Taking First Two Elements in List - list

I am trying to script a dynamic way way to only take the first two elements in a list and I am having some trouble. Below is a breakdown of what I have in my List
Declaration:
Set List = CreateObject("Scripting.Dictionary")
List Contents:
List(0) = 0-0-0-0
List(1) = 0-1-0-0
List(2) = 0-2-0-0
Code so far:
for count = 0 To UBound(List) -1 step 1
//not sure how to return
next
What I currently have does not work.
Desired Return List:
0-0-0-0
0-1-0-0

You need to use the Items method of the Dictionary. For more info see here
For example:
Dim a, i
a = List.Items
For i = 0 To List.Count - 1
MsgBox(a(i))
Next i
or if you just want the first 2:
For i = 0 To 1
MsgBox(a(i))
Next i

UBound() is for arrays, not dictionaries. You need to use the Count property of the Dictionary object.
' Show all dictionary items...
For i = 0 To List.Count - 1
MsgBox List(i)
Next
' Show the first two dictionary items...
For i = 0 To 1
MsgBox List(i)
Next

Related

Can I assign position of item in list?

ex = ['$5','Amazon','spoon']
I want to re-order this list, website - item - price.
Can I assign the index, for instance, ex.index('Amazon') = 1?
I'd like the result to be ['Amazon','spoon','$5']
I found information on how to swap positions, but I would like to know if I can assign an index for each item myself.
You cannot assign an index to an item, but you can build a permuted list according to a permutation pattern:
ex = ['$5','Amazon','spoon']
order = [1, 2, 0]
ex_new = [ex[i] for i in order]
print(ex_new)
#['Amazon', 'spoon', '$5']
Alternatively, you can overwrite the original list in place:
ex[:] = [ex[i] for i in order]
print(ex)
#['Amazon', 'spoon', '$5']

Excel - Identify unique value patterns and return output in descending order across columns, optimized for 500,000+ rows

This is the third and final remaining problem to a massive data cleaning task I have been working on for over a year. Thank you Stack Overflow community for helping figure out:
Problem 1- Index multiple columns and Match distinct values....
Problem 2- Count unique values that match ID, optimized for 100,000+ cases.
I'm not 100% sure if the following is achievable in excel, but I'll do my best to describe the data cleaning and organization challenge I'm faced with.
I have a series of data markers/attributes that are in a random order across 24 columns, spanning 500,000+ rows. Image 1 below is an example of what the data looks like in raw form, presented across 12 columns and spanning 22 rows for illustrative simplicity. Columns A through L contain the raw data and Columns M through X represent the desired output.
SUMMARY OF THE TASK: What needs to be accomplished is a series of matching functions that search through all indexed columns (in this case columns A through L) to identify unique values (e.g. 1), search for the value in range (in this case A2:L21 range), identify the adjacent values to the unique value (for value 1, adjacent values are 2 and 13-XR), then output them in a descending sequence from most frequently occurring value to least frequently occurring in each row that contains any of the values in question (in this case, 1 occurs 5 times and is placed in M2 through M6; 2 occurs 3 times and is placed in N2 through N6; and 13-XR occurs 2 times and is placed in O2 through O6).
To clarify, below is a step by step description using colours to illustrate the pattern matching in the raw data (columns A through L) and how these patterns should then presented in the output (columns M through X). I've sectioned off each of the following images into the six patterns that are in the raw data.
The above image is the first pattern that would be identified by the VBA solution. It would identify "1" as a unique value and search through the A:L range for number of instances of "1" (highlighted in blue), then identify all the values that can be found adjacent in the same row: "2" in rows 3, 5, and 6 (highlighted in green); and "13-XR" in rows 4 and 5 (highlighted in pink). This would then need to be done for "2", identifying the adjacent values ("1" and "13-XR"), and then for "13-XR", identifying ("1" and "2" as adjacent values). The output would return the unique values with the most frequently occurring in Column M ("1" occurs 5 times), then the second most occurring in Column N ("2" occurs 3 times), and the third most occurring in Column O ("13-XR" occurs 2 times).
The above is little more complex. The VBA would identify "3" as a unique value, search through the A:L range for other instances of "3" and identify all the values that are adjacent to it (in this case, "4", "7", and "9"). It would then do the same for "4", identifying all adjacent values (only "3"); then for "7", identifying adjacent values ("9", "3", and "12"); then for "9" identifying ("7", and "3"); and finally, for "12" identifying adjacent values (only "7"). Then for each row where any of these values are present, the output would return a "3" in column M (occurring three times) and a "7" in column N (also occurring three times); if counts are equal, they could be presented in ascending fashion A to Z or smallest to largest... or just random, the ordering of equal counts is arbitrary for my purposes. "9" would be returned in column O as it occurs two times, then "4" in column P and "12" in column Q, as they both occur once but 12 is greater than 4.
The above image represents what is likely to be a common occurrence, where there is only one unique value. Here, "5" is not identified in any other columns in the range. It is thus returned as "5" in column M for each row where a "5" is present.
This will be another of the more common occurrences, where one value may be present in one row and two values present in another row. In this instance "6" is only identified once in the range and "8" is the only adjacent value found. When "8" is searched for it only returns one instance of an adjacent value "6". Here, "8" occurs twice and "6" only once, thus resulting in "8" imputed in column M and "6" imputed in column N wherever an "8" or a "6" are present in the row.
Here "10", "111", "112", "543", "433", "444", and "42-FG" are identified as unique values associated with one another in the A:L range. All values except "10" occur twice, which are returned in columns M through S in descending order.
This final pattern is identified in the same manner as above, just with more unique values (n=10).
FINAL NOTES: I have no idea how to accomplish this within excel, but I'm hoping someone else has the knowledge to move this problem forward. Here are some additional notes about the data that might help towards a resolution:
The first column will always be sorted in ascending order. I can do additional custom sorts if it simplifies things.
Out of the ~500,000 rows, 15% only have one attribute value (one value in column A), 30% have two attribute values (1 value in col A & 1 value in col B), 13% have three attribute values (1 value in col A, B, & C).
I have presented small numbers in this example. The actual raw data values in each cell will be closer to 20 characters in length.
A solution that does everything except present the patterns in descending order would be absolutely cool. The sorting would be great but I can live without it if it causes too much trouble.
If anything in this description needs further clarification, or if I can provide additional information, please let me know and I'll adjust as needed.
Thanks in advance to anyone who can help solve this final challenge of mine.
ADDENDUM:
There was a memory error happening with the full data set. #ambie figured out the source of the error was adjacent chains (results) numbering in the 1000s (trying to return results across 1000s of columns). Seems the problem is not with the solution or the data, just hitting a limitation within excel. A possible solution to this is (see image below) to add two new columns (ATT_COUNT as column M; ATT_ALL as column Z). ATT_COUNT in Column M would return the total number of unique values that would ordinarily be returned across columns. Only up to the top 12 most frequently occurring values would be returned in columns N through Y (ATT_1_CL through ATT_12_CL). To get around the instances where ATT_COUNT is > 12 (& upwards of 1000+), we can return all the unique values in space delimited format in ATT_ALL (column Z). For example, in the image below, rows 17, 18, 19, and 21, have 17 unique values in the chain. Only the first 12 most frequently occurring values are presented in columns N through Y. All 17 values are presented in space delimited format in column Z.
Here is a link to this mini example test data.
Here is a link to a mid sized sample of test data of ~50k rows.
Here is a link to the full sized sample test data of ~500k rows.
We don't normally provide a 'code for you service' but I know in previous questions you have provided some sample code that you've tried, and I can see how you wouldn't know where to start with this.
For your future coding work, the trick is to break the problem down into individual tasks. For your problem, these would be:
Identify all the unique values and acquire a list of all the adjacent values - fairly simple.
Create a list of 'chains' which link one adjacent value to the next - this is more awkward because, although the list appears sorted, the adjacent values are not, so a value relatively low down in the list might be adjacent to a higher value that is already part of a chain (the 3 in your sample is an example of this). So the simplest thing would be to assign the chains only after all the unique values have been read.
Map of each unique value to its appropriate 'chain' - I've done this by creating an index for the chains and assigning the relevant one to the unique value.
Collection objects are ideal for you because they deal with the issue of duplicates, allow you to populate lists of an unknown size and make value mapping easy with their Key property. To make the coding easy to read, I've created a class containing some fields. So first of all, insert a Class Module and call it cItem. The code behind this class would be:
Option Explicit
Public Element As String
Public Frq As Long
Public AdjIndex As Long
Public Adjs As Collection
Private Sub Class_Initialize()
Set Adjs = New Collection
End Sub
In your module, the tasks could be coded as follows:
Dim data As Variant, adj As Variant
Dim uniques As Collection, chains As Collection, chain As Collection
Dim oItem As cItem, oAdj As cItem
Dim r As Long, c As Long, n As Long, i As Long, maxChain As Long
Dim output() As Variant
'Read the data.
'Note: Define range as you need.
With Sheet1
data = .Range(.Cells(2, "A"), _
.Cells(.Rows.Count, "A").End(xlUp)) _
.Resize(, 12) _
.Value2
End With
'Find the unique values
Set uniques = New Collection
For r = 1 To UBound(data, 1)
For c = 1 To UBound(data, 2)
If IsEmpty(data(r, c)) Then Exit For
Set oItem = Nothing: On Error Resume Next
Set oItem = uniques(CStr(data(r, c))): On Error GoTo 0
If oItem Is Nothing Then
Set oItem = New cItem
oItem.Element = CStr(data(r, c))
uniques.Add oItem, oItem.Element
End If
oItem.Frq = oItem.Frq + 1
'Find the left adjacent value
If c > 1 Then
On Error Resume Next
oItem.Adjs.Add uniques(CStr(data(r, c - 1))), CStr(data(r, c - 1))
On Error GoTo 0
End If
'Find the right adjacent value
If c < UBound(data, 2) Then
If Not IsEmpty(data(r, c + 1)) Then
On Error Resume Next
oItem.Adjs.Add uniques(CStr(data(r, c + 1))), CStr(data(r, c + 1))
On Error GoTo 0
End If
End If
Next
Next
'Define the adjacent indexes.
For Each oItem In uniques
'If the item has a chain index, pass it to the adjacents.
If oItem.AdjIndex <> 0 Then
For Each oAdj In oItem.Adjs
oAdj.AdjIndex = oItem.AdjIndex
Next
Else
'If an adjacent has a chain index, pass it to the item.
i = 0
For Each oAdj In oItem.Adjs
If oAdj.AdjIndex <> 0 Then
i = oAdj.AdjIndex
Exit For
End If
Next
If i <> 0 Then
oItem.AdjIndex = i
For Each oAdj In oItem.Adjs
oAdj.AdjIndex = i
Next
End If
'If we're still missing a chain index, create a new one.
If oItem.AdjIndex = 0 Then
n = n + 1
oItem.AdjIndex = n
For Each oAdj In oItem.Adjs
oAdj.AdjIndex = n
Next
End If
End If
Next
'Populate the chain lists.
Set chains = New Collection
For Each oItem In uniques
Set chain = Nothing: On Error Resume Next
Set chain = chains(CStr(oItem.AdjIndex)): On Error GoTo 0
If chain Is Nothing Then
'It's a new chain so create a new collection.
Set chain = New Collection
chain.Add oItem.Element, CStr(oItem.Element)
chains.Add chain, CStr(oItem.AdjIndex)
Else
'It's an existing chain, so find the frequency position (highest first).
Set oAdj = uniques(chain(chain.Count))
If oItem.Frq <= oAdj.Frq Then
chain.Add oItem.Element, CStr(oItem.Element)
Else
For Each adj In chain
Set oAdj = uniques(adj)
If oItem.Frq > oAdj.Frq Then
chain.Add Item:=oItem.Element, Key:=CStr(oItem.Element), Before:=adj
Exit For
End If
Next
End If
End If
'Get the column count of output array
If chain.Count > maxChain Then maxChain = chain.Count
Next
'Populate each row with the relevant chain
ReDim output(1 To UBound(data, 1), 1 To maxChain)
For r = 1 To UBound(data, 1)
Set oItem = uniques(CStr(data(r, 1)))
Set chain = chains(CStr(oItem.AdjIndex))
c = 1
For Each adj In chain
output(r, c) = adj
c = c + 1
Next
Next
'Write the output to sheet.
'Note: adjust range to suit.
Sheet1.Range("M2").Resize(UBound(output, 1), UBound(output, 2)).Value = output
This isn't the most efficient way of doing it, but it does make each task more obvious to you. I'm not sure I understood the full complexities of your data structure, but the code above does reproduce your sample, so it should give you something to work with.
Update
Okay, now I've seen your comments and the real data, below is some revised code which should be quicker and deals with the fact that the apparently 'empty' cells are actually null strings.
First of all create a class called cItem and add code behind:
Option Explicit
Public Name As String
Public Frq As Long
Public Adj As Collection
Private mChainIndex As Long
Public Property Get ChainIndex() As Long
ChainIndex = mChainIndex
End Property
Public Property Let ChainIndex(val As Long)
Dim oItem As cItem
If mChainIndex = 0 Then
mChainIndex = val
For Each oItem In Me.Adj
oItem.ChainIndex = val
Next
End If
End Property
Public Sub AddAdj(oAdj As cItem)
Dim t As cItem
On Error Resume Next
Set t = Me.Adj(oAdj.Name)
On Error GoTo 0
If t Is Nothing Then Me.Adj.Add oAdj, oAdj.Name
End Sub
Private Sub Class_Initialize()
Set Adj = New Collection
End Sub
Now create another class called cChain with code behind as:
Option Explicit
Public Index As Long
Public Members As Collection
Public Sub AddItem(oItem As cItem)
Dim oChainItem As cItem
With Me.Members
Select Case .Count
Case 0 'First item so just add it.
.Add oItem, oItem.Name
Case Is < 12 'Fewer than 12 items, so add to end or in order.
Set oChainItem = .item(.Count)
If oItem.Frq <= oChainItem.Frq Then 'It's last in order so just add it.
.Add oItem, oItem.Name
Else 'Find its place in order.
For Each oChainItem In Me.Members
If oItem.Frq > oChainItem.Frq Then
.Add oItem, oItem.Name, before:=oChainItem.Name
Exit For
End If
Next
End If
Case 12 'Full list, so find place and remove last item.
Set oChainItem = .item(12)
If oItem.Frq > oChainItem.Frq Then
For Each oChainItem In Me.Members
If oItem.Frq > oChainItem.Frq Then
.Add oItem, oItem.Name, before:=oChainItem.Name
.Remove 13
Exit For
End If
Next
End If
End Select
End With
End Sub
Private Sub Class_Initialize()
Set Members = New Collection
End Sub
Finally, your module code would be:
Option Explicit
Public Sub ProcessSheet()
Dim data As Variant
Dim items As Collection, chains As Collection
Dim oItem As cItem, oAdj As cItem
Dim oChain As cChain
Dim txt As String
Dim r As Long, c As Long, n As Long
Dim output() As Variant
Dim pTick As Long, pCount As Long, pTot As Long, pTask As String
'Read the data.
pTask = "Reading data..."
Application.StatusBar = pTask
With Sheet1
data = .Range(.Cells(2, "A"), _
.Cells(.Rows.Count, "A").End(xlUp)) _
.Resize(, 12) _
.Value2
End With
'Collect unique and adjacent values.
pTask = "Finding uniques "
pCount = 0: pTot = UBound(data, 1): pTick = 0
Set items = New Collection
For r = 1 To UBound(data, 1)
If ProgressTicked(pTot, pCount, pTick) Then
Application.StatusBar = pTask & pTick & "%"
DoEvents
End If
For c = 1 To UBound(data, 2)
txt = data(r, c)
If Len(txt) = 0 Then Exit For
Set oItem = GetOrCreateItem(items, txt)
oItem.Frq = oItem.Frq + 1
'Take adjacent on left.
If c > 1 Then
txt = data(r, c - 1)
If Len(txt) > 0 Then
Set oAdj = GetOrCreateItem(items, txt)
oItem.AddAdj oAdj
End If
End If
'Take adjacent on right.
If c < UBound(data, 2) Then
txt = data(r, c + 1)
If Len(txt) > 0 Then
Set oAdj = GetOrCreateItem(items, txt)
oItem.AddAdj oAdj
End If
End If
Next
Next
'Now that we have all the items and their frequencies,
'we can find the adjacent chain indexes by a recursive
'call of the ChainIndex set property.
pTask = "Find chain indexes "
pCount = 0: pTot = items.Count: pTick = 0
Set chains = New Collection
n = 1 'Chain index.
For Each oItem In items
If ProgressTicked(pTot, pCount, pTick) Then
Application.StatusBar = pTask & pTick & "%"
DoEvents
End If
If oItem.ChainIndex = 0 Then
oItem.ChainIndex = n
Set oChain = New cChain
oChain.Index = n
chains.Add oChain, CStr(n)
n = n + 1
End If
Next
'Build the chains.
pTask = "Build chains "
pCount = 0: pTot = items.Count: pTick = 0
For Each oItem In items
If ProgressTicked(pTot, pCount, pTick) Then
Application.StatusBar = pTask & pTick & "%"
DoEvents
End If
Set oChain = chains(CStr(oItem.ChainIndex))
oChain.AddItem oItem
Next
'Write the data to our output array.
pTask = "Populate output "
pCount = 0: pTot = UBound(data, 1): pTick = 0
ReDim output(1 To UBound(data, 1), 1 To 12)
For r = 1 To UBound(data, 1)
If ProgressTicked(pTot, pCount, pTick) Then
Application.StatusBar = pTask & pTick & "%"
DoEvents
End If
Set oItem = items(data(r, 1))
Set oChain = chains(CStr(oItem.ChainIndex))
c = 1
For Each oItem In oChain.Members
output(r, c) = oItem.Name
c = c + 1
Next
Next
'Write the output to sheet.
'Note: adjust range to suit.
pTask = "Writing data..."
Application.StatusBar = pTask
Sheet1.Range("M2").Resize(UBound(output, 1), UBound(output, 2)).Value = output
Application.StatusBar = "Ready"
End Sub
Private Function GetOrCreateItem(col As Collection, key As String) As cItem
Dim obj As cItem
'If the item already exists then return it,
'otherwise create a new item.
On Error Resume Next
Set obj = col(key)
On Error GoTo 0
If obj Is Nothing Then
Set obj = New cItem
obj.Name = key
col.Add obj, key
End If
Set GetOrCreateItem = obj
End Function
Public Function ProgressTicked(ByVal t As Long, ByRef c As Long, ByRef p As Long) As Boolean
c = c + 1
If Int((c / t) * 100) > p Then
p = p + 1
ProgressTicked = True
End If
End Function

How to take specific number of input in python

How do I take a specific number of input in python. Say, if I only want to insert 5 elements in a list then how can I do that?
I tried to do it but couldn't figure out how.
In the first line I want to take an integer which will be the size of the list.
Second line will consist 5 elements separated by a space like this:
5
1 2 3 4 5
Thanks in advance.
count = int(raw_input("Number of elements:"))
data = raw_input("Data: ")
result = data.split(sep=" ", maxsplit=count)
if len(result) < count:
print("Too few elements")
You can also wrap int(input("Number of elements:")) in try/except to ensure that first input is actually int.
p.s. here is helpful q/a how to loop until correct input.
Input :-
5
1 2 3 4 5
then, use the below code :
n = int(input()) # Number of elements
List = list ( map ( int, input().split(" ") ) )
Takes the space separated input as list of integers. Number of elements count is not necessary here.
You can get the size of the List by len(List) .
Here list is a keyword for generating a List.
Or you may use an alternative :
n = int(input()) # Number of elements
List = [ int(elem) for elem in input().split(" ") ]
If you want it as List of strings, then use :
List = list( input().split(" ") )
or
s = input() # default input is string by using input() function in python 2.7+
List = list( s.split(" ") )
Or
List = [ elem for elem in input().split(" ") ]
Number of elements count is necessary while using a loop for receiving input in a new line ,then
Let the Input be like :
5
1
2
3
4
5
The modified code will be:-
n = int(input())
List = [ ] #declare an Empty list
for i in range(n):
elem = int(input())
List.append ( elem )
For Earlier version of python , use raw_input ( ) instead of input ( ), which receives default input as String.

Split Pandas Column by values that are in a list

I have three lists that look like this:
age = ['51+', '21-30', '41-50', '31-40', '<21']
cluster = ['notarget', 'cluster3', 'allclusters', 'cluster1', 'cluster2']
device = ['htc_one_2gb','iphone_6/6+_at&t','iphone_6/6+_vzn','iphone_6/6+_all_other_devices','htc_one_2gb_limited_time_offer','nokia_lumia_v3','iphone5s','htc_one_1gb','nokia_lumia_v3_more_everything']
I also have column in a df that looks like this:
campaign_name
0 notarget_<21_nokia_lumia_v3
1 htc_one_1gb_21-30_notarget
2 41-50_htc_one_2gb_cluster3
3 <21_htc_one_2gb_limited_time_offer_notarget
4 51+_cluster3_iphone_6/6+_all_other_devices
I want to split the column into three separate columns based on the values in the above lists. Like so:
age cluster device
0 <21 notarget nokia_lumia_v3
1 21-30 notarget htc_one_1gb
2 41-50 cluster3 htc_one_2gb
3 <21 notarget htc_one_2gb_limited_time_offer
4 51+ cluster3 iphone_6/6+_all_other_devices
First thought was to do a simple test like this:
ages_list = []
for i in ages:
if i in df['campaign_name'][0]:
ages_list.append(i)
print ages_list
>>> ['<21']
I was then going to convert ages_list to a series and combine it with the remaining two to get the end result above but i assume there is a more pythonic way of doing it?
the idea behind this is that you'll create a regular expression based on the values you already have , for example if you want to build a regular expressions that capture any value from your age list you may do something like this '|'.join(age) and so on for all the values you already have cluster & device.
a special case for device list becuase it contains + sign that will conflict with the regex ( because + means one or more when it comes to regex ) so we can fix this issue by replacing any value of + with \+ , so this mean I want to capture literally +
df = pd.DataFrame({'campaign_name' : ['notarget_<21_nokia_lumia_v3' , 'htc_one_1gb_21-30_notarget' , '41-50_htc_one_2gb_cluster3' , '<21_htc_one_2gb_limited_time_offer_notarget' , '51+_cluster3_iphone_6/6+_all_other_devices'] })
def split_df(df):
campaign_name = df['campaign_name']
df['age'] = re.findall('|'.join(age) , campaign_name)[0]
df['cluster'] = re.findall('|'.join(cluster) , campaign_name)[0]
df['device'] = re.findall('|'.join([x.replace('+' , '\+') for x in device ]) , campaign_name)[0]
return df
df.apply(split_df, axis = 1 )
if you want to drop the original column you can do this
df.apply(split_df, axis = 1 ).drop( 'campaign_name', axis = 1)
Here I'm assuming that a value must be matched by regex but if this is not the case you can do your checks , you got the idea

Enumerate list values into a list of dictionaries

I have a list of dictionaries, and I'm trying to assign dictionary key:value pairs based on the values of other other variables in lists. I'd like to assign the "ith" value of each variable list to ith dictionary in block_params_list with the variable name (as a string) as the key. The problem is that while the code appropriately assigns the values (as demonstrated by "pprint(item)"), when the entire enumerate loop is finished, each item in "block_params_list" is equal to the value of the last item.
I'm at a loss to explain this behavior. Can someone help? Thanks!
'''empty list of dictionaries'''
block_params_list = [{}] * 5
'''variable lists to go into the dictionaries'''
ran_iti = [False]*2 + [True]*3
iti_len = [1,2,4,8,16]
trial_cnt = [5,10,15,20,25]
'''the loops'''
param_list= ['iti_len','trial_cnt','ran_iti']#key values, also variable names
for i,item in enumerate(block_params_list):
for param in param_list:
item[param] = eval(param)[i]
pprint(item) #check what each item value is after assignment
pprint(block_params_list) #prints a list of dictionaries that are
#only equal to the very last item assigned
You've hit a common 'gotcha' in Python, on your first line of code:
# Create a list of five empty dictionaries
>>> block_params_list = [{}] * 5
The instruction [{}] * 5 is equivalent to doing this:
>>> d = {}
>>> [d, d, d, d, d]
The list contains five references to the same dictionary. You say "each item in 'block_params_list' is equal to the value of the last item" - that's an illusion, there's effectively only one item in "block_params_list" and you are assigning to it, then looking at it, five times over through five different references to it.
You need to use a loop to create your list, to make sure you create five different dictionaries:
block_params_list = []
for i in range(5):
block_params_list.append({})
or
block_params_list = [{} for i in range(5)]
NB. You can safely do [1] * 5 for a list of numbers, or [True] * 5 for a list of True, or ['A'] * 5 for a list of character 'A'. The distinction is whether you end up changing the list, or whether you change a thing referenced by the list. Top level or second level.
e.g. making a list of numbers, assinging to it does this:
before:
nums = [1] * 3
list_start
entry 0 --> 1
entry 1 --> 1
entry 2 --> 1
list_end
nums[0] = 8
after:
list_start
entry 0 -xx 1
\-> 8
entry 1 --> 1
entry 2 --> 1
list_end
Whereas making a list of dictionaries the way you are doing, and assigning to it, does this:
before:
blocks = [{}] * 3
list_start
entry 0 --> {}
entry 1 --/
entry 2 -/
list_end
first_block = blocks[0]
first_block['test'] = 8
after:
list_start
entry 0 --> {'test':8}
entry 1 --/
entry 2 -/
list_end
In the first example, one of the references in the list has to change. You can't pull a number out of a list and change the number, you can only put a different number in the list.
In the second example, the list itself doesn't change at all, you're assigning to a dictionary referenced by the list. So while it feels like you are updating every element in the list, you really aren't, because the list doesn't "have dictionaries in it", it has references to dictionaries in it.