Accessing derived members from a container of base pointers - c++

Consider the following code:
struct Object
{
bool hasComponent(std::string sComponentID);
Component& getComponent(std::string sComponentID);
std::vector<Component*> vComponents;
}
struct System
{
std::vector<Object*> vObjects;
}
My system will iterate over each Object in its vector and need to access data from derived members of Component (they all contain different state and data for the system to use).
I've considered something like this:
struct NetworkComponent : Component
{
std::string sID;
NetworkComponent(std::string tempID) : sID(tempID) {};
//Network data here
}
for(Object* p : vObjects)
{
if(p->hasComponent("network")
{
NetworkComponent& network = static_cast<NetworkComponent&>(p->getComponent("network");
//Access the data in the structure and do stuff with it.
}
}
This does however feel VERY "hacky"; not to mention unsafe.
I was wondering if there is a better way to do things like this, or at the very least how to avoid this problem in the future?
Are there any good articles written on this subject that I can look up?
EDIT: dynamic_cast is NOT an option due to how slow it is.

It sounds like you are trying to reinvent dynamic_cast

I'd refactor the getComponent method to return a pointer (a nullptr if no such component exists) instead of a reference and also pass the string argument with a constant reference:
Component * getComponent(const std::string & sComponentId);
Then you can do something like this:
template <typename CompType, typename ... Args>
CompType * getComponentOfType(Args && ... args)
{ return dynamic_cast<CompType *>(getComponent(std::forward<Args>(args)...)); }
If dynamic_cast is not an option here, use static_cast. By doing this you only lose a layer of safety for programming errors in this case.
And do something like:
for(Object * const p : vObjects) {
assert(p);
NetworkComponent * const net =
p->getComponentOfType<NetworkComponent>("network");
if (net) {
// Use the network component.
}
}

You can define class Object to contain virtual methods, which you want to have in derived classes.
Each of them should throw an exception, which mean this object didn't redefined this method.
Of course, in each of derived classes you should redefine methods that it's objects should have.

Related

Is it good practice to store copies of the same shared pointers in different vectors?

I have a base class, BaseObject, and two derived class DerivedObject1 and DerivedObject2. They share a common behavior and methods, but DerivedObject1 has an additional method. My main class MyClass stores (in std::vector) boost::shared_ptr of instances of those classes. MyClass needs to call commonMethod() for all the BaseObject, and sometimes call additionalMethod() for all DerivedObject1.
class BaseObject
{
virtual void commonMethod();
}
Class DerivedObject1 : public BaseObject
{
void commonMethod();
void additionalMethod();
}
Class DerivedObject2 : public BaseObject
{
void commonMethod();
}
Are there any disadvantages of having two vectors in MyClass, one that stores ALL the pointers of DerivedObject1 and DerivedObject2, and another vector that stores only the pointers of DerivedObject1 ? Meaning I would have all the DerivedObject1 pointers twice. But I think the call to the different methods would be clear, at least.
class MyClass
{
typedef std::vector<std::shared_ptr<BaseObject>> BaseObjectVector;
typedef std::vector<std::shared_ptr<DerivedObject1>> DerivedObject1Vector;
BaseObjectVector everything;
DerivedObject1Vector only_derived1;
void doSomething()
{
for (BaseObjectVector::iterator iter = everything.begin(); iter != everything.end(); ++iter)
{
(*iter)->commonMethod();
}
}
void doSomethingForDerivedObject1()
{
for (DerivedObject1Vector::iterator iter = only_derived1.begin(); iter != only_derived1.end(); ++iter)
{
(*iter)->additionalMethod();
}
}
}
I can think of other ways to do this, mainly having one vector for DerivedObject1 and one vector for DerivedObject2, but to call commonMethod(), I would have to iterate over both vectors. My original solution seems the best to me, except that some pointers are stored twice. What are the disadvantages of this ?
Interesting question.
We sometimes meet such a situation in maintenance of legacy codes which we don’t know who wrote.
Are there any disadvantages of having two vectors in MyClass … ?
I think there are no mechanical (or performance) disadvantages.
If we are struggled to meet the release deadline, we have no choice but to pick such an simple way.
However, storing same vectors twice actually lowers maintainability and we should consider improving it in the future.
std::dynamic_pointer_cast (or boost::dynamic_pointer_cast) [Demo]
If you need dynamic_pointer_cast to implement functions like #Caleth ’s push_back / remove,
how about removing only_derived1 and reluctantly applying just one dynamic_pointer_cast in doSomethingForDerivedObject1() from the get-go as follows ?
It will make MyClass simpler. Required modification will not be complicated if DerivedObject3 is defined in the future.
void MyClass::doSomethingForDerivedObject1()
{
for (const auto& obj_i : everything)
{
if (auto derived1 = std::dynamic_pointer_cast<DerivedObject1>(obj_i))
{
derived1->additionalMethod();
}
}
}
void MyClass::doSomethingForDerivedObject3()
{
for (const auto& obj_i : everything)
{
if (auto derived3 = std::dynamic_pointer_cast<DerivedObject3>(obj_i))
{
derived3->additionalMethod();
}
}
}
Dummy Method as proposed by #sagi [Demo]
Declaring virtual function BaseObject::additionalMethod() and implementing
void DerivedObject2::additionalMethod()
{
/* nothing to do */
}
then you can again remove only_derived1.
In this method you must implement DerivedObject3::additionalMethod() only if DerivedObject3 is defined.
But, although it depends on your constructor or setter code, if the following case will also occur
everything; ->derived2
only_derived1; ->derived1
this method is still insufficient.
Changing Design [Demo]
Ideally, we should not use public inheritance to implement objects within "IS-ALMOST-A“ relations, as Herb Sutter says.
The relation between BaseObject, DerivedObject1 and DerivedObject2 looks like this one.
Since I don’t know whole code of your application I may be wrong, but it will be worthwhile to consider extracting DerivedObject1::additionalMethod() as another class or a function pointer and putting its vector in MyClass as a private member.
I can suggest this : Store everything in one array , and make a dummy additionalMethod() in DerivedObject2 . Then - just invoke additionalMethod for every object .
Alternativly :
They share a common behavior and methods, but DerivedObject1 has an additional method
Make DerivedObject1 inherit from DerivedObject2
Yes, your first method is good, the main problem is that you end up duplicating the public members of vector to ensure that the consistency of the Derived vector.
class MyClass
{
typedef std::vector<std::shared_ptr<BaseObject>> BaseObjectVector;
typedef std::vector<std::shared_ptr<DerivedObject1>> DerivedObject1Vector;
BaseObjectVector everything;
DerivedObject1Vector only_derived1;
public:
void push_back(shared_ptr<Base> ptr)
{
everything.push_back(ptr);
if (shared_ptr<Derived1> derived = dynamic_ptr_cast<Derived1>(ptr))
{
only_derived1.push_back(derived);
}
}
void remove(shared_ptr<Base> ptr)
{
base.remove(ptr);
only_derived1.remove(dynamic_ptr_cast<Derived1>(ptr));
}
// dozens more...
};
What you can instead do is provide a view of your bases using something like boost::range's adaptors
shared_ptr<Derived1> convert(shared_ptr<Base> ptr)
{
return dynamic_ptr_cast<Derived1>(ptr);
}
bool not_null(shared_ptr<Derived1> ptr)
{
return ptr.get();
}
boost::for_each(bases
| boost::adaptors::transformed(convert) // Base to Derived
| boost::adaptors::filtered(not_null) // Eliminate null
| boost::adaptors::indirected, // dereference
boost::bind(&Derived1::additionalMethod, boost::placeholders::_1));

Practical use of dynamic_cast?

I have a pretty simple question about the dynamic_cast operator. I know this is used for run time type identification, i.e., to know about the object type at run time. But from your programming experience, can you please give a real scenario where you had to use this operator? What were the difficulties without using it?
Toy example
Noah's ark shall function as a container for different types of animals. As the ark itself is not concerned about the difference between monkeys, penguins, and mosquitoes, you define a class Animal, derive the classes Monkey, Penguin, and Mosquito from it, and store each of them as an Animal in the ark.
Once the flood is over, Noah wants to distribute animals across earth to the places where they belong and hence needs additional knowledge about the generic animals stored in his ark. As one example, he can now try to dynamic_cast<> each animal to a Penguin in order to figure out which of the animals are penguins to be released in the Antarctic and which are not.
Real life example
We implemented an event monitoring framework, where an application would store runtime-generated events in a list. Event monitors would go through this list and examine those specific events they were interested in. Event types were OS-level things such as SYSCALL, FUNCTIONCALL, and INTERRUPT.
Here, we stored all our specific events in a generic list of Event instances. Monitors would then iterate over this list and dynamic_cast<> the events they saw to those types they were interested in. All others (those that raise an exception) are ignored.
Question: Why can't you have a separate list for each event type?
Answer: You can do this, but it makes extending the system with new events as well as new monitors (aggregating multiple event types) harder, because everyone needs to be aware of the respective lists to check for.
A typical use case is the visitor pattern:
struct Element
{
virtual ~Element() { }
void accept(Visitor & v)
{
v.visit(this);
}
};
struct Visitor
{
virtual void visit(Element * e) = 0;
virtual ~Visitor() { }
};
struct RedElement : Element { };
struct BlueElement : Element { };
struct FifthElement : Element { };
struct MyVisitor : Visitor
{
virtual void visit(Element * e)
{
if (RedElement * p = dynamic_cast<RedElement*>(e))
{
// do things specific to Red
}
else if (BlueElement * p = dynamic_cast<BlueElement*>(e))
{
// do things specific to Blue
}
else
{
// error: visitor doesn't know what to do with this element
}
}
};
Now if you have some Element & e;, you can make MyVisitor v; and say e.accept(v).
The key design feature is that if you modify your Element hierarchy, you only have to edit your visitors. The pattern is still fairly complex, and only recommended if you have a very stable class hierarchy of Elements.
Imagine this situation: You have a C++ program that reads and displays HTML. You have a base class HTMLElement which has a pure virtual method displayOnScreen. You also have a function called renderHTMLToBitmap, which draws the HTML to a bitmap. If each HTMLElement has a vector<HTMLElement*> children;, you can just pass the HTMLElement representing the element <html>. But what if a few of the subclasses need special treatment, like <link> for adding CSS. You need a way to know if an element is a LinkElement so you can give it to the CSS functions. To find that out, you'd use dynamic_cast.
The problem with dynamic_cast and polymorphism in general is that it's not terribly efficient. When you add vtables into the mix, it only get's worse.
When you add virtual functions to a base class, when they are called, you end up actually going through quite a few layers of function pointers and memory areas. That will never be more efficient than something like the ASM call instruction.
Edit: In response to Andrew's comment bellow, here's a new approach: Instead of dynamic casting to the specific element type (LinkElement), instead you have another abstract subclass of HTMLElement called ActionElement that overrides displayOnScreen with a function that displays nothing, and creates a new pure virtual function: virtual void doAction() const = 0. The dynamic_cast is changed to test for ActionElement and just calls doAction(). You'd have the same kind of subclass for GraphicalElement with a virtual method displayOnScreen().
Edit 2: Here's what a "rendering" method might look like:
void render(HTMLElement root) {
for(vector<HTLMElement*>::iterator i = root.children.begin(); i != root.children.end(); i++) {
if(dynamic_cast<ActionElement*>(*i) != NULL) //Is an ActionElement
{
ActionElement* ae = dynamic_cast<ActionElement*>(*i);
ae->doAction();
render(ae);
}
else if(dynamic_cast<GraphicalElement*>(*i) != NULL) //Is a GraphicalElement
{
GraphicalElement* ge = dynamic_cast<GraphicalElement*>(*i);
ge->displayToScreen();
render(ge);
}
else
{
//Error
}
}
}
Operator dynamic_cast solves the same problem as dynamic dispatch (virtual functions, visitor pattern, etc): it allows you to perform different actions based on the runtime type of an object.
However, you should always prefer dynamic dispatch, except perhaps when the number of dynamic_cast you'd need will never grow.
Eg. you should never do:
if (auto v = dynamic_cast<Dog*>(animal)) { ... }
else if (auto v = dynamic_cast<Cat*>(animal)) { ... }
...
for maintainability and performance reasons, but you can do eg.
for (MenuItem* item: items)
{
if (auto submenu = dynamic_cast<Submenu*>(item))
{
auto items = submenu->items();
draw(context, items, position); // Recursion
...
}
else
{
item->draw_icon();
item->setup_accelerator();
...
}
}
which I've found quite useful in this exact situation: you have one very particular subhierarchy that must be handled separately, this is where dynamic_cast shines. But real world examples are quite rare (the menu example is something I had to deal with).
dynamic_cast is not intended as an alternative to virtual functions.
dynamic_cast has a non-trivial performance overhead (or so I think) since the whole class hierarchy has to be walked through.
dynamic_cast is similar to the 'is' operator of C# and the QueryInterface of good old COM.
So far I have found one real use of dynamic_cast:
(*) You have multiple inheritance and to locate the target of the cast the compiler has to walk the class hierarchy up and down to locate the target (or down and up if you prefer). This means that the target of the cast is in a parallel branch in relation to where the source of the cast is in the hierarchy. I think there is NO other way to do such a cast.
In all other cases, you just use some base class virtual to tell you what type of object you have and ONLY THEN you dynamic_cast it to the target class so you can use some of it's non-virtual functionality. Ideally there should be no non-virtual functionality, but what the heck, we live in the real world.
Doing things like:
if (v = dynamic_cast(...)){} else if (v = dynamic_cast(...)){} else if ...
is a performance waste.
Casting should be avoided when possible, because it is basically saying to the compiler that you know better and it is usually a sign of some weaker design decission.
However, you might come in situations where the abstraction level was a bit too high for 1 or 2 sub-classes, where you have the choice to change your design or solve it by checking the subclass with dynamic_cast and handle it in a seperate branch. The trade-of is between adding extra time and risk now against extra maintenance issues later.
In most situations where you are writing code in which you know the type of the entity you're working with, you just use static_cast as it's more efficient.
Situations where you need dynamic cast typically arrive (in my experience) from lack of foresight in design - typically where the designer fails to provide an enumeration or id that allows you to determine the type later in the code.
For example, I've seen this situation in more than one project already:
You may use a factory where the internal logic decides which derived class the user wants rather than the user explicitly selecting one. That factory, in a perfect world, returns an enumeration which will help you identify the type of returned object, but if it doesn't you may need to test what type of object it gave you with a dynamic_cast.
Your follow-up question would obviously be: Why would you need to know the type of object that you're using in code using a factory?
In a perfect world, you wouldn't - the interface provided by the base class would be sufficient for managing all of the factories' returned objects to all required extents. People don't design perfectly though. For example, if your factory creates abstract connection objects, you may suddenly realize that you need to access the UseSSL flag on your socket connection object, but the factory base doesn't support that and it's not relevant to any of the other classes using the interface. So, maybe you would check to see if you're using that type of derived class in your logic, and cast/set the flag directly if you are.
It's ugly, but it's not a perfect world, and sometimes you don't have time to refactor an imperfect design fully in the real world under work pressure.
The dynamic_cast operator is very useful to me.
I especially use it with the Observer pattern for event management:
#include <vector>
#include <iostream>
using namespace std;
class Subject; class Observer; class Event;
class Event { public: virtual ~Event() {}; };
class Observer { public: virtual void onEvent(Subject& s, const Event& e) = 0; };
class Subject {
private:
vector<Observer*> m_obs;
public:
void attach(Observer& obs) { m_obs.push_back(& obs); }
public:
void notifyEvent(const Event& evt) {
for (vector<Observer*>::iterator it = m_obs.begin(); it != m_obs.end(); it++) {
if (Observer* const obs = *it) {
obs->onEvent(*this, evt);
}
}
}
};
// Define a model with events that contain data.
class MyModel : public Subject {
public:
class Evt1 : public Event { public: int a; string s; };
class Evt2 : public Event { public: float f; };
};
// Define a first service that processes both events with their data.
class MyService1 : public Observer {
public:
virtual void onEvent(Subject& s, const Event& e) {
if (const MyModel::Evt1* const e1 = dynamic_cast<const MyModel::Evt1*>(& e)) {
cout << "Service1 - event Evt1 received: a = " << e1->a << ", s = " << e1->s << endl;
}
if (const MyModel::Evt2* const e2 = dynamic_cast<const MyModel::Evt2*>(& e)) {
cout << "Service1 - event Evt2 received: f = " << e2->f << endl;
}
}
};
// Define a second service that only deals with the second event.
class MyService2 : public Observer {
public:
virtual void onEvent(Subject& s, const Event& e) {
// Nothing to do with Evt1 in Service2
if (const MyModel::Evt2* const e2 = dynamic_cast<const MyModel::Evt2*>(& e)) {
cout << "Service2 - event Evt2 received: f = " << e2->f << endl;
}
}
};
int main(void) {
MyModel m; MyService1 s1; MyService2 s2;
m.attach(s1); m.attach(s2);
MyModel::Evt1 e1; e1.a = 2; e1.s = "two"; m.notifyEvent(e1);
MyModel::Evt2 e2; e2.f = .2f; m.notifyEvent(e2);
}
Contract Programming and RTTI shows how you can use dynamic_cast to allow objects to advertise what interfaces they implement. We used it in my shop to replace a rather opaque metaobject system. Now we can clearly describe the functionality of objects, even if the objects are introduced by a new module several weeks/months after the platform was 'baked' (though of course the contracts need to have been decided on up front).

Factory method anti-if implementation

I'm applying the Factory design pattern in my C++ project, and below you can see how I am doing it. I try to improve my code by following the "anti-if" campaign, thus want to remove the if statements that I am having. Any idea how can I do it?
typedef std::map<std::string, Chip*> ChipList;
Chip* ChipFactory::createChip(const std::string& type) {
MCList::iterator existing = Chips.find(type);
if (existing != Chips.end()) {
return (existing->second);
}
if (type == "R500") {
return Chips[type] = new ChipR500();
}
if (type == "PIC32F42") {
return Chips[type] = new ChipPIC32F42();
}
if (type == "34HC22") {
return Chips[type] = new Chip34HC22();
}
return 0;
}
I would imagine creating a map, with string as the key, and the constructor (or something to create the object). After that, I can just get the constructor from the map using the type (type are strings) and create my object without any if. (I know I'm being a bit paranoid, but I want to know if it can be done or not.)
You are right, you should use a map from key to creation-function.
In your case it would be
typedef Chip* tCreationFunc();
std::map<std::string, tCreationFunc*> microcontrollers;
for each new chip-drived class ChipXXX add a static function:
static Chip* CreateInstance()
{
return new ChipXXX();
}
and also register this function into the map.
Your factory function should be somethink like this:
Chip* ChipFactory::createChip(std::string& type)
{
ChipList::iterator existing = microcontrollers.find(type);
if (existing != microcontrollers.end())
return existing->second();
return NULL;
}
Note that copy constructor is not needed, as in your example.
The point of the factory is not to get rid of the ifs, but to put them in a separate place of your real business logic code and not to pollute it. It is just a separation of concerns.
If you're desperate, you could write a jump table/clone() combo that would do this job with no if statements.
class Factory {
struct ChipFunctorBase {
virtual Chip* Create();
};
template<typename T> struct CreateChipFunctor : ChipFunctorBase {
Chip* Create() { return new T; }
};
std::unordered_map<std::string, std::unique_ptr<ChipFunctorBase>> jumptable;
Factory() {
jumptable["R500"] = new CreateChipFunctor<ChipR500>();
jumptable["PIC32F42"] = new CreateChipFunctor<ChipPIC32F42>();
jumptable["34HC22"] = new CreateChipFunctor<Chip34HC22>();
}
Chip* CreateNewChip(const std::string& type) {
if(jumptable[type].get())
return jumptable[type]->Create();
else
return null;
}
};
However, this kind of approach only becomes valuable when you have large numbers of different Chip types. For just a few, it's more useful just to write a couple of ifs.
Quick note: I've used std::unordered_map and std::unique_ptr, which may not be part of your STL, depending on how new your compiler is. Replace with std::map/boost::unordered_map, and std::/boost::shared_ptr.
No you cannot get rid of the ifs. the createChip method creats a new instance depending on constant (type name )you pass as argument.
but you may optimaze yuor code a little removing those 2 line out of if statment.
microcontrollers[type] = newController;
return microcontrollers[type];
To answer your question: Yes, you should make a factory with a map to functions that construct the objects you want. The objects constructed should supply and register that function with the factory themselves.
There is some reading on the subject in several other SO questions as well, so I'll let you read that instead of explaining it all here.
Generic factory in C++
Is there a way to instantiate objects from a string holding their class name?
You can have ifs in a factory - just don't have them littered throughout your code.
struct Chip{
};
struct ChipR500 : Chip{};
struct PIC32F42 : Chip{};
struct ChipCreator{
virtual Chip *make() = 0;
};
struct ChipR500Creator : ChipCreator{
Chip *make(){return new ChipR500();}
};
struct PIC32F42Creator : ChipCreator{
Chip *make(){return new PIC32F42();}
};
int main(){
ChipR500Creator m; // client code knows only the factory method interface, not the actuall concrete products
Chip *p = m.make();
}
What you are asking for, essentially, is called Virtual Construction, ie the ability the build an object whose type is only known at runtime.
Of course C++ doesn't allow constructors to be virtual, so this requires a bit of trickery. The common OO-approach is to use the Prototype pattern:
class Chip
{
public:
virtual Chip* clone() const = 0;
};
class ChipA: public Chip
{
public:
virtual ChipA* clone() const { return new ChipA(*this); }
};
And then instantiate a map of these prototypes and use it to build your objects (std::map<std::string,Chip*>). Typically, the map is instantiated as a singleton.
The other approach, as has been illustrated so far, is similar and consists in registering directly methods rather than an object. It might or might not be your personal preference, but it's generally slightly faster (not much, you just avoid a virtual dispatch) and the memory is easier to handle (you don't have to do delete on pointers to functions).
What you should pay attention however is the memory management aspect. You don't want to go leaking so make sure to use RAII idioms.

Storing a list of arbitrary objects in C++

In Java, you can have a List of Objects. You can add objects of multiple types, then retrieve them, check their type, and perform the appropriate action for that type.
For example: (apologies if the code isn't exactly correct, I'm going from memory)
List<Object> list = new LinkedList<Object>();
list.add("Hello World!");
list.add(7);
list.add(true);
for (object o : list)
{
if (o instanceof int)
; // Do stuff if it's an int
else if (o instanceof String)
; // Do stuff if it's a string
else if (o instanceof boolean)
; // Do stuff if it's a boolean
}
What's the best way to replicate this behavior in C++?
boost::variant is similar to dirkgently's suggestion of boost::any, but supports the Visitor pattern, meaning it's easier to add type-specific code later. Also, it allocates values on the stack rather than using dynamic allocation, leading to slightly more efficient code.
EDIT: As litb points out in the comments, using variant instead of any means you can only hold values from one of a prespecified list of types. This is often a strength, though it might be a weakness in the asker's case.
Here is an example (not using the Visitor pattern though):
#include <vector>
#include <string>
#include <boost/variant.hpp>
using namespace std;
using namespace boost;
...
vector<variant<int, string, bool> > v;
for (int i = 0; i < v.size(); ++i) {
if (int* pi = get<int>(v[i])) {
// Do stuff with *pi
} else if (string* si = get<string>(v[i])) {
// Do stuff with *si
} else if (bool* bi = get<bool>(v[i])) {
// Do stuff with *bi
}
}
(And yes, you should technically use vector<T>::size_type instead of int for i's type, and you should technically use vector<T>::iterator instead anyway, but I'm trying to keep it simple.)
Your example using Boost.Variant and a visitor:
#include <string>
#include <list>
#include <boost/variant.hpp>
#include <boost/foreach.hpp>
using namespace std;
using namespace boost;
typedef variant<string, int, bool> object;
struct vis : public static_visitor<>
{
void operator() (string s) const { /* do string stuff */ }
void operator() (int i) const { /* do int stuff */ }
void operator() (bool b) const { /* do bool stuff */ }
};
int main()
{
list<object> List;
List.push_back("Hello World!");
List.push_back(7);
List.push_back(true);
BOOST_FOREACH (object& o, List) {
apply_visitor(vis(), o);
}
return 0;
}
One good thing about using this technique is that if, later on, you add another type to the variant and you forget to modify a visitor to include that type, it will not compile. You have to support every possible case. Whereas, if you use a switch or cascading if statements, it's easy to forget to make the change everywhere and introduce a bug.
C++ does not support heterogenous containers.
If you are not going to use boost the hack is to create a dummy class and have all the different classes derive from this dummy class. Create a container of your choice to hold dummy class objects and you are ready to go.
class Dummy {
virtual void whoami() = 0;
};
class Lizard : public Dummy {
virtual void whoami() { std::cout << "I'm a lizard!\n"; }
};
class Transporter : public Dummy {
virtual void whoami() { std::cout << "I'm Jason Statham!\n"; }
};
int main() {
std::list<Dummy*> hateList;
hateList.insert(new Transporter());
hateList.insert(new Lizard());
std::for_each(hateList.begin(), hateList.end(),
std::mem_fun(&Dummy::whoami));
// yes, I'm leaking memory, but that's besides the point
}
If you are going to use boost you can try boost::any. Here is an example of using boost::any.
You may find this excellent article by two leading C++ experts of interest.
Now, boost::variant is another thing to look out for as j_random_hacker mentioned. So, here's a comparison to get a fair idea of what to use.
With a boost::variant the code above would look something like this:
class Lizard {
void whoami() { std::cout << "I'm a lizard!\n"; }
};
class Transporter {
void whoami() { std::cout << "I'm Jason Statham!\n"; }
};
int main() {
std::vector< boost::variant<Lizard, Transporter> > hateList;
hateList.push_back(Lizard());
hateList.push_back(Transporter());
std::for_each(hateList.begin(), hateList.end(), std::mem_fun(&Dummy::whoami));
}
How often is that sort of thing actually useful? I've been programming in C++ for quite a few years, on different projects, and have never actually wanted a heterogenous container. It may be common in Java for some reason (I have much less Java experience), but for any given use of it in a Java project there might be a way to do something different that will work better in C++.
C++ has a heavier emphasis on type safety than Java, and this is very type-unsafe.
That said, if the objects have nothing in common, why are you storing them together?
If they do have things in common, you can make a class for them to inherit from; alternately, use boost::any. If they inherit, have virtual functions to call, or use dynamic_cast<> if you really have to.
I'd just like to point out that using dynamic type casting in order to branch based on type often hints at flaws in the architecture. Most times you can achieve the same effect using virtual functions:
class MyData
{
public:
// base classes of polymorphic types should have a virtual destructor
virtual ~MyData() {}
// hand off to protected implementation in derived classes
void DoSomething() { this->OnDoSomething(); }
protected:
// abstract, force implementation in derived classes
virtual void OnDoSomething() = 0;
};
class MyIntData : public MyData
{
protected:
// do something to int data
virtual void OnDoSomething() { ... }
private:
int data;
};
class MyComplexData : public MyData
{
protected:
// do something to Complex data
virtual void OnDoSomething() { ... }
private:
Complex data;
};
void main()
{
// alloc data objects
MyData* myData[ 2 ] =
{
new MyIntData()
, new MyComplexData()
};
// process data objects
for ( int i = 0; i < 2; ++i ) // for each data object
{
myData[ i ]->DoSomething(); // no type cast needed
}
// delete data objects
delete myData[0];
delete myData[1];
};
Sadly there is no easy way of doing this in C++. You have to create a base class yourself and derive all other classes from this class. Create a vector of base class pointers and then use dynamic_cast (which comes with its own runtime overhead) to find the actual type.
Just for completeness of this topic I want to mention that you can actually do this with pure C by using void* and then casting it into whatever it has to be (ok, my example isn't pure C since it uses vectors but that saves me some code). This will work if you know what type your objects are, or if you store a field somewhere which remembers that. You most certainly DON'T want to do this but here is an example to show that it's possible:
#include <iostream>
#include <vector>
using namespace std;
int main() {
int a = 4;
string str = "hello";
vector<void*> list;
list.push_back( (void*) &a );
list.push_back( (void*) &str );
cout << * (int*) list[0] << "\t" << * (string*) list[1] << endl;
return 0;
}
While you cannot store primitive types in containers, you can create primitive type wrapper classes which will be similar to Java's autoboxed primitive types (in your example the primitive typed literals are actually being autoboxed); instances of which appear in C++ code (and can (almost) be used) just like primitive variables/data members.
See Object Wrappers for the Built-In Types from Data Structures and Algorithms with Object-Oriented Design Patterns in C++.
With the wrapped object you can use the c++ typeid() operator to compare the type.
I am pretty sure the following comparison will work:
if (typeid(o) == typeid(Int)) [where Int would be the wrapped class for the int primitive type, etc...]
(otherwise simply add a function to your primitive wrappers that returns a typeid and thus:
if (o.get_typeid() == typeid(Int)) ...
That being said, with respect to your example, this has code smell to me.
Unless this is the only place where you are checking the type of the object,
I would be inclined to use polymorphism (especially if you have other methods/functions specific with respect to type). In this case I would use the primitive wrappers adding an interfaced class declaring the deferred method (for doing 'do stuff') that would be implemented by each of your wrapped primitive classes. With this you would be able to use your container iterator and eliminate your if statement (again, if you only have this one comparison of type, setting up the deferred method using polymorphism just for this would be overkill).
I am a fairly inexperienced, but here's what I'd go with-
Create a base class for all classes you need to manipulate.
Write container class/ reuse container class.
(Revised after seeing other answers -My previous point was too cryptic.)
Write similar code.
I am sure a much better solution is possible. I am also sure a better explanation is possible. I've learnt that I have some bad C++ programming habits, so I've tried to convey my idea without getting into code.
I hope this helps.
Beside the fact, as most have pointed out, you can't do that, or more importantly, more than likely, you really don't want to.
Let's dismiss your example, and consider something closer to a real-life example. Specifically, some code I saw in a real open-source project. It attempted to emulate a cpu in a character array. Hence it would put into the array a one byte "op code", followed by 0, 1 or 2 bytes which could be a character, an integer, or a pointer to a string, based on the op code. To handle that, it involved a lot of bit-fiddling.
My simple solution: 4 separate stacks<>s: One for the "opcode" enum and one each for chars, ints and string. Take the next off the opcode stack, and the would take you which of the other three to get the operand.
There's a very good chance your actual problem can be handled in a similar way.
Well, you could create a base class and then create classes which inherit from it. Then, store them in a std::vector.
The short answer is... you can't.
The long answer is... you'd have to define your own new heirarchy of objects that all inherit from a base object. In Java all objects ultimately descend from "Object", which is what allows you to do this.
RTTI (Run time type info) in C++ has always been tough, especially cross-compiler.
You're best option is to use STL and define an interface in order to determine the object type:
public class IThing
{
virtual bool isA(const char* typeName);
}
void myFunc()
{
std::vector<IThing> things;
// ...
things.add(new FrogThing());
things.add(new LizardThing());
// ...
for (int i = 0; i < things.length(); i++)
{
IThing* pThing = things[i];
if (pThing->isA("lizard"))
{
// do this
}
// etc
}
}
Mike

C++ design - Network packets and serialization

I have, for my game, a Packet class, which represents network packet and consists basically of an array of data, and some pure virtual functions
I would then like to have classes deriving from Packet, for example: StatePacket, PauseRequestPacket, etc. Each one of these sub-classes would implement the virtual functions, Handle(), which would be called by the networking engine when one of these packets is received so that it can do it's job, several get/set functions which would read and set fields in the array of data.
So I have two problems:
The (abstract) Packet class would need to be copyable and assignable, but without slicing, keeping all the fields of the derived class. It may even be possible that the derived class will have no extra fields, only function, which would work with the array on the base class. How can I achieve that?
When serializing, I would give each sub-class an unique numeric ID, and then write it to the stream before the sub-class' own serialization. But for unserialization, how would I map the read ID to the appropriate sub-class to instanciate it?
If anyone want's any clarifications, just ask.
-- Thank you
Edit: I'm not quite happy with it, but that's what I managed:
Packet.h: http://pastebin.com/f512e52f1
Packet.cpp: http://pastebin.com/f5d535d19
PacketFactory.h: http://pastebin.com/f29b7d637
PacketFactory.cpp: http://pastebin.com/f689edd9b
PacketAcknowledge.h: http://pastebin.com/f50f13d6f
PacketAcknowledge.cpp: http://pastebin.com/f62d34eef
If someone has the time to look at it and suggest any improvements, I'd be thankful.
Yes, I'm aware of the factory pattern, but how would I code it to construct each class? A giant switch statement? That would also duplicade the ID for each class (once in the factory and one in the serializator), which I'd like to avoid.
For copying you need to write a clone function, since a constructor cannot be virtual:
virtual Packet * clone() const = 0;
Which each Packet implementation implement like this:
virtual Packet * clone() const {
return new StatePacket(*this);
}
for example for StatePacket. Packet classes should be immutable. Once a packet is received, its data can either be copied out, or thrown away. So a assignment operator is not required. Make the assignment operator private and don't define it, which will effectively forbid assigning packages.
For de-serialization, you use the factory pattern: create a class which creates the right message type given the message id. For this, you can either use a switch statement over the known message IDs, or a map like this:
struct MessageFactory {
std::map<Packet::IdType, Packet (*)()> map;
MessageFactory() {
map[StatePacket::Id] = &StatePacket::createInstance;
// ... all other
}
Packet * createInstance(Packet::IdType id) {
return map[id]();
}
} globalMessageFactory;
Indeed, you should add check like whether the id is really known and such stuff. That's only the rough idea.
You need to look up the Factory Pattern.
The factory looks at the incomming data and created an object of the correct class for you.
To have a Factory class that does not know about all the types ahead of time you need to provide a singleton where each class registers itself. I always get the syntax for defining static members of a template class wrong, so do not just cut&paste this:
class Packet { ... };
typedef Packet* (*packet_creator)();
class Factory {
public:
bool add_type(int id, packet_creator) {
map_[id] = packet_creator; return true;
}
};
template<typename T>
class register_with_factory {
public:
static Packet * create() { return new T; }
static bool registered;
};
template<typename T>
bool register_with_factory<T>::registered = Factory::add_type(T::id(), create);
class MyPacket : private register_with_factory<MyPacket>, public Packet {
//... your stuff here...
static int id() { return /* some number that you decide */; }
};
Why do we, myself included, always make such simple problems so complicated?
Perhaps I'm off base here. But I have to wonder: Is this really the best design for your needs?
By and large, function-only inheritance can be better achieved through function/method pointers, or aggregation/delegation and the passing around of data objects, than through polymorphism.
Polymorphism is a very powerful and useful tool. But it's only one of many tools available to us.
It looks like each subclass of Packet will need its own Marshalling and Unmarshalling code. Perhaps inheriting Packet's Marshalling/Unmarshalling code? Perhaps extending it? All on top of handle() and whatever else is required.
That's a lot of code.
While substantially more kludgey, it might be shorter & faster to implement Packet's data as a struct/union attribute of the Packet class.
Marshalling and Unmarshalling would then be centralized.
Depending on your architecture, it could be as simple as write(&data). Assuming there are no big/little-endian issues between your client/server systems, and no padding issues. (E.g. sizeof(data) is the same on both systems.)
Write(&data)/read(&data) is a bug-prone technique. But it's often a very fast way to write the first draft. Later on, when time permits, you can replace it with individual per-attribute type-based Marshalling/Unmarshalling code.
Also: I've taken to storing data that's being sent/received as a struct. You can bitwise copy a struct with operator=(), which at times has been VERY helpful! Though perhaps not so much in this case.
Ultimately, you are going to have a switch statement somewhere on that subclass-id type. The factory technique (which is quite powerful and useful in its own right) does this switch for you, looking up the necessary clone() or copy() method/object.
OR you could do it yourself in Packet. You could just use something as simple as:
( getHandlerPointer( id ) ) ( this )
Another advantage to an approach this kludgey (function pointers), aside from the rapid development time, is that you don't need to constantly allocate and delete a new object for each packet. You can re-use a single packet object over and over again. Or a vector of packets if you wanted to queue them. (Mind you, I'd clear the Packet object before invoking read() again! Just to be safe...)
Depending on your game's network traffic density, allocation/deallocation could get expensive. Then again, premature optimization is the root of all evil. And you could always just roll your own new/delete operators. (Yet more coding overhead...)
What you lose (with function pointers) is the clean segregation of each packet type. Specifically the ability to add new packet types without altering pre-existing code/files.
Example code:
class Packet
{
public:
enum PACKET_TYPES
{
STATE_PACKET = 0,
PAUSE_REQUEST_PACKET,
MAXIMUM_PACKET_TYPES,
FIRST_PACKET_TYPE = STATE_PACKET
};
typedef bool ( * HandlerType ) ( const Packet & );
protected:
/* Note: Initialize handlers to NULL when declared! */
static HandlerType handlers [ MAXIMUM_PACKET_TYPES ];
static HandlerType getHandler( int thePacketType )
{ // My own assert macro...
UASSERT( thePacketType, >=, FIRST_PACKET_TYPE );
UASSERT( thePacketType, <, MAXIMUM_PACKET_TYPES );
UASSERT( handlers [ thePacketType ], !=, HandlerType(NULL) );
return handlers [ thePacketType ];
}
protected:
struct Data
{
// Common data to all packets.
int number;
int type;
union
{
struct
{
int foo;
} statePacket;
struct
{
int bar;
} pauseRequestPacket;
} u;
} data;
public:
//...
bool readFromSocket() { /*read(&data); */ } // Unmarshal
bool writeToSocket() { /*write(&data);*/ } // Marshal
bool handle() { return ( getHandler( data.type ) ) ( * this ); }
}; /* class Packet */
PS: You might dig around with google and grab down cdecl/c++decl. They are very useful programs. Especially when playing around with function pointers.
E.g.:
c++decl> declare foo as function(int) returning pointer to function returning void
void (*foo(int ))()
c++decl> explain void (* getHandler( int ))( const int & );
declare getHandler as function (int) returning pointer to function (reference to const int) returning void