is).
In the class ctor, I use 2 buffers (pointers) and then loop multiple times malloc()'ing, using the buffer and then free()'ing. The dtor should contain failsafe code to free the buffers, in the event of mishap.
The only way the dtor can see the buffers is if I declare them as class variables, however they are only used in the class ctor.
Example:
class Input
{
private:
PSOMETYPE buffer1;
public:
Input();
~Input();
}
Input::Input() : buffer1(NULL)
{
for(blahblah)
{
buffer1 = (PSOMETYPE)malloc(sizeof(SOMETYPE));
// Do work w/buffer1
if(buffer1 != NULL) { free(buffer1); buffer1 = NULL }
}
}
Input::~Input()
{
if(buffer1 != NULL) { free(buffer1); buffer1 = NULL }
}
Considering I only use the buffer in the ctor, does it make sense to declare it as a private class variable? If I declare it in the scope of the ctor, the dtor will have no knowledge as to what it is to free.
I know this is a trivial example, and honestly I could implement this as easily forgetting about using a smart pointer to reference my class and having a blank dtor, just free()'ing as I'm doing inside the loop. I have no mentor or schooling, and I'm uncertain of when the RAII idiom should be followed.
The spirit of RAII would be to use a local object to manage the locally allocated object, rather than artificially tying its lifetime to the object being constructed:
class Input
{
// no pointer at all, if it's only needed in the constructor
public:
Input();
// no explicit destructor, since there's nothing to explicitly destroy
};
Input::Input()
{
for(blahblah)
{
std::unique_ptr<SOMETYPE> buffer1(new SOMETYPE);
// or, unless SOMETYPE is huge, create a local object instead:
SOMETYPE buffer1;
// Do work w/buffer1
} // memory released automatically here
}
You should only ever have to use delete (or free, or whatever) yourself if you're writing a class whose purpose is to manage that resource - and usually there's already a standard class (such as a smart pointer or a container) that does what you want.
When you do need to write your own management class, always remember the Rule of Three: if your destructor deletes something, then the default copying behaviour of the class will almost certainly cause a double delete, so you need to declare a copy constructor and copy-assignment operator to prevent that. For example, with your class I could write the following incorrect code:
{
Input i1; // allocates a buffer, holds a pointer to it
Input i2(i1); // copies the pointer to the same buffer
} // BOOM! destroys both objects, freeing the buffer twice
The simplest way to prevent this is to delete the copy operations, so code like that will fail to compile:
class Input {
Input(Input const&) = delete; // no copy constructor
void operator=(Input) = delete; // no copy assignment
};
Older compilers may not support = delete; in which case you can get almost the same effect by declare them privately without = delete, and not implementing them.

Deleting new variables inside master new variable

Sorry about the title. I wasnt sure what to name it. If any mods are reading and they understand the question then please rename if needed too.
Say you create a new variable (varOne).
Inside the varOne code, other variables are created as new (varTwo, varThree).
If you call delete on varOne, will varTwo and varThree be deleted, or do you need to delete them AND delete varOne?
You only need to delete varTwo and varThree, because when you fall out of varOne's destructor, the delete you used to invoke varOne's destructor will clean up that instance of varOne.
In other words, in the example below, varOne is Foo, varTwo is m_i, and varThre is m_c:
class Foo
{
public:
Foo() : m_i( new int ), m_c( new char ) { }
~Foo() { delete m_i; delete m_c; }
// don't forget to take care of copy constructor and assignment operator here!!!
private:
int* m_i;
char* m_char;
};
main()
{
Foo* p = new Foo;
delete p;
}
Also make sure that when you do this, you follow The Rule of Three or your program will suffer memory problems. (In other words, if you are doing memory allocation in your constructor, be sure you either override or delete the default copy-constructor and assignment operators).
You have to delete them and delete varOne seperately, but actually the constructor of varOne should allocate those variables and the destructor should deallocate them if they have to be on the heap for some reason. It would be better to just store them by value and be rid of new and delete for good.
I'm not 100% sure what you mean, but in general, anything that you allocate with new, you have to individually deallocate with delete.
If you mean this in the context of a C++ class, you will need to manually delete varOne and varTwo of the destructor.
Use a smart pointer, and never ever ever delete anything in your own code.
I'm not sure how to understand your question, since you don't new a variable (all variables are static, automatic or member variables) but objects (the pointers you get from new will however usually assigned to use used to initialize variables, maybe that's what you meant?). Therefore I'll give a general answer ad hope that what you asked for is included.
First, as a basic rule, every object you allocate with new has to be deallocated explicitly with delete. However, the delete might be hidden in another object, like shared_ptr and scoped_ptr/unique_ptr from boost or C++11, or auto_ptr in earler versions of C++.
If your object contains subobjects, it's usually best to make them direct members, so you don't allocate them with new at all (indeed, that's a general rule in C++: If you don't absolutely have to dynamically allocate, don't). That is, you'd write your class as
class X
{
public:
// ...
private:
Type1 subobject1;
Type2 subobject2:
};
and don't have to mess with new/delete for the sub objects at all. However if you need to dynamically allocate the objects, you also have to delete them, e.g.
class X
{
public:
X()
{
subobject1 = new Type1();
try
{
subobject2 = new Type2();
}
catch(...)
{
delete subobject1;
}
}
~X()
{
delete subobject2;
delete subobject1;
}
// ...
private:
X(X const&); // disabled
X& operator=(X const&); // disabled
Type1* subobject1;
Type2* subobject2;
};
Note the rather complicated code in X's constructor to make sure the object is correctly cleaned up even in case of an exception. Also note that you also have to implement copy construction and assignment or disable them by making them private and unimplemented (note that C++11 offers the special syntax = delete to disable them). You can save yourself a lot of the trouble by using a smart pointer (but you still have to take care about copy construction and assignment, at least with the usual smart pointers):
class X
{
public:
X():
subobject1(new Type1()),
subobject2(new Type2())
{
}
private:
X(X const&) = delete; // disabled
X& operator=(X const&) = delete; // disabled
std::unique_ptr<Type1> subobject1;
std::unique_ptr<Type2> subobject2;
};
Here I've used C++11's unique_ptr (and consequently also used C++11 syntax for removing copy constructor and assignment operator). Note that on first impression this code seems to have no delete at all; however those deletes are actually hidden in the destructor of unique_ptr. Also note that now the explicit exception handling in the constructor is no longer needed; since the deleting is done in the destructors of the unique_ptrs, C++'s exception handling rules for constructors automatically take care of this.