Library design: allow user to decide between "header-only" and dynamically linked? - c++

I have created several C++ libraries that currently are header-only. Both the interface and the implementation of my classes are written in the same .hpp file.
I've recently started thinking that this kind of design is not very good:
If the user wants to compile the library and link it dynamically, he/she can't.
Changing a single line of code requires full recompilation of existing projects that depend on the library.
I really enjoy the aspects of header-only libraries though: all functions get potentially inlined and they're very very easy to include in your projects - no need to compile/link anything, just a simple #include directive.
Is it possible to get the best of both worlds? I mean - allowing the user to choose how he/she wants to use the library. It would also speed up development, as I'd work on the library in "dynamically-linking mode" to avoid absurd compilation times, and release my finished products in "header-only mode" to maximize performance.
The first logical step is dividing interface and implementation in .hpp and .inl files.
I'm not sure how to go forward, though. I've seen many libraries prepend LIBRARY_API macros to their function/class declarations - maybe something similar would be needed to allow the user to choose?
All of my library functions are prefixed with the inline keyword, to avoid "multiple definition of..." errors. I assume the keyword would be replaced by a LIBRARY_INLINE macro in the .inl files? The macro would resolve to inline for "header-only mode", and to nothing for the "dynamically-linking mode".

Preliminary note: I am assuming a Windows environment, but this should be easily transferable to other environments.
Your library has to be prepared for four situations:
Used as header-only library
Used as static library
Used as dynamic library (functions are imported)
Built as dynamic library (functions are exported)
So let's make up four preprocessor defines for those cases: INLINE_LIBRARY, STATIC_LIBRARY, IMPORT_LIBRARY, and EXPORT_LIBRARY (it is just an example; you may want to use some sophisticated naming scheme).
The user has to define one of them, depending on what he/she wants.
Then you can write your headers like this:
// foo.hpp
#if defined(INLINE_LIBRARY)
#define LIBRARY_API inline
#elif defined(STATIC_LIBRARY)
#define LIBRARY_API
#elif defined(EXPORT_LIBRARY)
#define LIBRARY_API __declspec(dllexport)
#elif defined(IMPORT_LIBRARY)
#define LIBRARY_API __declspec(dllimport)
#endif
LIBRARY_API void foo();
#ifdef INLINE_LIBRARY
#include "foo.cpp"
#endif
Your implementation file looks just like usual:
// foo.cpp
#include "foo.hpp"
#include <iostream>
void foo()
{
std::cout << "foo";
}
If INLINE_LIBRARY is defined, the functions are declared inline and the implementation gets included like a .inl file.
If STATIC_LIBRARY is defined, the functions are declared without any specifier, and the user has to include the .cpp file into his/her build process.
If IMPORT_LIBRARY is defined, the functions are imported, and there isn't a need for any implementation.
If EXPORT_LIBRARY is defined, the functions are exported and the user has to compile those .cpp files.
Switching between static / import / export is a really common thing, but I'm not sure if adding header-only to the equation is a good thing. Normally, there are good reasons for defining something inline or not to do so.
Personally, I like to put everything into .cpp files unless it really has to be inlined (like templates) or it makes sense performance-wise (very small functions, usually one-liners). This reduces both compile time and - way more important - dependencies.
But if I choose to define something inline, I always put it in separate .inl files, just to keep the header files clean and easy to understand.

It is operating system and compiler specific. On Linux with a very recent GCC compiler (version 4.9) you might produce a static library using interprocedural linktime optimization.
This means that you build your library with g++ -O2 -flto both at compile and at library link time, and that you use your library with g++ -O2 -flto both at compile and link time of the invoking program.

This is to complement #Horstling's answer.
You can either create a static or a dynamic library. When you create statically-linked libraries, compiled code for all functions/objects will be saved to a file (with .lib extension in Windows). At main project (the project using the library) 's link time, these codes will be linked into your final executable together with the main project codes. So the final executable wouldn't have any runtime dependency.
Dynamically linked libraries will be merged into the main project at run time (and not link time). When you compile the library you get a .dll file (which contains actual compiled code) and a .lib file (which contains enough data for the compiler/runtime to find functions/objects in the .dll file). At link time, the executable will be configured to load the .dll and use compiled code from that .dll as needed. You will need to distribute the .dll file with your executable to be able to run it.
There is no need to choose between static or dynamic linking (or header-only) when designing your library, you create multiple project/makefiles, one to create a static .lib, another to create a .lib/.dll pair, and distribute both versions, for the user to choose between. (You'll need to use preprocessor macros like the ones #Horstling suggested).
You cannot put any templates in a pre-compiled library, unless you use a technique called Explicit Instantiation, which limits template parameters.
Also note that modern compiler/linkers usually do not respect the inline modifier. They may inline a function even if it's not designated as inline, or may dynamically call another that has inline modifier, as they see fit. (Regardless, I'll advise explicitly putting inline where applicable for maximum compatibility). So, there won't be any runtime performance penalty if you use a statically linked library instead of a header-only library (and enable compiler/linker optimizations, of course). As others have suggested, for really small functions that are sure to benefit from being called inline, it is best practice to put them in header files, so dynamically linked libraries will also not suffer any significant performance loss. (In any case, inlining functions will only affect performance for functions that are being called very often, inside loops that are going to be called thousands/millions of times).
Instead of putting inline functions in header files (with an #include "foo.cpp" in your header), you can change makefile/project settings and add foo.cpp to the list of source files to be compiled. This way, if you change any function implementation there will be no need to re-compile the whole project and only foo.cpp will be re-compiled. As I mentioned earlier, your small functions will still be inlined by the optimizing compiler, and you don't need to worry about that.
If you use/design a pre-compiled library, you should consider the case where the library is compiled with a different version of compiler to the main project. Each different compiler version (even different configurations, like Debug or Release) uses a different C runtime (things like memcpy, printf, fopen, ...) and C++ standard library runtime (things like std::vector<>, std::string, ...). These different library implementations may complicate linking, or even create runtime errors.
As a general rule, always avoid sharing compiler runtime objects (data structures that are not defined by standards, like FILE*) across libraries, because incompatible data structures will lead to runtime errors.
When linking your project, C/C++ runtime functions must be linked into your library .lib or .lib/.dll, or your executable .exe. C/C++ runtime itself can be linked as static or dynamic library (you can set this in makefile/project settings).
You will find that dynamically linking to C/C++ runtime in both the library and the main project (even when you compile the library itself as a static library) avoids most linking problems (with duplicate function implementations in multiple runtime versions). Of course you would need to distribute runtime DLLs for all used versions with your executable and library.
There are scenarios that statically linking to C/C++ runtime is needed, and the best approach in these cases would be to compile the library with the same compiler setting as the main project to avoid linking problems.

Rationale
Put as little as necessary in header files and as much as possible in library modules, because of the very reasons that you mentioned: compile-time dependency and long compilation time. The only good reasons for header-only modules are:
generic templates for user-defined template parameter;
very short convenience functions when inlining gives significant
performance.
In case 1, it is often possible to hide some functionality that does not depend on the user-defined type in a .cpp file.
Conclusion
If you stick to this rationale, then there is no choice: templated functionality that must allow user-defined types cannot be pre-compiled, but requires a header-only implementation. Other functionality should be hidden from the user in a library to avoid exposing them to the implementation details.

Rather than a dynamic library, you could have a precompiled static library and thin header file. In an interactive quick build, you get the benefit of not having to recompile the world if implementation details changes. But a fully optimized release build can do global optimization and still figure out it can inline functions. Basically, with "link-time code generation" the toolset does the trick you were thinking about.
I'm familiar with Microsoft's compiler, which I know for sure does this as of Visual Studio 2010 (if not earlier).

Templated code will necessarily be header-only: for instantiating this code, the type parameters must be known at compilation time. There is no way to embed template code in shared libraries. Only .NET and Java support JIT instantiation from byte-code.
Re: non-template code, for short one-liners I suggest keeping it header-only. Inline functions give the compiler a lot more opportunities to optimize the final code.
To avoid "insane compilation time", Microsoft Visual C++ has a "precompiled headers" feature. I do not think GCC has a similar feature.
Long functions should not be inlined in any case.
I had one project which had header-only bits, compiled library bits and some bits I could not decide where belonged. I ended up having .inc files, conditionally included in either .hpp or .cxx depending on #ifdef. Truth to be told, the project was always compiled in "max inline" mode, so after a while I got rid of the .inc files and simply moved the contents to .hpp files.

Is it possible to get the best of both worlds?
In terms; limitations arise because tools aren't smart enough. This answer gives the current best effort that is still portable enough to be used effectively.
I've recently started thinking that this kind of design is not very good.
It ought to be. Header-only libraries are ideal because they simplify deployment: makes the reusing mechanism of the language similar to almost all others', which is just the sane thing to do. But this is C++. Current C++ tools still rely on half-a-century-old linking models that remove important degrees of flexibility, such as choosing which entry points to import or export on an individual level without being forced to change the library's original source code. Also, C++ lacks a proper module system and still relies on glorified copy-paste operations to work (although this is just a side factor to the problem in question).
In fact, MSVC is a little better in this regard. It is the only major implementation trying to achieve some degree of modularity in C++ (by attempting e.g. C++ modules). And it is the only compiler that actually allows e.g. the following:
//// Module.c++
#pragma once
inline void Func() { /* ... */ }
//// Program1.c++
#include <Module.c++>
// Inlines or "vague" links Func(), whatever is better.
int main() { Func(); }
//// Program2.c++
// This forces Func() to be imported.
// The declaration must come *BEFORE* the definition.
__declspec(dllimport) __declspec(noinline) void Func();
#include <Module.c++>
int main() { Func(); }
//// Program3.c++
// This forces Func() to be exported.
__declspec(dllexport) __declspec(noinline) void Func();
#include <Module.c++>
Note that this can be used to selectively import and export individual symbols from the library, although still cumbersomely.
GCC also accepts this (but the order of the declarations must be changed) and Clang does not have any way to achieve the same effect without changing the library's source.

Related

How to make a library in c++ like stl

I have made my own implementations of many of the STL features like Vectors, Lists, BST, Queue, Stack and given them all the functions that an STL corresponding library has....
Now i want to use this library by
#include "myLibName.h"
What I Did :
g++ -o -c myLib myLib.cpp
From This I got the object file...
But when i compile programs i have to link the object file myself...
Is there any way that i can do without linking...like the iostream and the other libraries are linked automatically.
I know that a SHARED OBJECT file (eg. libc.so in C) is where all the implementations are held in C....
If that's the solution then how do i make any and use it like other standard libraries in C++ without linking object file every time.
PS: After a lot of efforts i have created these libraries myself...Now Struck at the final step...Pls Help...
You can't unless you're going to write your own toolchain. GCC links in its runtime and standard library because it's GCC and knows that it should; it won't magically do the same with your library.
Conventionally, either make your library header-only or ship a .a/.so/.dll for devs to link against at linktime. In the latter two cases you'll also need to ship the .so/.dll for users to link against at runtime.
To make your build process cleaner for large projects in which you need to link multiple projects, you can use Makefiles.
After that you need to just type make at the terminal to compile and build the whole project.
Another solution is the following, although many people don't recommend it,
header.h
class Foo
{
// some variable and method declarations.
}
header.h is your header file which will contain your declarations.
implement.cpp // this is the implementation file
#include "header.h"
// Now implement various methods you declared in your "header.h" file.
implement.cpp is your implementation file which contains the implementation and the definition of static members.
main.cpp
#include "header.cpp"
// use your methods.
Now you don't need to link your object files, just do g++ -Wall main.cpp
First of all, you should probably differentiate between STL and the Standard C++ Library.
Each compiler comes with its own implementation of the Standard Library, some of them being (at least mostly) compatible (see clang++ and g++). So basically your way to go would be to modify the compiler you are using.
If you are writing header-only implementations, then no library is needed to be built and you can use it without linking. But in that case your work has to be distributed as source and not as library + header.
If you want to simply distribute your library and do not mind to link against the shared or static library you distributed, you should build a shared or static library, depending on the case. But you will have to link it when it is used.

How Iostream file is located in computer by c++ code during execution

i want to know that in a c++ code during execution how iostream file is founded. we write #include in c++ program and i know about #include which is a preprocessor directive
to load files and is a file name but i don't know that how that file is located.
i have some questions in my mind...
Is Standard library present in compiler which we are using?
Is that file is present in standard library or in our computer?
Can we give directory path to locate the file through c++ code if yes then how?
You seem to be confused about the compilation and execution model of C++. C++ is generally not interpreted (though it could) but instead a native binary is produced during the compilation phase, which is then executed... So let's take a detour.
In order to go from a handful of text files to a program being executed, there are several steps:
compilation
link
load
execution proper
I will only describe what traditional compilers do (such as gcc or clang), potential variations will be indicated later on.
Compiling
During compilation, each source file (generally .cpp or .cxx though the compiler could care less) is processed to produced an object file (generally .o on Linux):
The source file is preprocessed: this means resolving the #include (copy/pasting the included file in the current file), navigating the #if and #else to remove unneeded sources and expanding macros.
The preprocessed file is fed to the compiler which will produce native code for each function, static or global variable, etc... the format depends on the target system in general
The compiler outputs the object file (it's a binary format, in general)
Linking
In this phase, multiple object files are assembled together into a library or an executable. In the case of a static library or a statically-linked executable, the libraries it depend on are also assembled in the produced file.
Traditionally, the linker job is relatively simple: it just concatenates all object files, which already contain the binary format the target machine can execute. However it often actually does more: in C and C++ inline functions are duplicated across object files, so the linker need to keep only one of the definitions, for example.
At this point, the program is "compiled", and we live the realm of the compiler.
Loading
When you ask to execute a program, the OS will load its code into memory (thanks to a loader) and execute it.
In the case of a statically linked executable, this is easy: it's just a single big blob of code that need be loaded. In the case of a dynamically linked executable, it implies finding the dependencies and "resolving the symbols", I'll describe this below:
First of all, your dynamically linked executable and libraries have a section describing which other libraries they depend on. They only have the name of the library, not its exact location, so the loader will search among a list of paths (LD_LIBRARY_PATH for example on Linux) for the libraries and actually load them.
When loading a library, the loader will perform replacements. Your executable had placeholders saying "Here should be the address of the printf function", and the loader will replace that placeholder with the actual address.
Once everything is loaded properly, all symbols should be resolved. If some symbols are missing, ie the code for them is not found in either the present library or any of its dependencies, then you generally get an error (either immediately, or only when the symbol is actually needed if you use lazy loading).
Executing
The code (assembler instruction in binary format) is now executed. In C++, this starts with building the global and static objects (at file scope, not function-static), and then goes on to calling your main function.
Caveats: this is a simplified view, nowadays Link-Time Optimizations mean that the linker will do more and more, the loader could actually perform optimizations too and as mentioned, using lazy loading, the loader might be invoked after the execution started... still, you've got to start somewhere, don't you ?
So, what does it mean about your question ?
The #include <iostream> in your source code is a pre-processor directive. It is thus fully resolved early in the compilation phase, and only depends on finding the appropriate header (no library code is actually needed yet). Note: a compiler would be allowed not to have a header file sitting around, and just magically inject the necessary code as if the header file existed, because this is a Standard Library header (thus special). For regular headers (yours) the pre-processor is invoked.
Then, at link-time:
if you use static linking, the linker will search for the Standard Library and include it in the executable it produces
if you use dynamic linking, the linker will note that it depends on the Standard Library file (libc++.so for example) and that the produced code is missing an implementation of printf (for example)
Then, at load time:
if you used dynamic linking, the loader will search for the Standard Library and load its code
Then, at execution time, the code (yours and its dependencies) is finally executed.
Several Standard Library implementations exist, off the top of my head:
MSVC ships with a modified version of Dirkumware
gcc ships with libstdc++ (which depends on libc)
clang ships with libc++ (which depends on libc), but may use libstdc++ instead (with compiler flags)
And of course, you could provide others... probably... though setting it up might not be easy.
Which is ultimately used depends on the compiler options you use. By default the most common compiler ship with their own implementation and use it without any intervention on your part.
And finally yes, you can indeed specify paths in a #include directive. For example, using boost:
#include <boost/optional.hpp>
#include <boost/algorithm/string/trim.hpp>
you can even use relative paths:
#include <../myotherproject/x.hpp>
though this is considered poor form by some (since it breaks as soon as your reorganize your files).
What matters is that the pre-processor will look through a list of directories, and for each directory append / and the path you specified. If this creates the path of an existing file, it picks it, otherwise it continues to the next directory... until it runs out (and complain).
The <iostream> file is just not needed during execution. But that's just the header. You do need the standard library, but that's generally named differently if not included outright into your executable.
The C++ Standard Library doesn't ship with your OS, although on many Linux systems the line between OS and common libraries such as the C++ Standard Library is a bit thin.
How you locate that library is very much OS dependent.
There can be 2 ways to load a header file (like iostream.h) in C++
if you write the code as:
# include <iostream>
It will look up the header file in include directory of your C++ compiler and will load it
Other way you can give the full path of the header file as:
# include "path_of_file.h"
And loading up the file is OS dependent as answered by MSalters
You definitely required the standard library header files so that pre-processor directive can locate them.
Yes those files are present in the library and on include copied to our code.
if we had defined the our own header file then we have to give path of that file. In that way we can include also *.c or *.cpp along with the header files in which we had defined various methods and those had to include at pre-processing time.

Making libraries and avoiding linker issues

I have about a dozen functions all related to the same purpose, and I am trying to create a library. A library that I can store away in a directory somewhere that I can then include as an include directory and just go about my business including said library in my projects that require its use.
Side Note:
First I'd like to say, I have given considerable time into finding an answer to this. I had thought I found a solution to it when I realized the linker would throw errors when I included the library in multiple source files. Now that I know that, I have again searched for an answer to my woes. I started looking at other libraries I know to do the same thing, or that I believe to. I looked at conio.h as I include it all the time for its kbhit() and getch() functions. Though I didn't understand most of what I had in it, I searched a few keywords and found that it may in fact be including the function definitions through a dll.
I've also done a handful of google searches.
To explain what I am doing a little bit. I have create 2 or 3 data structures that allow me to create chunks of data with headers that specify what the data is and how it is to be treated. Then a couple more for reading and writing those chunks to files.
To allow easy creation of these structures I have made stand-alone functions. To allow easy manipulation of these structures I have made even more stand-alone functions.
I, simply put, need a way to include a library that somehow directly or indirectly defines all these functions and structures. How can I do so?
(without creating a myriad of inlines)
You can include a .lib dependency in your code by using the #pragma comment
#pragma comment (lib,"LibraryFileName.lib")
You can read more about #pragma comment here.
I normally like to make a a Linker.h file in my library soultion and include that file in every header found in my library. Here is an example of it.
#ifndef __GRAPHICCOMMUNICATOR_GUARD_linklib__
#define __GRAPHICCOMMUNICATOR_GUARD_linklib__
#if defined(_DEBUG)
#pragma comment (lib,"GraphicCommunicator-mt-d.lib")
#elif !defined(_DEBUG)
#pragma comment (lib,"GraphicCommunicator-mt.lib")
#else
#error link: no suitable library
#endif
#endif // __GRAPHICCOMMUNICATOR_GUARD_linklib__
Putting everything in one header is causing the problem.
You can leave class member funnctions defined inline or other inline function in headers and include them more than once.
Otherwise you need to move implementations into cpp files and build a static (or dynamic) library. If you are learning, static may be easier. Make a new project and select "Static library" from the application settings.
To use the library you could use the #pragma answer from Caeser, or just add the .lib to the linker settings in the projects that wish to use it, along with #including the headers you need.

How to structure a "library" of C++ source?

I'm developing a collection of C++ classes and am struggling with how to share the code in a way that maintains organization without compromising ease of compilation for a user of the collection.
Options that I have seen include:
Distribute compiled library file
Put the source in the header file (with implicit inline as discussed in this answer)
Use symbolic links to allow the compiler to find the files.
I'm currently using the third option where, for each class the I want to include I symbolic link each classess headers and source files (e.g. ln -s <path_to_class folder>/myclass.cpp) This works well except that I can't move the project folder location (it breaks all the symlinks) and I have to have all those symlinked files hanging around.
I like the second option (it has the appearance of Java), but I'm worried about code size bloat if everything is declared inline.
A user of the collection will create a project folder somewhere, and somehow include the collection into their compilation process.
I'd like a few things to be possible:
Easy compilation (something like gcc *.cpp from the project folder)
Easy distribution of library in uncompiled form.
Library organization by module.
Compiled code size is not bloated.
I'm not worried about documentation (Doxygen takes care of that) or compile time: the overall modules are small and even the largest projects on the slowest machines won't take more than a few seconds to compile.
I'm using the GCC compiler, if it makes any difference.
A library is the best option (in my opinion) of the three you raised. Then provide the header file(s) in the include path and the library in the linker path.
Since you also want to distribute the library in source code form, I would be inclined to provide a compressed archive (gzip, 7-zip, tarball, or other preferred format) in a central repository.
If I understand correctly, you do not want users to have to include the .cpp files in their build, but instead just want them to use either: (i) the headers directly, (ii) use a compiled form of the lib.
Your requirements are a bit unusual, but they can be achieved. It seems to me like you could organize your code in the following manner. First, have a global define that dictates whether or not you are compiling the library:
// global.h
// ...
#define LIB_SOURCE
// ...
Then in every header file, you check whether that define is set: if the library is distributed as a static/shared lib, the definitions are not included, otherwise, the '.cpp' file is included from the header file.
// A.h
#ifndef _A_H
#include "global.h"
#ifdef LIB_SOURCE
#include "A.cpp"
#endif
// ...
#endif
where 'A.cpp' would contain the actual implementation.
Again, this is a very strange way of doing things and I would actually advise against such practice. A better way (but one which requires more work) is to always distribute a shared library. But to keep things independent of the compiler, write a C layer around it. This way, you have a portable, maintainable library.
As for some of the other requirements:
Keep the build process simple by providing a Makefile
If you worry about the code size of the compiled library, look into gcc's optimization options (-Os). If you worry about the code size of the library when distributed in source-form in the headers, this is more tricky. Since the (inlined) code will actually be in the headers, the code will obviously grow with each inclusion in a .cpp file by the user.
I ended up using inline headers for all of the code. You can see the library here:
https://github.com/libpropeller/libpropeller/tree/master/libpropeller
The library is structured as:
library folder
class A
classA.h
classA.test.h
class B
classB.h
classB.test.h
class C
...
With this structure I can distribute the library as source, and all the user has to do is include -I/path/to/library in their makefile, and #include "library/classA/classA.h" in their source files.
And, as it turns out, having inline headers actually reduces the code size. I've done a full analysis of this, and it turns out that inline code in the headers allows the compiler to make the final binary roughly 5% smaller.

why do I need to link a lib file to my project?

I am creating a project that uses a DLL. To build my project, I need to include a header file, and a lib file. Why do I need to include the respective lib file? shouldn't the header file declare all the needed information and then at runtime load any needed library/dll?
Thanks
In many other languages, the equivalent of the header file is all you need. But the common C linkers on Windows have always used import libraries, C++ linkers followed suit, and it's probably too late to change.
As a thought experiment, one could imagine syntax like this:
__declspec(dllimport, "kernel32") void __stdcall Sleep(DWORD dwMilliseconds);
Armed with that information the compiler/linker tool chain could do the rest.
As a further example, in Delphi one would import this function, using implicit linking, like so:
procedure Sleep(dwMilliseconds: DWORD); stdcall; external 'kernel32';
which just goes to show that import libraries are not, a priori, essential for linking to DLLs.
That is a so-called "import library" that contains minimal wiring that will later (at load time) ask the operating system to load the DLL.
DLLs are a Windows (MS/Intel) thing. The (generated) lib contains the code needed to call into the DLL and it exposes 'normal' functions to the rest of your App.
No, the header file isn't necassarily enough. The header file can contain just the declarations of the functions and classes and other things you need, not their implementations.
There is a world of difference between this code:
void Multiply(int x, int y);
and this code:
void Multiply(int x, int y)
{
return x * y;
}
The first is a declaration, and the second is a definition or implementation. Usually the first example is put in header files, and the second one is put in .CPP files (If you are creating libraries). If you included a header with the first and didn't link in anything, how is your application supposed to know how to implement Multiply?
Now if you are using header files that contain code that is ALL inlined, then you do not need to link anything. But if even one method is NOT inlined, but has its implementation in a .CPP file that is compiled to a .lib file, than you need to link in the .lib file.
[EDIT]
With your use of Import Libraries, you are telling the linker to NOT include the implementation details of the imported code into your binary. Instead the OS will then load the import DLL at run-time into your process. This will make your application smaller, but you have to ship another DLL with it. If the implementation of the library changes, you can just reship another DLL to your customers, and not have to reship the entire application.
There is another option where you can just link in a library and you don't need to ship another DLL. That option is where the Linker will include the implementation into your application, making it bigger in size. If you have to change the implementation details in the imported library, then you have to recompile and relink your entire application, and reship the entire thing to your customers.
There are two relevant phases in the building process here:
compilation: from the source code to an object file. During the compilation, the compiler needs to know what external things are available, for that one needs a declaration. Declarations designed to be used in several compilation units are grouped in header. So you need the headers for the library.
linking: For static libraries, you need the compiled version of the library. For dynamic libraries, in Unix you need the library, in windows, you need the "import library".
You could think that a library could also embed the declarations or the header could include the library which needs to be linked. The first is often done in other languages. The second is sometimes available through pragmas in C and C++, but there is no standard way to do this and would be in conflict with common usage (such as choosing a library among several which provide code variant for the same declarations, for instance debug/release single thread/multithreads). And neither choice correspond well with the simple compilation model of C and C++ which has its roots in the 60's.
The header file is consumed by the compiler. It contains all the forward declarations of functions, classes and global variables that will be used. It may also contain some inline function definitions as well.
These are used by the compiler to give it the bare minimum information that it needs to compile your code. It will not contain the implementation details.
However you still need to link in all the function, and variable definitions that you have told the compiler about. Failure to do so will result in a linker error. Often this is contains in other object files which may be joined into a single static library.
In the case of DLLs (or .so files), we still need to tell the linker where in the DLL or shared object the missing symbols are. On windows, this information is contained in a .lib file. This will generate the code to load and link the code at runtime.
On unix the the dll and lib files are combined into a single .so file which you must link against to about linker errors.
You can still use a dll without a .lib file but you will then have to load and link in all the symbols manually using operating system APIs.
from 1000 ft, the lib contains the list of the functions that dll exports and addresses that are needed for the call.