QImage::setPixel: coordinate out of range - c++

i am beginner in QT
i try to open binary file and draw it pixel by pixel
i got this warning when i was debugging
QImage::setPixel: coordinate (67,303) out of range
QImage::setPixel: coordinate (67,306) out of range
QImage::setPixel: coordinate (67,309) out of range
QImage::setPixel: coordinate (67,312) out of range
and this is the code
unsigned char* data = new unsigned char[row_padded];
unsigned char tmp;
QImage myImage;
myImage = QImage(width, height, QImage::Format_RGB888);
for(int i = 0; i < height; i++)
{
fread(data, sizeof(unsigned char), row_padded, file);
for(int j = 0; j < width*3; j += 3)
{
// Convert (B, G, R) to (R, G, B)
tmp = data[j];
data[j] = data[j+2];
data[j+2] = tmp;
myImage.setPixel((width*3)-j, height-i, RGB((int)data[j],(int)data[j+1],(int)data[j+2]));
}
}
thanks in advance :)

You incorrectly calculate x and y coordinate on this line:
myImage.setPixel((width*3)-j, height-i, RGB((int)data[j],(int)data[j+1],(int)data[j+2]));
x should be instead:
width - j / 3 - 1
y should be
height - i - 1
or maybe it is better to use another variable for x to avoid division:
for(int i = 0; i < height; i++)
{
fread(data, sizeof(unsigned char), row_padded, file);
int x = width;
for(int j = 0; j < width*3; j += 3)
{
// Convert (B, G, R) to (R, G, B)
tmp = data[j];
data[j] = data[j+2];
data[j+2] = tmp;
myImage.setPixel(--x, height-i-1, RGB((int)data[j],(int)data[j+1],(int)data[j+2]));
}
}
Suggestions: it is better to define variable right before it is used:
unsigned char tmp = data[j];
data[j] = data[j+2];
data[j+2] = tmp;
or even better
std::swap( data[j], data[j+2] );

Related

grayscale Laplace sharpening implementation

I am trying to implement Laplace sharpening using C++ , here's my code so far:
img = imread("cow.png", 0);
Mat convoSharp() {
//creating new image
Mat res = img.clone();
for (int y = 0; y < res.rows; y++) {
for (int x = 0; x < res.cols; x++) {
res.at<uchar>(y, x) = 0.0;
}
}
//variable declaration
int filter[3][3] = { {0,1,0},{1,-4,1},{0,1,0} };
//int filter[3][3] = { {-1,-2,-1},{0,0,0},{1,2,1} };
int height = img.rows;
int width = img.cols;
int filterHeight = 3;
int filterWidth = 3;
int newImageHeight = height - filterHeight + 1;
int newImageWidth = width - filterWidth + 1;
int i, j, h, w;
//convolution
for (i = 0; i < newImageHeight; i++) {
for (j = 0; j < newImageWidth; j++) {
for (h = i; h < i + filterHeight; h++) {
for (w = j; w < j + filterWidth; w++) {
res.at<uchar>(i,j) += filter[h - i][w - j] * img.at<uchar>(h,w);
}
}
}
}
//img - laplace
for (int y = 0; y < res.rows; y++) {
for (int x = 0; x < res.cols; x++) {
res.at<uchar>(y, x) = img.at<uchar>(y, x) - res.at<uchar>(y, x);
}
}
return res;
}
I don't really know what went wrong, I also tried different filter (1,1,1),(1,-8,1),(1,1,1) and the result is also same (more or less). I don't think that I need to normalize the result because the result is in range of 0 - 255. Can anyone explain what really went wrong in my code?
Problem: uchar is too small to hold partial results of filerting operation.
You should create a temporary variable and add all the filtered positions to this variable then check if value of temp is in range <0,255> if not, you need to clamp the end result to fit <0,255>.
By executing below line
res.at<uchar>(i,j) += filter[h - i][w - j] * img.at<uchar>(h,w);
partial result may be greater than 255 (max value in uchar) or negative (in filter you have -4 or -8). temp has to be singed integer type to handle the case when partial result is negative value.
Fix:
for (i = 0; i < newImageHeight; i++) {
for (j = 0; j < newImageWidth; j++) {
int temp = res.at<uchar>(i,j); // added
for (h = i; h < i + filterHeight; h++) {
for (w = j; w < j + filterWidth; w++) {
temp += filter[h - i][w - j] * img.at<uchar>(h,w); // add to temp
}
}
// clamp temp to <0,255>
res.at<uchar>(i,j) = temp;
}
}
You should also clamp values to <0,255> range when you do the subtraction of images.
The problem is partially that you’re overflowing your uchar, as rafix07 suggested, but that is not the full problem.
The Laplace of an image contains negative values. It has to. And you can’t clamp those to 0, you need to preserve the negative values. Also, it can values up to 4*255 given your version of the filter. What this means is that you need to use a signed 16 bit type to store this output.
But there is a simpler and more efficient approach!
You are computing img - laplace(img). In terms of convolutions (*), this is 1 * img - laplace_kernel * img = (1 - laplace_kernel) * img. That is to say, you can combine both operations into a single convolution. The 1 kernel that doesn’t change the image is [(0,0,0),(0,1,0),(0,0,0)]. Subtract your Laplace kernel from that and you obtain [(0,-1,0),(-1,5,-1),(0,-1,0)].
So, simply compute the convolution with that kernel, and do it using int as intermediate type, which you then clamp to the uchar output range as shown by rafix07.

Copying R8G8B8A8 image to R8G8B8

I'm trying to convert an R8G8B8A8 image to R8G8B8 image, what I get right now is an image, but with a lot of scan lines, I have byters per pixels is 4 bytes, 32bit.
The image buffer is of type unsigned char [width*height*4] that's the source and the destination is unsigned char [width*height*3].
int j = 0;
int i = 0;
for (int k = 0; k < (width*height); k++)
{
for(int b = 0; b < 3; b++)
{
dst[i + b] = src[j + b];
}
i+=3;
j+=4;
}
Probably the destination image requires lines aligned on a 4 bytes boundary:
for(unsigned int y(0); y != height; ++y)
{
unsigned int sourceStart(y * width * 4);
unsigned int destStart(y * ((width * 3 + 3) & 0xfffffffc) ); // align on 4 bytes
for(unsigned int x(0); x != width; ++x)
{
for(unsigned int color(0); color != 3; ++color)
{
dst[destStart++] = src[sourceStart++];
}
++sourceStart; // account for 4th byte in source
}
}
You can do this:
for (int k = 0; k < width*height; k++)
{
for(int b = 0; b < 3; b++)
{
dst[k*3 + b] = src[k*4 + b];
}
}

Alpha-trimmed filter troubles

I am trying to make an alphatrimmed filter in openCV library. My code is not working properly and the resultant image is not looking as image after filtering.
The filter should work in the following way.
Chossing some (array) of pixels in my example it is 9 pixels '3x3' window.
Ordering them in increasing way.
Cutting our 'array' both sides for alpha-2.
calculating arithmetic mean of remaining pixels and inserting them in proper place.
int alphatrimmed(Mat img, int alpha)
{
Mat img9 = img.clone();
const int start = alpha/2 ;
const int end = 9 - (alpha/2);
//going through whole image
for (int i = 1; i < img.rows - 1; i++)
{
for (int j = 1; j < img.cols - 1; j++)
{
uchar element[9];
Vec3b element3[9];
int k = 0;
int a = 0;
//selecting elements for window 3x3
for (int m = i -1; m < i + 2; m++)
{
for (int n = j - 1; n < j + 2; n++)
{
element3[a] = img.at<Vec3b>(m*img.cols + n);
a++;
for (int c = 0; c < img.channels(); c++)
{
element[k] += img.at<Vec3b>(m*img.cols + n)[c];
}
k++;
}
}
//comparing and sorting elements in window (uchar element [9])
for (int b = 0; b < end; b++)
{
int min = b;
for (int d = b + 1; d < 9; d++)
{
if (element[d] < element[min])
{
min = d;
const uchar temp = element[b];
element[b] = element[min];
element[min] = temp;
const Vec3b temporary = element3[b];
element3[b] = element3[min];
element3[min] = temporary;
}
}
}
// index in resultant image( after alpha-trimmed filter)
int result = (i - 1) * (img.cols - 2) + j - 1;
for (int l = start ; l < end; l++)
img9.at<Vec3b>(result) += element3[l];
img9.at<Vec3b>(result) /= (9 - alpha);
}
}
namedWindow("AlphaTrimmed Filter", WINDOW_AUTOSIZE);
imshow("AlphaTrimmed Filter", img9);
return 0;
}
Without actual data, it's somewhat of a guess, but an uchar can't hold the sum of 3 channels. It works modulo 256 (at least on any platform OpenCV supports).
The proper solution is std::sort with a proper comparator for your Vec3b :
void L1(Vec3b a, Vec3b b) { return a[0]+a[1]+a[2] < b[0]+b[1]+b[2]; }

opencv filter on multi-dimension Mat

i want to transport the follow codes into c++:
gaussFilter = fspecial('gaussian', 2*neighSize+1, 0.5*neighSize);
pointFeature = imfilter(pointFeature, gaussFilter, 'symmetric');
where the pointFeature is a [height, width, 24] array.
i try to use filter2D, but it only support the 2D array.
so i want to know if there are functions in opencv that can filtering the multi-dimensional array?
You can use separable kernel filters for make anydimentional filter.
If you are using OpenCV, you could try this for a 3 Dimensional MatND:
void Smooth3DHist(cv::MatND &hist, const int& kernDimension)
{
assert(hist.dims == 3);
int x_size = hist.size[0];
int y_size = hist.size[1];
int z_size = hist.size[2];
int xy_size = x_size*y_size;
cv::Mat kernal = cv::getGaussianKernel(kernDimension, -1, CV_32F);
// Filter XY dimensions for every Z
for (int z = 0; z < z_size; z++)
{
float *ind = (float*)hist.data + z * xy_size; // sub-matrix pointer
cv::Mat subMatrix(2, hist.size, CV_32F, ind);
cv::sepFilter2D(subMatrix, subMatrix, CV_32F, kernal.t(), kernal, Point(-1,-1), 0.0, cv::BORDER_REPLICATE);
}
// Filter Z dimension
float* kernGauss = (float *)kernal.data;
unsigned kernSize = kernal.total();
int kernMargin = (kernSize - 1)/2;
float* lineBuffer = new float[z_size + 2*kernMargin];
for (int y = 0; y < y_size; y++)
{
for (int x = 0; x < x_size; x++)
{
// Copy along Z dimension into a line buffer
float* z_ptr = (float*)hist.data + y * x_size + x;//same as hist.ptr<float>(0, y, x)
for (int z = 0; z < z_size; z++, z_ptr += xy_size)
{
lineBuffer[z + kernMargin] = *z_ptr;
}
// Replicate borders
for (int m = 0; m < kernMargin; m++)
{
lineBuffer[m] = lineBuffer[kernMargin];// replicate left side
lineBuffer[z_size + 2*kernMargin - 1 - m] = lineBuffer[kernMargin + z_size - 1];//replicate right side
}
// Filter line buffer 1D - convolution
z_ptr = (float*)hist.data + y * x_size + x;
for (int z = 0; z < z_size; z++, z_ptr += xy_size)
{
*z_ptr = 0.0f;
for (unsigned k = 0; k < kernSize; k++)
{
*z_ptr += lineBuffer[z+k]*kernGauss[k];
}
}
}
}
delete [] lineBuffer;
}

OpenCV get pixel channel value from Mat image

Maybe I'm not looking hard enough, but everything seems to want me to use an array. Thus, how do I get the channel value for a particular pixel for foo if foo is something like Mat foo = imread("bar.png")?
Assuming the type is CV_8UC3 you would do this:
for(int i = 0; i < foo.rows; i++)
{
for(int j = 0; j < foo.cols; j++)
{
Vec3b bgrPixel = foo.at<Vec3b>(i, j);
// do something with BGR values...
}
}
Here is the documentation for Vec3b. Also, don't forget OpenCV stores things internally as BGR not RGB.
EDIT :
For performance reasons, you may want to use direct access to the data buffer in order to process the pixel values:
Here is how you might go about this:
uint8_t* pixelPtr = (uint8_t*)foo.data;
int cn = foo.channels();
Scalar_<uint8_t> bgrPixel;
for(int i = 0; i < foo.rows; i++)
{
for(int j = 0; j < foo.cols; j++)
{
bgrPixel.val[0] = pixelPtr[i*foo.cols*cn + j*cn + 0]; // B
bgrPixel.val[1] = pixelPtr[i*foo.cols*cn + j*cn + 1]; // G
bgrPixel.val[2] = pixelPtr[i*foo.cols*cn + j*cn + 2]; // R
// do something with BGR values...
}
}
Or alternatively:
int cn = foo.channels();
Scalar_<uint8_t> bgrPixel;
for(int i = 0; i < foo.rows; i++)
{
uint8_t* rowPtr = foo.row(i);
for(int j = 0; j < foo.cols; j++)
{
bgrPixel.val[0] = rowPtr[j*cn + 0]; // B
bgrPixel.val[1] = rowPtr[j*cn + 1]; // G
bgrPixel.val[2] = rowPtr[j*cn + 2]; // R
// do something with BGR values...
}
}
The below code works for me, for both accessing and changing a pixel value.
For accessing pixel's channel value :
for (int i = 0; i < image.cols; i++) {
for (int j = 0; j < image.rows; j++) {
Vec3b intensity = image.at<Vec3b>(j, i);
for(int k = 0; k < image.channels(); k++) {
uchar col = intensity.val[k];
}
}
}
For changing a pixel value of a channel :
uchar pixValue;
for (int i = 0; i < image.cols; i++) {
for (int j = 0; j < image.rows; j++) {
Vec3b &intensity = image.at<Vec3b>(j, i);
for(int k = 0; k < image.channels(); k++) {
// calculate pixValue
intensity.val[k] = pixValue;
}
}
}
`
Source : Accessing pixel value
The pixels array is stored in the "data" attribute of cv::Mat. Let's suppose that we have a Mat matrix where each pixel has 3 bytes (CV_8UC3).
For this example, let's draw a RED pixel at position 100x50.
Mat foo;
int x=100, y=50;
Solution 1:
Create a macro function that obtains the pixel from the array.
#define PIXEL(frame, W, x, y) (frame+(y)*3*(W)+(x)*3)
//...
unsigned char * p = PIXEL(foo.data, foo.rols, x, y);
p[0] = 0; // B
p[1] = 0; // G
p[2] = 255; // R
Solution 2:
Get's the pixel using the method ptr.
unsigned char * p = foo.ptr(y, x); // Y first, X after
p[0] = 0; // B
p[1] = 0; // G
p[2] = 255; // R