I have imported a mesh object (.obj file from blender) into openGl window (glfw) context. I am following various tutorials on 3D picking to allow me to select it. What I cannot get my head around is, how to allow sub-portions of the mesh to get highlighted when clicked at one point. For example, a car mesh in which if you click over the door, the entire door gets highlighted. Without going into game engines, because my intention is to apply this concept to 3d diagrams in an app, what is the most straightforward way to implement this.
PS -- Before someone downvotes this, I have spent hours on google trying to search for an answer so apologies if this is off-topic / unsuitable.
the mesh has some colour information in form of vertex colours or textures. To highlight part of the mesh, you need to change the colour information from vertex arrays or textures that are used. This can be expensive cpu operation to generate the required arrays and textures, but after the data is generated, blitting it to screen takes no time. The main complexity is in modifying the data structures of the mesh.
Related
Context
I'm a beginner in 3D graphics and I'm starting out with Vulkan, which I already know it's not recommended save it please, currently working on a university project to develop the base of a 3D computer graphics engine based on the Vulkan API.
The problem
Example of running the app to render the classic 2D triangle
Drawing a 3D mesh after having drawn the triangle
So as you can see in the images above I want to be able to:
Run the engine.
Choose an object to be drawn.
Close the window.
Choose another object to be drawn.
Open the same window back up with only the last object chosen visible.
And the way I have been doing this is by essentially cleaning up the whole swap chain and recreating it from scratch once the window is closed and a new object has been chosen. Now I'm aware this probably sounds like terrorism for any computer graphics engineer but the reason I'm doing this is because I don't know a better way, I have just finished the vulkan tutorial.
Solutions tried
I have checked that I do a vkDestroyBuffer and vkFreeMemory on the current vertex buffer before recreating it again once I choose a different object.
I have disabled depth testing entirely in case it had something to do with it, it doesn't.
Note: The code is extensive and I really don't have a clue of which part of it could be relevant to the problem, so I opted for not cluttering the question, if there is an specific part you think it might help you find the solution please request it.
Thank you for taking the time to read my question.
A comment by user369070 ended up drawing my attention to the function I use to read OBJ files which made me realize that this function wasn't cleaning a data structure I use to store the vertices of the object chosen to be drawn before passing them to the vertex buffer.
I just had to add vertices = {}; at the top of the function to solve it.
In short: What is the "preferred" way to wrap OpenGL's buffers, shaders and/or matrices required for a more high level "model" object?
I am trying to write this tiny graphics engine in C++ built on core OpenGL 3.3 and I would like to implement an as clean as possible solution to wrapping a higher level "model" object, which would contain its vertex buffer, global position/rotation, textures (and also a shader maybe?) and potentially other information.
I have looked into this open source engine, called GamePlay3D and don't quite agree with many aspects of its solution to this problem. Is there any good resource that discusses this topic for modern OpenGL? Or is there some simple and clean way to do this?
That depends a lot on what you want to be able to do with your engine. Also note that these concepts are the same with DirectX (or any other graphic API), so don't focus too much your search on OpenGL. Here are a few points that are very common in a 3D engine (names can differ):
Mesh:
A mesh contains submeshes, each submesh contains a vertex buffer and an index buffer. The idea being that each submesh will use a different material (for example, in the mesh of a character, there could be a submesh for the body and one for the clothes.)
Instance:
An instance (or mesh instance) references a mesh, a list of materials (one for each submesh in the mesh), and contains the "per instance" shader uniforms (world matrix etc.), usually grouped in a uniform buffer.
Material: (This part changes a lot depending on the complexity of the engine). A basic version would contain some textures, some render states (blend state, depth state), a shader program, and some shader uniforms that are common to all instances (for example a color, but that could also be in the instance depending on what you want to do.)
More complex versions usually separates the materials in passes (or sometimes techniques that contain passes) that contain everything that's in the previous paragraph. You can check Ogre3D documentation for more info about that and to take a look at one possible implementation. There's also a very good article called Designing a Data-Driven Renderer in GPU PRO 3 that describes an even more flexible system based on the same idea (but also more complex).
Scene: (I call it a scene here, but it could really be called anything). It provides the shader parameters and textures from the environment (lighting values, environment maps, this kind of things).
And I thinks that's it for the basics. With that in mind, you should be able to find your way around the code of any open-source 3D engine if you want the implementation details.
This is in addition to Jerem's excellent answer.
At a low level, there is no such thing as a "model", there is only buffer data and the code used to process it. At a high level, the concept of a "model" will differ from application to application. A chess game would have a static mesh for each chess piece, with shared textures and materials, but a first-person shooter could have complicated models with multiple parts, swappable skins, hit boxes, rigging, animations, et cetera.
Case study: chess
For chess, there are six pieces and two colors. Let's over-engineer the graphics engine to show how it could be done if you needed to draw, say, thousands of simultaneous chess games in the same screen, instead of just one game. Here is how you might do it.
Store all models in one big buffer. This buffer has all of the vertex and index data for all six models clumped together. This means that you never have to switch buffers / VAOs when you're drawing pieces. Also, this buffer never changes, except when the user goes into settings and chooses a different style for the chess pieces.
Create another buffer containing the current location of each piece in the game, the color of each piece, and a reference to the model for that piece. This buffer is updated every frame.
Load the necessary textures. Maybe the normals would be in one texture, and the diffuse map would be an array texture with one layer for white and another for black. The textures are designed so you don't have to change them while you're drawing chess pieces.
To draw all the pieces, you just have to update one buffer, and then call glMultiDrawElementsIndirect()... once per frame, and it draws all of the chess pieces. If that's not available, you can fall back to glDrawElements() or something else.
Analysis
You can see how this kind of design won't work for everything.
What if you have to stream new models into memory, and remove old ones?
What if the models have different size textures?
What if the models are more complex, with animations or forward kinematics?
What about translucent models?
What about hit boxes and physics data?
What about different LODs?
The problem here is that your solution, and even the very concept of what a "model" is, will be very different depending on what your needs are.
I've asked several questions regarding VBO previously here and from the comments i had received i decided that a new approach must be taken.
To put it simply - I'm trying to draw the Mandelbrot set which is defined on a large FLOAT array, around 512X512 Points. the purpose of my program is to let the user control the zooming and world's orientation (it's a 3d model).
so far I've painted the entire thing using GL_TRIANGLE_STRIP which turned to be a bad choice because of its slow painting process. also because implementing my painting style (order of calling the glVertex) became impossible for coding for VBOs.
so I've got several questions.
even after this description i'm not sure either the VBO is the best choice because it's up the user to control the calculations.for each calculation that he causes by the program, i have to recompute the mandelbrot set(~60ms),and recopy the points to the buffer : a process which takes some time(?ms).
the program allows the user also to move in the world so no calculations are done here therefore VBO is an excellent choice here.
1.what's the best way to paint height map(when each cell in the array holds only the height)
2.how can i apply it on VBO and transfer it to cuda (cudaRegisterBuffer or something like that)
3.is there a way to distinguish between the mode and decide when VBOs are needed(in a no calculations mode) and when they aren't(calculations mode).
You don't need to copy the CUDA data each frame if you bind the CUDA array/VBO to the DirectX/OpenGL VB (refer to the CUDA Programming Guide for details). One way to render data as a height-field is to use the Geometry Shader to emit the tris based on the height-field. Another way is to use the height field as a parallax-map (ref DirectX SDK). My personal fave would be to make your height-field an array of positions (X/Y/Z) and use CUDA to modify only the Y-Values, then use an index buffer to define the polygons that compose the surface. Note that you'll also need to update the vertex normals, and you may also want to use XYZ/UV if you want to texture the surface. If 512x512 is too big, use raster-ops (texture sampling) to populate a lower-resolution height-field of the region of interest. You can do this stage in CUDA or OpenGL/DirectX (I'd recommend doing it in CUDA where you can easily write your own sampling kernel to lookup pixels when down-sampling).
I'm trying to, in JOGL, pick from a large set of rendered quads (several thousands). Does anyone have any recommendations?
To give you more detail, I'm plotting a large set of data as billboards with procedurally created textures.
I've seen this post OpenGL GL_SELECT or manual collision detection? and have found it helpful. However it can take my program up to several minutes to complete a rendering of the full set, so I don't think drawing 2x (for color picking) is an option.
I'm currently drawing with calls to glBegin/glVertex.../glEnd. Given that I made the switch to batch rendering on the GPU with vao's and vbo's, do you think I would receive a speedup large enough to facilitate color picking?
If not, given all of the recommendations against using GL_SELECT, do you think it would be worth me using it?
I've investigated multithreaded CPU approaches to picking these quads that completely sidestep OpenGL all together. Do you think a OpenGL-less CPU solution is the way to go?
Sorry for all the questions. My main question remains to be, whats a good way that one can pick from a large set of quads using OpenGL (JOGL)?
The best way to pick from a large number of quad cannot be easily defined. I don't like color picking or similar techniques very much, because they seem to be to impractical for most situations. I never understood why there are so many tutorials that focus on people that are new to OpenGl or even programming focus on picking that is just useless for nearly everything. For exmaple: Try to get a pixel you clicked on in a heightmap: Not possible. Try to locate the exact mesh in a model you clicked on: Impractical.
If you have a large number of quads you will probably need a good spatial partitioning or at least (better also) a scene graph. Ok, you don't need this, but it helps A LOT. Look at some tutorials for scene graphs for further information's, it's a good thing to know if you start with 3D programming, because you get to know a lot of concepts and not only OpenGl code.
So what to do now to start with some picking? Take the inverse of your modelview matrix (iirc with glUnproject(...)) on the position where your mouse cursor is. With the orientation of your camera you can now cast a ray into your spatial structure (or your scene graph that holds a spatial structure). Now check for collisions with your quads. I currently have no link, but if you search for inverse modelview matrix you should find some pages that explain this better and in more detail than it would be practical to do here.
With this raycasting based technique you will be able to find your quad in O(log n), where n is the number of quads you have. With some heuristics based on the exact layout of your application (your question is too generic to be more specific) you can improve this a lot for most cases.
An easy spatial structure for this is for example a quadtree. However you should start with they raycasting first to fully understand this technique.
Never faced such problem, but in my opinion, I think the CPU based picking is the best way to try.
If you have a large set of quads, maybe you can group quads by space to avoid testing all quads. For example, you can group the quads in two boxes and firtly test which box you
I just implemented color picking but glReadPixels is slow here (I've read somehere that it might be bad for asynchron behaviour between GL and CPU).
Another possibility seems to me using transform feedback and a geometry shader that does the scissor test. The GS can then discard all faces that do not contain the mouse position. The transform feedback buffer contains then exactly the information about hovered meshes.
You probably want to write the depth to the transform feedback buffer too, so that you can find the topmost hovered mesh.
This approach works also nice with instancing (additionally write the instance id to the buffer)
I haven't tried it yet but I guess it will be a lot faster then using glReadPixels.
I only found this reference for this approach.
I'm using the solution that I've borrowed from DirectX SDK, there's a nice example how to detect the selected polygon in a vertext buffer object.
The same algorithm works nice with OpenGL.
I'm extremely new to OpenGL. I'm writing a program that displays flying 3D text on screen. I need to know when certain text string appears (drawn) onto the screen and are visible to the user. The program needs to identify which text strings are displayed. (Note: although my problem deals with text, it could be generalized to any OpenGL object).
At first, I started to think that I could use OpenGL's picking mechanism, but so far I've only seen examples where the selection area is focused on some sort of user interaction. I want to know what objects are displayed on the entire window area. This leads me to think I'm on the wrong track... Am I missing something?
Any suggestions are welcome.
You can use the query objects (specifically those object created using GL_ARB_occlusion_query extension Specification). Those object are used to query how many fragments are rendered using a sequence of OpenGL operations (begin/end, etc...).
Another scheme (software only), is to determine a bounding box for your rendered text, then compute mathematically whether the bounding box is inside the view frustrum (derived from the current perspective used for rendering.
A note: using OpenGL picking doesn't necessary imply the use of gluPickMatrix. You can render you scene "as is", and the query the rendered names (altought picking is deprecated from OpenGL 3).
Query objects are easy to use, and they are lightweight. Picking is another good solution for most hardware, but more schematic than query objects.
hmm, is it actually in 3D? or is it just 2D text on the screen in 2D space? in that case I would just keep track of it manually. how exactly are you drawing your text?
generally the way you do this is with a "frustum check" where you basically just make a volume for the camera and test whether you're 3d objects are inside it or not.
You can try OpenGL's feedback mechanism. In this mode, OpenGL generates fragments and passes them to a feedback buffer. If something is clipped, no fragments will be generated. When the text becomes visible, you will find the corresponding fragment in the fragment buffer.
This link should get you started.
Here is another link, the Question 10.010 seems particularly relevant to what you want.
Run your object coordinates through your projection and modelview matrices to get screen-space coordinates. Compare the X/Y output against your screen extents to figure out if the text is on-screen.