Runtime performance (speed) optimization -- Cache size consideration - c++

What are the basic tips and tricks that a C++ programmer should know when trying to optimize his code in the context of Caching?
Here's something to think about:
For instance, I know that reducing a function's footprint would make the code run a bit faster since you would have less overall instructions on the processor's instruction register I.
When trying to allocate an std::array<char, <size>>, what would be the ideal size that could make your read and writes faster to the array?
How big can an object be to decide to put it on the heap instead of the stack?

In most cases, knowing the correct answer to your question will gain you less than 1% overall performance.
Some (data-)cache optimizations that come to my mind are:
For arrays: use less RAM. Try shorter data types or a simple compression algorithm like RLE. This can also save CPU at the same time, or in the opposite waste CPU cycles with data type conversions. Especially floating point to integer conversions can be quite expensive.
Avoid access to the same cacheline (usually around 64 bytes) from different threads, unless all access is read-only.
Group members that are often used together next to each other. Prefer sequential access to random access.
If you really want to know all about caches, read What Every Programmer Should Know About Memory. While I disagree with the title, it's a great in-depth document.
Because your question suggests that you actually expect gains from just following the tips above (in which case you will be disappointed), here are some general optimization tips:
Tip #1: About 90% of your code you should be optimized for readability, not performance. If you decide to attempt an optimization for performance, make sure you actually measure the gain. When it is below 5% I usually go back to the more readable version.
Tip #2: If you have an existing codebase, profile it first. If you don't profile it, you will miss some very effective optimizations. Usually there are some calls to time-consuming functions that can be completely eliminated, or the result cached.
If you don't want to use a profiler, at least print the current time in a couple of places, or interrupt the program with a debugger a couple of times to check where it is most often spending its time.

Related

Is there any way to know how much space a function takes (or possibly can take) in CPU cache?

I'm just starting to learn about CPU cache in depth and I want to learn how to estimate a functions instruction size in CPU cache for curiosity reasons.
So far I learned it's not very easy to monitor L1 cache by surfing in SO and Google. But surprisingly I couldn't find any posts explaining my question.
If it's not possible, at least knowing when someone should worry about filling L1/L2 caches and not would be good to know.
Thanks.
Can you measure it?
Yes. Take a look at the output of a disassembler or measure the size increase of the library.
Should you worry about it?
Absolutely not. The executable code is usually tiny. If you're going through it once, even if we're talking GBs it's going to be fast. The usual way to make things slow is loops and recursion and usually such functions tend to be focused and small. On most system the several MBs of L1 cache should cover anything interesting code wise.
The usual source of cache dependent speedups is memory access patterns. If your tiny loop skips all over the memory, it will be a lot slower than a gigantic function that accesses things more or less linearly or is very predictable.
Another source of bad performance in the code tends to be branch predictions. Incorrectly predicting the outcome of a branch causes a stall in the CPU. Get enough of those the the performance will suffer.
Both of those are usually the last drops of performance to be squeezed out of a system. Make sure the code works correctly first, then go and try to find performance improvements, usually starting with algorithm and data structure optimizations around the hottest bits of code (the most executted).

How to measure sequential memory read speed in C/C++

The problem does not take CPU cache into consideration. That is, let the cache do its job (let cpu cache improve the performance).
My idea is to allocate a big enough chunk of memory (so that not all of it fit into cache) and treat them as one data type(like int) and do addition to avoid the compiler completely optimize away the code to read the memory. The problem is does the data type affect the measurement? Or is there a more general way of doing it?
EDIT: Might be a bit mis-leading before. An example is AIDA64's memory and cache benchmark, which is able to measure the memory read/write speed as well as latency. I want to know a general idea of how it is done.
Microbenchmarks like this are not easy in C/C++. The amount of time something takes in C++ is not a specified aspect of the language. Indeed, for every use case except this one, faster is better, so compilers are encouraged to do smart things.
The trick to these is to write the benchmark, compile it, and then look at the assembly to see whether its doing clever tricks. Or, at the very least, check to make sure that it makes sense (accessing more memory = more time).
Compilers are getting smart. Addition is not always enough. More than once I've had Visual Studio realize what I was doing to construct the microbenchmark and compile it all away.
At the moment, I am having good luck using the argc argument passed into main as a seed, and using a cryptographic hash like SHA1 or MD-5 to fill the data. This tends to be enough to trick the compiler into actually writing all of the reads. But verify your results. There's no guarantee that a new compiler doesn't get even smarter.

Pipeline optimzation, is there any point to do this?

Some very expencied programmer from another company told me about some low-level code-optimzation tips that targetting specific CPU, including pipeline-optimzation, which means, arrange the code (inlined assembly, obviously) in special orders such that it fit the pipeline better for the targetting hardware.
With the presence of out-of-order and speculative execuation, I just wonder is there any points to do this kind of low-level stuff? We are mostly invovled in high performance computing, so we can really focus on one very specific CPU type to do our optimzation, but I just dont know if there is any point to do this specific optimzation, anyone has any experience here, where to begin? are there any code examples for this kind of optimzation? many thanks!
I'll start by saying that the compiler will usually optimize code sufficiently (i.e. well enough) that you do not need to worry about this provided your high-level code and algorithms are optimized. In general, manual optimizing should only happen if you have hard evidence that there is an actual performance issue that you can quantify and have tracked down.
Now, with that said, it's always possible to improve things - sometimes a little, sometimes a lot.
If you are in the high-performance computing game, then this sort of optimization might make sense. There are all sorts of "tricks" that can be done, but they are best left to real experts and not for the faint of heart.
If you really want to know more about this topic, a good place to start is by reading Agner Fog's website.
Pipeline optimization will improve your programs performance:
Branches and jumps may force your processor to reload the instruction pipeline, which takes some time. This time could be devoted to data processing instructions.
Some platform independent methods for pipeline optimizations:
Reduce number of branches.
Use Boolean Arithmetic
Set up code to allow for conditional execution of instructions.
Unroll loops.
Make loops have short content (that can fit in a processor's cache
without loading).
Edit 1: Other optimizations
Reduce code by eliminating features and requirements.
Review and optimize the design.
Review implementation for more efficient implementations.
Revert to assembly language only when all other optimizations have
provided little performance improvement; optimize only the code that
is executed 80% of the time; find out by profiling.
Edit 2: Data Optimizations
You can also gain performance improvements by organizing your data. Search the web for "Data Driven Design" or "Optimize performance data".
One idea is that the most frequently used data should be close together and ultimately fit into the processor's data cache. This will reduce the frequency that the processor has to reload its data cache.
Another optimization is to: Load data (into registers), operate on data, then write all data back to memory. The idea here is to trigger the processor's data cache loading circuitry before it processes the data (or registers).
If you can, organize the data to fit in one "line" of your processor's cache. Sequential locations require less time than random access locations.
There are always things that "help" vs. "hinder" the execution in the pipeline, but for most general purpose code that isn't highly specialized, I would expect that performance from compiled code is about as good as the best you can get without highly specialized code for each model of processor. If you have a controlled system, where all of your machines are using the same (or a small number of similar) processor model, and you know that 99% of the time is spent in this particular function, then there may be a benefit to optimizing that particular function to become more efficient.
In your case, it being HPC, it may well be beneficial to handwrite some of the low-level code (e.g. matrix multiplication) to be optimized for the processor you are running on. This does take some reasonable amount of understanding of the processor however, so you need to study the optimization guides for that processor model, and if you can, talk to people who've worked on that processor before.
Some of the things you'd look at is "register to register dependencies" - where you need the result of c = a + b to calculate x = c + d - so you try to separate these with some other useful work, such that the calculation of x doesn't get held up by the c = a + b calculation.
Cache-prefetching and generally caring for how the caches are used is also a useful thing to look at - not kicking useful cached data out that you need 100 instructions later, when you are storing the resulting 1MB array that won't be used again for several seconds can be worth a lot of processor time.
It's hard(er) to control these things when compilers decide to shuffle it around in it's own optimisation, so handwritten assembler is pretty much the only way to go.

Function size vs execution speed

I remember hearing somewhere that "large functions might have higher execution times" because of code size, and CPU cache or something like that.
How can I tell if function size is imposing a performance hit for my application? How can I optimize against this? I have a CPU intensive computation that I have split into (as many threads as there are CPU cores). The main thread waits until all of the worker threads are finished before continuing.
I happen to be using C++ on Visual Studio 2010, but I'm not sure that's really important.
Edit:
I'm running a ray tracer that shoots about 5,000 rays per pixel. I create (cores-1) threads (1 per extra core), split the screen into rows, and give each row to a CPU thread. I run the trace function on each thread about 5,000 times per pixel.
I'm actually looking for ways to speed this up. It is possible for me to reduce the size of the main tracing function by refactoring, and I want to know if I should expect to see a performance gain.
A lot of people seem to be answering the wrong question here, I'm looking for an answer to this specific question, even if you think I can probably do better by optimizing the contents of the function, I want to know if there is a function size/performance relationship.
It's not really the size of the function, it's the total size of the code that gets cached when it runs. You aren't going to speed things up by splitting code into a greater number of smaller functions, unless some of those functions aren't called at all in your critical code path, and hence don't need to occupy any cache. Besides, any attempt you make to split code into multiple functions might get reversed by the compiler, if it decides to inline them.
So it's not really possible to say whether your current code is "imposing a performance hit". A hit compared with which of the many, many ways that you could have structured your code differently? And you can't reasonably expect changes of that kind to make any particular difference to performance.
I suppose that what you're looking for is instructions that are rarely executed (your profiler will tell you which they are), but are located in the close vicinity of instructions that are executed a lot (and hence will need to be in cache a lot, and will pull in the cache line around them). If you can cluster the commonly-executed code together, you'll get more out of your instruction cache.
Practically speaking though, this is not a very fruitful line of optimization. It's unlikely you'll make much difference. If nothing else, your commonly-executed code is probably quite small and adjacent already, it'll be some small number of tight loops somewhere (your profiler will tell you where). And cache lines at the lowest levels are typically small (of the order of 32 or 64 bytes), so you'd need some very fine re-arrangement of code. C++ puts a lot between you and the object code, that obstructs careful placement of instructions in memory.
Tools like perf can give you information on cache misses - most of those won't be for executable code, but on most systems it really doesn't matter which cache misses you're avoiding: if you can avoid some then you'll speed your code up. Perhaps not by a lot, unless it's a lot of misses, but some.
Anyway, what context did you hear this? The most common one I've heard it come up in, is the idea that function inlining is sometimes counter-productive, because sometimes the overhead of the code bloat is greater than the function call overhead avoided. I'm not sure, but profile-guided optimization might help with that, if your compiler supports it. A fairly plausible profile-guided optimization is to preferentially inline at call sites that are executed a larger number of times, leaving colder code smaller, with less overhead to load and fix up in the first place, and (hopefully) less disruptive to the instruction cache when it is pulled in. Somebody with far more knowledge of compilers than me, will have thought hard about whether that's a good profile-guided optimization, and therefore decided whether or not to implement it.
Unless you're going to hand-tune to the assembly level, to include locking specific lines of code in cache, you're not going to see a significant execution difference between one large function and multiple small functions. In both cases, you still have the same amount of work to perform and that's going to be your bottleneck.
Breaking things up into multiple smaller functions will, however, be easier to maintain and easier to read -- especially 6 months later when you've forgotten what you did in the first place.
Function size is unlikely to be a bottleneck in your application. What you do in the function is much more important that it's physical size. There are some things your compiler can do with small function that it cannot do with large functions (namely inlining), but usually this isn't a huge difference anyway.
You can profile the code to see where the real bottleneck is. I suspect calling a large function is not the problem.
You should, however, break up the function into smaller function for code readability reasons.
It's not really about function size, but about what you do in it. Depending on what you do, there is possibly some way to optimize it.

Effective optimization strategies on modern C++ compilers

I'm working on scientific code that is very performance-critical. An initial version of the code has been written and tested, and now, with profiler in hand, it's time to start shaving cycles from the hot spots.
It's well-known that some optimizations, e.g. loop unrolling, are handled these days much more effectively by the compiler than by a programmer meddling by hand. Which techniques are still worthwhile? Obviously, I'll run everything I try through a profiler, but if there's conventional wisdom as to what tends to work and what doesn't, it would save me significant time.
I know that optimization is very compiler- and architecture- dependent. I'm using Intel's C++ compiler targeting the Core 2 Duo, but I'm also interested in what works well for gcc, or for "any modern compiler."
Here are some concrete ideas I'm considering:
Is there any benefit to replacing STL containers/algorithms with hand-rolled ones? In particular, my program includes a very large priority queue (currently a std::priority_queue) whose manipulation is taking a lot of total time. Is this something worth looking into, or is the STL implementation already likely the fastest possible?
Along similar lines, for std::vectors whose needed sizes are unknown but have a reasonably small upper bound, is it profitable to replace them with statically-allocated arrays?
I've found that dynamic memory allocation is often a severe bottleneck, and that eliminating it can lead to significant speedups. As a consequence I'm interesting in the performance tradeoffs of returning large temporary data structures by value vs. returning by pointer vs. passing the result in by reference. Is there a way to reliably determine whether or not the compiler will use RVO for a given method (assuming the caller doesn't need to modify the result, of course)?
How cache-aware do compilers tend to be? For example, is it worth looking into reordering nested loops?
Given the scientific nature of the program, floating-point numbers are used everywhere. A significant bottleneck in my code used to be conversions from floating point to integers: the compiler would emit code to save the current rounding mode, change it, perform the conversion, then restore the old rounding mode --- even though nothing in the program ever changed the rounding mode! Disabling this behavior significantly sped up my code. Are there any similar floating-point-related gotchas I should be aware of?
One consequence of C++ being compiled and linked separately is that the compiler is unable to do what would seem to be very simple optimizations, such as move method calls like strlen() out of the termination conditions of loop. Are there any optimization like this one that I should look out for because they can't be done by the compiler and must be done by hand?
On the flip side, are there any techniques I should avoid because they are likely to interfere with the compiler's ability to automatically optimize code?
Lastly, to nip certain kinds of answers in the bud:
I understand that optimization has a cost in terms of complexity, reliability, and maintainability. For this particular application, increased performance is worth these costs.
I understand that the best optimizations are often to improve the high-level algorithms, and this has already been done.
Is there any benefit to replacing STL containers/algorithms with hand-rolled ones? In particular, my program includes a very large priority queue (currently a std::priority_queue) whose manipulation is taking a lot of total time. Is this something worth looking into, or is the STL implementation already likely the fastest possible?
I assume you're aware that the STL containers rely on copying the elements. In certain cases, this can be a significant loss. Store pointers and you may see an increase in performance if you do a lot of container manipulation. On the other hand, it may reduce cache locality and hurt you. Another option is to use specialized allocators.
Certain containers (e.g. map, set, list) rely on lots of pointer manipulation. Although counterintuitive, it can often lead to faster code to replace them with vector. The resulting algorithm might go from O(1) or O(log n) to O(n), but due to cache locality it can be much faster in practice. Profile to be sure.
You mentioned you're using priority_queue, which I would imagine pays a lot for rearranging the elements, especially if they're large. You can try switching the underlying container (maybe deque or specialized). I'd almost certainly store pointers - again, profile to be sure.
Along similar lines, for a std::vectors whose needed sizes are unknown but have a reasonably small upper bound, is it profitable to replace them with statically-allocated arrays?
Again, this may help a small amount, depending on the use case. You can avoid the heap allocation, but only if you don't need your array to outlive the stack... or you could reserve() the size in the vector so there is less copying on reallocation.
I've found that dynamic memory allocation is often a severe bottleneck, and that eliminating it can lead to significant speedups. As a consequence I'm interesting in the performance tradeoffs of returning large temporary data structures by value vs. returning by pointer vs. passing the result in by reference. Is there a way to reliably determine whether or not the compiler will use RVO for a given method (assuming the caller doesn't need to modify the result, of course)?
You could look at the generated assembly to see if RVO is applied, but if you return pointer or reference, you can be sure there's no copy. Whether this will help is dependent on what you're doing - e.g. can't return references to temporaries. You can use arenas to allocate
and reuse objects, so not to pay a large heap penalty.
How cache-aware do compilers tend to be? For example, is it worth looking into reordering nested loops?
I've seen dramatic (seriously dramatic) speedups in this realm. I saw more improvements from this than I later saw from multithreading my code. Things may have changed in the five years since - only one way to be sure - profile.
On the flip side, are there any techniques I should avoid because they are likely to interfere with the compiler's ability to automatically optimize code?
Use explicit on your single argument constructors. Temporary object construction and destruction may be hidden in your code.
Be aware of hidden copy constructor calls on large objects. In some cases, consider replacing with pointers.
Profile, profile, profile. Tune areas that are bottlenecks.
Take a look at the excellent Pitfalls of Object-Oriented Programming slides for some info about restructuring code for locality. In my experience getting better locality is almost always the biggest win.
General process:
Learn to love the Disassembly View in your debugger, or have your build system generate the intermediate assembly files (.s) if at all possible. Keep an eye on changes or for things that look egregious -- even without familiarity with a given instruction set architecture, you should be able to see some things fairly clearly! (I sometimes check in a series of .s files with corresponding .cpp/.c changes, just to leverage the lovely tools from my SCM to watch the code and corresponding asm change over time.)
Get a profiler that can watch your CPU's performance counters, or can at least guess at cache misses. (AMD CodeAnalyst, cachegrind, vTune, etc.)
Some other specific things:
Understand strict aliasing. Once you do, make use of restrict if your compiler has it. (Examine the disasm here too!)
Check out different floating point modes on your processor and compiler. If you don't need the denormalized range, choosing a mode without this can result in better performance. (It sounds like you've already done some things in this area, based on your discussion of rounding modes.)
Definitely avoid allocs: call reserve on std::vector when you can, or use std::array when you know the size at compile-time.
Use memory pools to increase locality and decrease alloc/free overhead; also to ensure cacheline alignment and prevent ping-ponging.
Use frame allocators if you're allocating things in predictable patterns, and can afford to deallocate everything in one go.
Do be aware of invariants. Something you know is invariant may not be to the compiler, for example a use of a struct or class member in a loop. I find the single easiest way to fall into the correct habit here is to give a name to everything, and prefer to name things outside of loops. E.g. const int threshold = m_currentThreshold; or perhaps Thing * const pThing = pStructHoldingThing->pThing; Fortunately you can usually see things that need this treatment in the disassembly view. This also helps with debugging later (makes the watch/locals window behave much more nicely in debug builds)!
Avoid writes in loops if possible -- accumulate first, then write, or batch a few writes together. YMMV, of course.
WRT your std::priority_queue question: inserting things into a vector (the default backend for a priority_queue) tends to move a lot of elements around. If you can break up into phases, where you insert data, then sort it, then read it once it's sorted, you'll probably be a lot better off. Although you'll definitely lose locality, you may find a more self-ordering structure like a std::map or std::set worth the overhead -- but this is really dependent on your usage patterns.
Is there any benefit to replacing STL containers/algorithms with hand-rolled ones?
I would only consider this as a last option. The STL containers and algorithms have been thoroughly tested. Creating new ones are expensive in terms of development time.
Along similar lines, for std::vectors whose needed sizes are unknown but have a reasonably small upper bound, is it profitable to replace them with statically-allocated arrays?
First, try reserving space for the vectors. Check out the std::vector::reserve method. A vector that keeps growing or changing to larger sizes is going to waste dynamic memory and execution time. Add some code to determine a good value for an upper bound.
I've found that dynamic memory allocation is often a severe bottleneck, and that eliminating it can lead to significant speedups. As a consequence I'm interesting in the performance tradeoffs of returning large temporary data structures by value vs. returning by pointer vs. passing the result in by reference. Is there a way to reliably determine whether or not the compiler will use RVO for a given method (assuming the caller doesn't need to modify the result, of course)?
As a matter of principle, always pass large structures by reference or pointer. Prefer passing by constant reference. If you are using pointers, consider using smart pointers.
How cache-aware do compilers tend to be? For example, is it worth looking into reordering nested loops?
Modern compilers are very aware of instruction caches (pipelines) and try to keep them from being reloaded. You can always assist your compiler by writing code that uses less branches (from if, switch, loop constructs and function calls).
You may see more significant performance gain by adjusting your program to optimize the data cache. Search the web for Data Driven Design. There are many excellent articles on this topic.
Given the scientific nature of the program, floating-point numbers are used everywhere. A significant bottleneck in my code used to be conversions from floating point to integers: the compiler would emit code to save the current rounding mode, change it, perform the conversion, then restore the old rounding mode --- even though nothing in the program ever changed the rounding mode! Disabling this behavior significantly sped up my code. Are there any similar floating-point-related gotchas I should be aware of?
For accuracy, keep everything as a double. Adjust for rounding only when necessary and perhaps before displaying. This falls under the optimization rule, Use less code, eliminate extraneous or deadwood code.
Also see the section above about reserving space in containers before using them.
Some processors can load and store floating point numbers either faster or as fast as integers. This would require gathering profile data before optimizing. However, if you know there is minimal resolution, you could use integers and change your base to that minimal resolution . For example, when dealing with U.S. money, integers can be used to represent 1/100 or 1/1000 of a dollar.
One consequence of C++ being compiled and linked separately is that the compiler is unable to do what would seem to be very simple optimizations, such as move method calls like strlen() out of the termination conditions of loop. Are there any optimization like this one that I should look out for because they can't be done by the compiler and must be done by hand?
This an incorrect assumption. Compilers can optimize based on the function's signature, especially if the parameters correctly use const. I always like to assist the compiler by moving constant stuff outside of the loop. For an upper limit value, such as a string length, assign it to a const variable before the loop. The const modifier will assist the Optimizer.
There is always the count-down optimization in loops. For many processors, a jump on register equals zero is more efficient than compare and jump if less than.
On the flip side, are there any techniques I should avoid because they are likely to interfere with the compiler's ability to automatically optimize code?
I would avoid "micro optimizations". If you have any doubts, print out the assembly code generated by the compiler (for the area you are questioning) under the highest optimization setting. Try rewriting the code to express the compiler's assembly code. Optimize this code, if you can. Anything more requires platform specific instructions.
Optimization Ideas & Concepts
1. Computers prefer to execute sequential instructions.
Branching upsets them. Some modern processors have enough instruction cache to contain code for small loops. When in doubt, don't cause branches.
2. Eliminate Requirements
Less code, more performance.
3. Optimize designs before code
Often times, more performance can be gained by changing the design versus changing the implementation of the design. Less design promotes less code, generates more performance.
4. Consider data organization
Optimize the data.
Organize frequently used fields into substructures.
Set data sizes to fit into a data cache line.
Remove constant data out of data structures.
Use const specifier as much as possible.
5. Consider page swapping
Operating systems will swap out your program or task for another one. Often times into a 'swap file' on the hard drive. Breaking up the code into chunks that contain heavily executed code and less executed code will assist the OS. Also, coagulate heavily used code into tighter units. The idea is to reduce the swapping of code from the hard drive (such as fetching "far" functions). If code must be swapped out, it should be as one unit.
6. Consider I/O optimizations
(Includes file I/O too).
Most I/O prefers fewer large chunks of data to many small chunks of data. Hard drives like to keep spinning. Larger data packets have less overhead than smaller packets.
Format data into a buffer then write the buffer.
7. Eliminate the competition
Get rid of any programs and tasks that are competing against your application for the processor(s). Such tasks as virus scanning and playing music. Even I/O drivers want a piece of the action (which is why you want to reduce the number or I/O transactions).
These should keep you busy for a while. :-)
Use of memory buffer pools can be of great performance benefit vs. dynamic allocation. More so if they reduce or prevent heap fragmentation over long execution runs.
Be aware of data location. If you have a significant mix of local vs. global data you may be overworking the cache mechanism. Try to keep data sets in close proximity to make maximum use of cache line validity.
Even though compilers do a wonderful job with loops, I still scrutinize them when performance tuning. You can spot architectural flaws that yield orders of magnitude where the compiler may only trim percentages.
If a single priority queue is using a lot of time in its operation, there may be benefit to creating a battery of queues representing buckets of priority. It would be complexity being traded for speed in this case.
I notice you didn't mention the use of SSE type instructions. Could they be applicable to your type of number crunching?
Best of luck.
Here is a nice paper on the subject.
About STL containers.
Most people here claim STL offers one of the fastest possible implementations of the container algorithms. And I say the opposite: for the most real-world scenarios the STL containers taken as-is yield a really catastrophic performance.
People argue about the complexity of the algorithms used in STL. Here STL is good: O(1) for list/queue, vector (amortized), and O(log(N)) for map. But this is not the real bottleneck of the performance for a typical application! For many applications the real bottleneck is the heap operations (malloc/free, new/delete, etc.).
A typical operation on the list costs just a few CPU cycles. On a map - some tens, may be more (this depends on the cache state and log(N) of course). And typical heap operations cost from hunders to thousands (!!!) of CPU cycles. For multithreaded applications for instance they also require synchronization (interlocked operations). Plus on some OSs (such as Windows XP) the heap functions are implemented entirely in the kernel mode.
So that the actual performance of the STL containers in a typical scenario is dominated by the amount of heap operations they perform. And here they're disastrous. Not because they're implemented poorly, but because of their design. That is, this is the question of the design.
On the other hand there're other containers which are designed differently.
Once I've designed and written such containers for my own needs:
http://www.codeproject.com/KB/recipes/Containers.aspx
And it proved for me to be superior from the performance point of view, and not only.
But recently I've discovered I'm not the only one who thought about this.
boost::intrusive is the container library that is implemented in the manner similar to what I did then.
I suggest you try it (if you didn't already)
Is there any benefit to replacing STL containers/algorithms with hand-rolled ones?
Generally, not unless you're working with a poor implementation. I wouldn't replace an STL container or algorithm just because you think you can write tighter code. I'd do it only if the STL version is more general than it needs to be for your problem. If you can write a simpler version that does just what you need, then there might be some speed to gain there.
One exception I've seen is to replace a copy-on-write std::string with one that doesn't require thread synchronization.
for std::vectors whose needed sizes are unknown but have a reasonably small upper bound, is it profitable to replace them with statically-allocated arrays?
Unlikely. But if you're using a lot of time allocating up to a certain size, it might be profitable to add a reserve() call.
performance tradeoffs of returning large temporary data structures by value vs. returning by pointer vs. passing the result in by reference.
When working with containers, I pass iterators for the inputs and an output iterator, which is still pretty general.
How cache-aware do compilers tend to be? For example, is it worth looking into reordering nested loops?
Not very. Yes. I find that missed branch predictions and cache-hostile memory access patterns are the two biggest killers of performance (once you've gotten to reasonable algorithms). A lot of older code uses "early out" tests to reduce calculations. But on modern processors, that's often more expensive than doing the math and ignoring the result.
A significant bottleneck in my code used to be conversions from floating point to integers
Yup. I recently discovered the same issue.
One consequence of C++ being compiled and linked separately is that the compiler is unable to do what would seem to be very simple optimizations, such as move method calls like strlen() out of the termination conditions of loop.
Some compilers can deal with this. Visual C++ has a "link-time code generation" option that effective re-invokes the compiler to do further optimization. And, in the case of functions like strlen, many compilers will recognize that as an intrinsic function.
Are there any optimization like this one that I should look out for because they can't be done by the compiler and must be done by hand? On the flip side, are there any techniques I should avoid because they are likely to interfere with the compiler's ability to automatically optimize code?
When you're optimizing at this low level, there are few reliable rules of thumb. Compilers will vary. Measure your current solution, and decide if it's too slow. If it is, come up with a hypothesis (e.g., "What if I replace the inner if-statements with a look-up table?"). It might help ("eliminates stalls due to failed branch predictions") or it might hurt ("look-up access pattern hurts cache coherence"). Experiment and measure incrementally.
I'll often clone the straightforward implementation and use an #ifdef HAND_OPTIMIZED/#else/#endif to switch between the reference version and the tweaked version. It's useful for later code maintenance and validation. I commit each successful experiment to change control, and keep a log (spreadsheet) with the changelist number, run times, and explanation for each step in optimization. As I learn more about how the code behaves, the log makes it easy to back up and branch off in another direction.
You need a framework for running reproducible timing tests and to compare results to the reference version to make sure you don't inadvertently introduce bugs.
If I were working on this, I would expect an end-stage where things like cache locality and vector operations would come into play.
However, before getting to the end stage, I would expect to find a series of problems of different sizes having less to do with compiler-level optimization, and more to do with odd stuff going on that could never be guessed, but once found, are simple to fix. Usually they revolve around class overdesign and data structure issues.
Here's an example of this kind of process.
I have found that generalized container classes with iterators, which in principle the compiler can optimize down to minimal cycles, often are not so optimized for some obscure reason. I've also heard other cases on SO where this happens.
Others have said, before you do anything else, profile. I agree with that approach except I think there's a better way, and it's indicated in that link. Whenever I find myself asking if some specific thing, like STL, could be a problem, I just might be right - BUT - I'm guessing. The fundamental winning idea in performance tuning is find out, don't guess. It is easy to find out for sure what is taking the time, so don't guess.
here is some stuff I had used:
templates to specialize innermost loops bounds (makes them really fast)
use __restrict__ keywords for alias problems
reserve vectors beforehand to sane defaults.
avoid using map (it can be really slow)
vector append/ insert can be significantly slow. If that is the case, raw operations may make it faster
N-byte memory alignment (Intel has pragma aligned, http://www.intel.com/software/products/compilers/docs/clin/main_cls/cref_cls/common/cppref_pragma_vector.htm)
trying to keep memory within L1/L2 caches.
compiled with NDEBUG
profile using oprofile, use opannotate to look for specific lines (stl overhead is clearly visible then)
here are sample parts of profile data (so you know where to look for problems)
* Output annotated source file with samples
* Output all files
*
* CPU: Core 2, speed 1995 MHz (estimated)
--
* Total samples for file : "/home/andrey/gamess/source/blas.f"
*
* 1020586 14.0896
--
* Total samples for file : "/home/andrey/libqc/rysq/src/fock.cpp"
*
* 962558 13.2885
--
* Total samples for file : "/usr/include/boost/numeric/ublas/detail/matrix_assign.hpp"
*
* 748150 10.3285
--
* Total samples for file : "/usr/include/boost/numeric/ublas/functional.hpp"
*
* 639714 8.8315
--
* Total samples for file : "/home/andrey/gamess/source/eigen.f"
*
* 429129 5.9243
--
* Total samples for file : "/usr/include/c++/4.3/bits/stl_algobase.h"
*
* 411725 5.6840
--
example of code from my project
template<int ni, int nj, int nk, int nl>
inline void eval(const Data::density_type &D, const Data::fock_type &F,
const double *__restrict Q, double scale) {
const double * __restrict Dij = D[0];
...
double * __restrict Fij = F[0];
...
for (int l = 0, kl = 0, ijkl = 0; l < nl; ++l) {
for (int k = 0; k < nk; ++k, ++kl) {
for (int j = 0, ij = 0; j < nj; ++j, ++jk, ++jl) {
for (int i = 0; i < ni; ++i, ++ij, ++ik, ++il, ++ijkl) {
And I think the main hint anyone could give you is: measure, measure, measure. That and improving your algorithms.
The way you use certain language features, the compiler version, std lib implementation, platform, machine - all ply their role in performance and you haven't mentioned many of those and no one of us ever had your exact setup.
Regarding replacing std::vector: use a drop-in replacement (e.g., this one) and just try it out.
How cache-aware do compilers tend to be? For example, is it worth looking into reordering nested loops?
I can't speak for all compilers, but my experience with GCC shows that it will not heavily optimize code with respect to the cache. I would expect this to be true for most modern compilers. Optimization such as reordering nested loops can definitely affect performance. If you believe that you have memory access patterns that could lead to many cache misses, it will be in your interest to investigate this.
Is there any benefit to replacing STL
containers/algorithms with hand-rolled
ones? In particular, my program
includes a very large priority queue
(currently a std::priority_queue)
whose manipulation is taking a lot of
total time. Is this something worth
looking into, or is the STL
implementation already likely the
fastest possible?
The STL is generally the fastest, general case. If you have a very specific case, you might see a speed-up with a hand-rolled one. For example, std::sort (normally quicksort) is the fastest general sort, but if you know in advance that your elements are virtually already ordered, then insertion sort might be a better choice.
Along similar lines, for std::vectors
whose needed sizes are unknown but
have a reasonably small upper bound,
is it profitable to replace them with
statically-allocated arrays?
This depends on where you are going to do the static allocation. One thing I tried along this line was to static allocate a large amount of memory on the stack, then re-use later. Results? Heap memory was substantially faster. Just because an item is on the stack doesn't make it faster to access- the speed of stack memory also depends on things like cache. A statically allocated global array may not be any faster than the heap. I assume that you have already tried techniques like just reserving the upper bound. If you have a lot of vectors that have the same upper bound, consider improving cache by having a vector of structs, which contain the data members.
I've found that dynamic memory
allocation is often a severe
bottleneck, and that eliminating it
can lead to significant speedups. As a
consequence I'm interesting in the
performance tradeoffs of returning
large temporary data structures by
value vs. returning by pointer vs.
passing the result in by reference. Is
there a way to reliably determine
whether or not the compiler will use
RVO for a given method (assuming the
caller doesn't need to modify the
result, of course)?
I personally normally pass the result in by reference in this scenario. It allows for a lot more re-use. Passing large data structures by value and hoping that the compiler uses RVO is not a good idea when you can just manually use RVO yourself.
How cache-aware do compilers tend to
be? For example, is it worth looking
into reordering nested loops?
I found that they weren't particularly cache-aware. The issue is that the compiler doesn't understand your program and can't predict the vast majority of it's state, especially if you depend heavily on heap. If you have a profiler that ships with your compiler, for example Visual Studio's Profile Guided Optimization, then this can produce excellent speedups.
Given the scientific nature of the
program, floating-point numbers are
used everywhere. A significant
bottleneck in my code used to be
conversions from floating point to
integers: the compiler would emit code
to save the current rounding mode,
change it, perform the conversion,
then restore the old rounding mode ---
even though nothing in the program
ever changed the rounding mode!
Disabling this behavior significantly
sped up my code. Are there any similar
floating-point-related gotchas I
should be aware of?
There are different floating-point models - Visual Studio gives an fp:fast compiler setting. As for the exact effects of doing such, I can't be certain. However, you could try altering the floating point precision or other settings in your compiler and checking the result.
One consequence of C++ being compiled
and linked separately is that the
compiler is unable to do what would
seem to be very simple optimizations,
such as move method calls like
strlen() out of the termination
conditions of loop. Are there any
optimization like this one that I
should look out for because they can't
be done by the compiler and must be
done by hand?
I've never come across such a scenario. However, if you're genuinely concerned about such, then the option remains to do it manually. One of the things that you could try is calling a function on a const reference, suggesting to the compiler that the value won't change.
One of the other things that I want to point out is the use of non-standard extensions to the compiler, for example provided by Visual Studio is __assume. http://msdn.microsoft.com/en-us/library/1b3fsfxw(VS.80).aspx
There's also multithread, which I would expect you've gone down that road. You could try some specific opts, like another answer suggested SSE.
Edit: I realized that a lot of the suggestions I posted referenced Visual Studio directly. That's true, but, GCC almost certainly provides alternatives to the majority of them. I just have personal experience with VS most.
The STL priority queue implementation is fairly well-optimized for what it does, but certain kinds of heaps have special properties that can improve your performance on certain algorithms. Fibonacci heaps are one example. Also, if you're storing objects with a small key and a large amount of satellite data, you'll get a major improvement in cache performance if you store that data separately, even if it means storing one extra pointer per object.
As for arrays, I've found std::vector to even slightly out-perform compile-time-constant arrays. That said, its optimizations are general, and specific knowledge of your algorithm's access patterns may allow you to optimize further for cache locality, alignment, coloring, etc. If you find that your performance drops significantly past a certain threshold due to cache effects, hand-optimized arrays may move that problem size threshold by as much as a factor of two in some cases, but it's unlikely to make a huge difference for small inner loops that fit easily within the cache, or large working sets that exceed the size of any CPU cache. Work on the priority queue first.
Most of the overhead of dynamic memory allocation is constant with respect to the size of the object being allocated. Allocating one large object and returning it by a pointer isn't going to hurt much as much as copying it. The threshold for copying vs. dynamic allocation varies greatly between systems, but it should be fairly consistent within a chip generation.
Compilers are quite cache-aware when cpu-specific tuning is turned on, but they don't know the size of the cache. If you're optimizing for cache size, you may want to detect that or have the user specify it at run-time, since that will vary even between processors of the same generation.
As for floating point, you absolutely should be using SSE. This doesn't necessarily require learning SSE yourself, as there are many libraries of highly-optimized SSE code that do all sorts of important scientific computing operations. If you're compiling 64-bit code, the compiler might emit some SSE code automatically, as SSE2 is part of the x86_64 instruction set. SSE will also save you some of the overhead of x87 floating point, since it's not converting back and forth to 80-bit values internally. Those conversions can also be a source of accuracy problems, since you can get different results from the same set of operations depending on how they get compiled, so it's good to be rid of them.
If you work on big matrices for instance, consider tiling your loops to improve the locality. This often leads to dramatic improvements. You can use VTune/PTU to monitor the L2 cache misses.
One consequence of C++ being compiled and linked separately is that the compiler is unable to do what would seem to be very simple optimizations, such as move method calls like strlen() out of the termination conditions of loop. Are there any optimization like this one that I should look out for because they can't be done by the compiler and must be done by hand?
On some compilers this is incorrect. The compiler has perfect knowledge of all code across all translation units (including static libraries) and can optimize the code the same way it would do if it were in a single translation unit. A few ones that support this feature come to my mind:
Microsoft Visual C++ compilers
Intel C++ Compiler
LLVC-GCC
GCC (I think, not sure)
i'm surprised no one has mentioned these two:
Link time optimization clang and g++ from 4.5 on support link time optimizations. I've heard that on g++ case, the heuristics is still pretty inmature but it should improve quickly since the main architecture is laid out.
Benefits range from inter procedural optimizations at object file level, including highly sought stuff like inling of virtual calls (devirtualization)
Project inlining this might seem to some like very crude approach, but it is that very crudeness which makes it so powerful: this amounts at dumping all your headers and .cpp files into a single, really big .cpp file and compile that; basically it will give you the same benefits of link-time optimization in your trip back to 1999. Of course, if your project is really big, you'll still need a 2010 machine; this thing will eat your RAM like there is no tomorrow. However, even in that case, you can split it in more than one no-so-damn-huge .cpp file
If you are doing heavy floating point math you should consider using SSE to vectorize your computations if that maps well to your problem.
Google SSE intrinsics for more information about this.
Here is something that worked for me once. I can't say that it will work for you. I had code on the lines of
switch(num) {
case 1: result = f1(param); break;
case 2: result = f2(param); break;
//...
}
Then I got a serious performance boost when I changed it to
// init:
funcs[N] = {f1, f2 /*...*/};
// later in the code:
result = (funcs[num])(param);
Perhaps someone here can explain the reason the latter version is better. I suppose it has something to do with the fact that there are no conditional branches there.
My current project is a media server, with multi thread processing (C++ language). It's a time critical application, once low performance functions could cause bad results on media streaming like lost of sync, high latency, huge delays and so.
The strategy i usually use to grantee the best performance possible is to minimize the amount of heavy operational system calls that allocate or manage resources like memory, files, sockets and so.
At first i wrote my own STL, network and file manage classes.
All my containers classes ("MySTL") manage their own memory blocks to avoid multiple alloc (new) / free (delete) calls. The objects released are enqueued on a memory block pool to be reused when needed. On that way i improve performance and protect my code against memory fragmentation.
The parts of the code that need to access lower performance system resources (like files, databases, script, network write) i use separate threads for them. But not one thread for each unit (like not 1 thread for each socket), if so the operational system would lose performance while managing a high number of threads. So you can group objects of same classes to be processed on a separate thread if possible.
For example, if you have to write data to a network socket, but the socket write buffer is full, i save the data on a sendqueue buffer (which shares memory with all sockets together) to be sent on a separate thread as soon as the sockets become writeable again. At this way your main threads should never stop processing on a blocked state waiting for the operational system frees a specific resource. All the buffers released are saved and reused when needed.
After all a profile tool would be welcome to look for program bottles and shows which algorithms should be improved.
i got succeeded using that strategy once i have servers running like 500+ days on a linux machine without rebooting, with thousands users logging everyday.
[02:01] -alpha.ip.tv- Uptime: 525days 12hrs 43mins 7secs