Neural network - unsignificant output data for small dataset - c++

So I am working on an implementation of a backprop neural network :
I made this 'NEURON' class , as every beginner in neural network do .
However, I am having weird results : you see, when the dataset is small (like in the case of a XOR function, where there can be only 4 possible permutations (00, 11, 01, 10) for the dataset), the output neuron gives me very close result, no matter how many training iteration (epoch) takes place.
Ex: 1 XOR 1 gives me 0.987, and 1 XOR 0 gives me 0.986, shouldn't they be far apart ?
Here is the class code, in case :
#pragma once
#include <vector>
#include <iostream>
#include "Math.h"
#include "RandomizationUtils.h"
using namespace std;
class ClNeuron
{
public:
enum NEURON_TYPE { NEURON_TYPE_INPUT=1,NEURON_TYPE_HIDDEN=2,NEURON_TYPE_OUTPUT=3 };
private:
static const int CONST_DEFAULT_INPUT_NUMBER_PER_NEURON = 20;
static const double CONST_DEFAULT_MOMENTUM_VALUE = 0.4;
//Connection between 2 neurons
struct NEURON_CONNECTION
{
double m_weight;
double m_data;
//Last modification done to the weight
double m_weight_last_delta;
double m_momentum_value;
ClNeuron* m_source_neuron;
ClNeuron* m_target_neuron;
};
//Initialization function
void Init(unsigned long p_uid,NEURON_TYPE p_type);
bool m_initialized;
//All of the output connection of this neuron
vector<NEURON_CONNECTION*> m_output_connections;
//Al of the input connection of this neuron
vector<NEURON_CONNECTION*> m_input_connections;
//Tmp internal result buffer (containing all weights multiplicated by their inputs)
double m_result_buffer;
//special weight that always has an input of 1.0
NEURON_CONNECTION m_bias;
public:
//the type of this neuron
NEURON_TYPE m_type;
ClNeuron(NEURON_TYPE p_type);
ClNeuron(unsigned long p_uid,NEURON_TYPE p_type);
ClNeuron(unsigned long p_uid);
ClNeuron();
//Connect this neuron's output to another / others neurons' input
bool AddOutputConnection(ClNeuron* p_neuron);
//This neuron got a request to have a new input
NEURON_CONNECTION* InputConnectionRequest(ClNeuron* p_source_neuron);
//Tell the neuron to fire the sum of the processed inputs
double Fire();
//Tell the neuron to fire a particular data
double Fire(double p_data);
//Function updating all of the current neuron's weight of the OUTPUT connections , depending on an error ratio
void UpdateWeights(double p_wanted_output);
//Sum all the weight * their respective inputs into an internal buffer
void ProcessInputs();
//Print neuron & connections & weights
void PrintNeuronData();
//Unique ID of this neuron
unsigned long m_uid;
//This neuron's calculated error_delta
double m_error_gradient;
};
ClNeuron::NEURON_CONNECTION* ClNeuron::InputConnectionRequest(ClNeuron* p_neuron)
{
NEURON_CONNECTION* connection = new NEURON_CONNECTION;
if(!connection)
{
cout << "Error creating new connection, memory full ?" << endl << flush;
return NULL;
}
connection->m_weight = GetRandomDouble(-1,1);
connection->m_data = 0;
connection->m_momentum_value = CONST_DEFAULT_MOMENTUM_VALUE;
connection->m_source_neuron = p_neuron;
connection->m_target_neuron = this;
m_input_connections.push_back(connection);
return connection;
}
bool ClNeuron::AddOutputConnection(ClNeuron* p_neuron)
{
//If the remote neuron accept the us as a new input, then we add it to output list
NEURON_CONNECTION* connection = p_neuron->InputConnectionRequest(this);
if(!connection)
{
return false;
}
m_output_connections.push_back(connection);
return true;
}
double ClNeuron::Fire()
{
return Fire(m_result_buffer);
}
double ClNeuron::Fire(double p_data)
{
if(m_output_connections.size()==0)
{
cout << "Final neuron " << m_uid << " return " << p_data << endl;
return p_data;
}
for(unsigned long i=0;i<m_output_connections.size();i++)
{
m_output_connections[i]->m_data = p_data;
}
return 1;
}
void ClNeuron::ProcessInputs()
{
m_result_buffer = 0;
for(unsigned long i=0;i<m_input_connections.size();i++)
{
m_result_buffer += m_input_connections[i]->m_weight * m_input_connections[i]->m_data;
}
m_result_buffer += m_bias.m_weight ;
//sigmoid the sum
m_result_buffer = Sigmoid(m_result_buffer);
}
void ClNeuron::UpdateWeights(double p_wanted_output)
{
//Update weights from neuron to all of its inputs NOTE : p_wanted_output is the output of THIS neuron (in case their is many output neuron in the network)
if(m_type == NEURON_TYPE_OUTPUT)
{
m_error_gradient = (p_wanted_output - m_result_buffer) * SigmoidDerivative(m_result_buffer);
//Adjust the bias of this neuron
double weight_delta = 1 * m_error_gradient * 1 ;
double momentum = m_bias.m_weight_last_delta * m_bias.m_momentum_value;
m_bias.m_weight += weight_delta + momentum;
m_bias.m_weight_last_delta = weight_delta;
}
else if(m_type == NEURON_TYPE_HIDDEN)
{
double error_deriative = SigmoidDerivative(m_result_buffer);
double tmpBuffer = 0.00;
for(unsigned long i=0;i<m_output_connections.size();i++)
{
tmpBuffer += (m_output_connections[i]->m_target_neuron->m_error_gradient * m_output_connections[i]->m_weight);
}
m_error_gradient = error_deriative * tmpBuffer;
//Adjust the weights for this neuron's OUTPUT connections
for(unsigned long i=0;i<m_output_connections.size();i++)
{
double weight_delta = 1 * m_output_connections[i]->m_target_neuron->m_error_gradient * m_result_buffer ;
double momentum = m_output_connections[i]->m_weight_last_delta * m_output_connections[i]->m_momentum_value;
m_output_connections[i]->m_weight += weight_delta + momentum;
m_output_connections[i]->m_weight_last_delta = weight_delta;
}
//Adjust the bias of this neuron
double weight_delta = 1 * m_error_gradient * 1 ;
double momentum = m_bias.m_weight_last_delta * m_bias.m_momentum_value;
m_bias.m_weight += weight_delta + momentum;
m_bias.m_weight_last_delta = weight_delta;
}
if(m_type == NEURON_TYPE_INPUT)
{
//Adjust the weights for this neuron's OUTPUT connections
for(unsigned long i=0;i<m_output_connections.size();i++)
{
double weight_delta = 1 * m_output_connections[i]->m_target_neuron->m_error_gradient * m_result_buffer ;
double momentum = m_output_connections[i]->m_weight_last_delta * m_output_connections[i]->m_momentum_value;
m_output_connections[i]->m_weight += weight_delta + momentum;
m_output_connections[i]->m_weight_last_delta = weight_delta;
}
}
}
void ClNeuron::PrintNeuronData()
{
cout << endl << "========================================" << endl;
cout << "Neuron #" << m_uid << " has " << m_input_connections.size() << " input connection" << endl << endl;
for(unsigned long i=0;i<m_input_connections.size();i++)
{
cout << "----> " << "conn." << i << " | Src ID: " << m_input_connections[i]->m_source_neuron->m_uid << " | W: "<< m_input_connections[i]->m_weight << " | D: "<< m_input_connections[i]->m_data << " | RB : " << m_result_buffer << " | EF: " << endl;
}
cout << "Neuron #" << m_uid << " has " << m_output_connections.size() << " output connection" << endl << endl;
for(unsigned long i=0;i<m_output_connections.size();i++)
{
cout << "----> " << "conn." << i << " | Dst ID: " << m_output_connections[i]->m_target_neuron->m_uid << " | W: "<< m_output_connections[i]->m_weight << " | D: "<< m_output_connections[i]->m_data << " | RB : " << m_result_buffer << " | EF: " << endl;
}
cout << endl << "========================================" << endl;
}
void ClNeuron::Init(unsigned long p_uid,NEURON_TYPE p_type)
{
m_initialized = false;
m_output_connections.clear();
m_input_connections.clear();
m_input_connections.reserve(CONST_DEFAULT_INPUT_NUMBER_PER_NEURON);
m_type = p_type;
m_uid = rand() % RAND_MAX;
m_result_buffer = 0;
m_bias.m_weight = GetRandomDouble(-1,1);
m_bias.m_data = 0;
m_bias.m_momentum_value = CONST_DEFAULT_MOMENTUM_VALUE;
m_bias.m_source_neuron = NULL;
m_bias.m_target_neuron = this;
m_initialized = true;
}
ClNeuron::ClNeuron(unsigned long p_uid,NEURON_TYPE p_type)
{
Init(p_uid,p_type);
}
ClNeuron::ClNeuron(NEURON_TYPE p_type)
{
Init(0,p_type);
}
ClNeuron::ClNeuron(unsigned long p_uid)
{
Init(p_uid,NEURON_TYPE_HIDDEN);
}
ClNeuron::ClNeuron()
{
Init(0,NEURON_TYPE_HIDDEN);
}

The problem was the BIAS weight value for each neuron :
More precisely, the error gradient was always 0 for the bias, (causing the weight_delta of 0), which finally was causing the bias not to update its output weights.

Related

cargo transportation system we are not sure how to display the last part of our task

Here is our code for the task we are almost finishing just the last part we are stuck at
"Fastest: 3 trips (1 Van, 3 Mini-lorry, $645) "
we are not sure how to display the values in the bracket we only able to display 3 trips.
Is there a way to also display the values in the bracket stated as well?
we use
int min = *min_element(vTrips.begin(), vTrips.end());
cout << "Fastest: " << min << " trips" << endl;
but this only display the 3 trips.
#include <iostream>
#include <vector>
#include <iterator>
#include <fstream>
#include<algorithm>
using namespace std;
class CTS //cargo transport system
{
int i;
int cargo, lorryprice, vanprice, lorrysize, vansize, allOps;
public:
void set_cargo(int);
void set_lorryprice(int);
void set_vanprice(int);
void set_lorrysize(int);
void set_vansize(int);
};
void CTS::set_cargo(int total_cargo) {
cargo = total_cargo;
}
void CTS::set_lorryprice(int lorryP) {
lorryprice = lorryP;
}
void CTS::set_vanprice(int vanP) {
vanprice = vanP;
}
void CTS::set_lorrysize(int lorryS) {
lorrysize = lorryS;
}
void CTS::set_vansize(int vanS)
{
vansize = vanS;
}
int main()
{
int cargo, lorryprice, vanprice, lorrysize, vansize, options, i, no_lorry, no_van, cost, trips;
ifstream infile;
infile.open("size.txt");
if (infile.is_open()) {
infile >> cargo;
infile >> lorryprice;
infile >> vanprice;
infile >> lorrysize;
infile >> vansize;
}
CTS run;
run.set_cargo(cargo);
run.set_lorryprice(lorryprice);
run.set_vanprice(vanprice);
run.set_lorrysize(lorrysize);
run.set_vansize(vansize);
infile.close();
options = (cargo / lorrysize) + 1;
no_lorry = (cargo / lorrysize);
no_van = (cargo / vansize) + 3;
if (cargo % lorrysize == 0) {
no_van = -3;
}
if (cargo % lorrysize != 0) {
no_van = ((cargo % lorrysize) / 10) - 3;
}
/*it = numbervan.begin();
for (auto ir = numbervan.rbegin(); ir != numbervan.rend(); ++ir) {
cout << *ir << endl;
}*/
vector<int> vCost, vVan, vTrips, vLorry;
vector <int>::iterator it;
for (i = 1; i < options + 1; i++)
{
int numberlorry = no_lorry;
cout << "Option " << i << ":" << endl;
cout << "Number of Mini-Lorries : " << no_lorry-- << endl;
if (no_van >= -3) {
no_van += 3;
}
cout << "Number of Vans : " << no_van << endl;
int numbervan = no_van;
if (numberlorry > numbervan) {
trips = numberlorry;
}
else {
trips = numbervan;
}
cout << "Trips Needed : " << trips << endl;
cost = (numberlorry * lorryprice) + (no_van * vanprice);
cout << "Total Cost : $" << cost << endl;
vCost.push_back(cost);
vLorry.push_back(numberlorry);
vVan.push_back(numbervan);
vTrips.push_back(trips);
}
int counter = vCost.size() - 1;
//std::vector<int>::reverse_iterator ir = vCost.rbegin();
for (i = 1; i < 4; i++) {
//cout << "Lowest #" << i << ": "<<cost<<endl;
cout << "Lowest #" << i << ": $" << vCost[counter] << "(" << vVan[counter] << " Vans, " << vLorry[counter] << " Mini-Lorry, " << vTrips[counter] << " Trips)" << endl;
counter--;
}
int min = *min_element(vTrips.begin(), vTrips.end()); // this line of code we figured out how to
cout << "Fastest: " << min << " trips" << endl; //display the number of trips using algorithm
return 0;
}
Your design is awkward; you create an instance of CTS run; and never use it.
Assuming that you do your calculations right, you need to know at what index you found min. If you store the iterator returned by min_element(), you can get an index by subtracting vTrips.begin() from it. Then the corresponding elements in your vCost, vLorry and vVan vectors will contain the data you want.
However, it would be easier if you define a struct containing your pre-calculated values, and push that into some vector. In that case, all related data is kept together.

Combat Game - C++, Given a Spawner Class, How can I spawn stronger enemy every round

I have a problem in my OOP homework. I have to code a 1 v 1 battle.
This is a Survival Game where in the player fights continuously with enemies until the player dies. The Player gets stronger as he advances through. The enemy also grows stronger every round.
I have created two Classes, The Unit and the Spawner.
We cannot use Inheritance nor Polymorphism.
We Have to use only the simple definition of the class.
My problem is that i cannot think of a SIMPLE way to make the class Spawner spawn a stronger enemy every round.
I have thought of overloading the Unit's Contructor but i have trouble manipulating that.
Would anyone please help?
Here's my Unit Header file (Unit.h):
#pragma once
#include <string>
#include <iostream>
#include <cstdlib>
#include <ctime>
using namespace std;
// Class Types
const string CLASS_WARRIOR = "Warrior" ;
const string CLASS_ASSASSIN = "Assassin";
const string CLASS_MAGE = "Mage" ;
// Class Choices
const int CHOICE_WARRIOR = 1;
const int CHOICE_ASSASSIN = 2;
const int CHOICE_MAGE = 3;
// Multipliers
const double MULTIPLIER_DAMAGE = 0.50f;
const double MULTIPLER_HEAL = 0.30f;
// Advantage
const bool ADVANTAGE = true;
// Win Bonus
const int BONUS_THREE = 3;
const int BONUS_FIVE = 5;
// Minimum and maximum values
const int HIT_RATE_MAX = 80;
const int HIT_RATE_MIN = 20;
const int DAMAGE_MIN = 1;
// Hit or miss
const bool ATTACK_HIT = true;
const bool ATTACK_MISS = false;
class Unit
{
public:
// Constructors
Unit(string name, int classChoice);
// Getters and setters
string getName();
string getClass();
int getHp();
int getMaxHp();
int getPower();
int getVitality();
int getAgility();
int getDexterity();
int getDamage();
int getHeal();
int getBonusDamage();
bool getFirstToAttack();
bool getHit();
void setClassStats(const int classChoice);
// Primary Actions
void attack(Unit* target);
// Secondary Actions
void check(const Unit* target); // Inspects the enemy
void lvlUp(); // Grants this Unit Bonus Stats on Victory
private:
// Info
string mName;
string mClass;
// Basic Stats
int mHp;
int mMaxHp;
int mPower;
int mVitality;
int mAgility;
int mDexterity;
// Derived Stats
int mDamage;
int mHitrate;
int mHeal;
int mBonusDamage;
// Miscellaneous
bool mAdvantage; // If the player has the advantage
string mTargetClass;// This Unit keeps in mind the class of this Unit's Opponent for reference
int mChanceOfHit; // The random chance if the attack will Hit/Miss
bool mFirstToAttack;//if this unit will attack first
bool mHit; // if the attack is a hit or miss
};
Here's my Unit.cpp file (Unit.cpp):
#include "Unit.h"
Unit::Unit(string name, int classChoice)
{
mName = name;
setClassStats(classChoice);
}
string Unit::getName()
{
return mName;
}
string Unit::getClass()
{
return mClass;
}
int Unit::getHp()
{
return mHp;
}
int Unit::getMaxHp()
{
return mMaxHp;
}
int Unit::getPower()
{
return mPower;
}
int Unit::getVitality()
{
return mVitality;
}
int Unit::getAgility()
{
return mAgility;
}
int Unit::getDexterity()
{
return mDexterity;
}
int Unit::getDamage()
{
return mDamage;
}
int Unit::getHeal()
{
return mHeal;
}
int Unit::getBonusDamage()
{
return mBonusDamage;
}
bool Unit::getFirstToAttack()
{
return mFirstToAttack;
}
bool Unit::getHit()
{
return mHit;
}
void Unit::setClassStats(const int classChoice)
{
if (classChoice == CHOICE_WARRIOR) {
mClass = CLASS_WARRIOR;
mMaxHp = 20;
mHp = mMaxHp;
mPower = 15;
mVitality = 10;
mAgility = 7;
mDexterity = 7;
return;
}
else if (classChoice == CHOICE_ASSASSIN) {
mClass = CLASS_ASSASSIN;
mMaxHp = 15;
mHp = mMaxHp;
mPower = 17;
mVitality = 8;
mAgility = 12;
mDexterity = 10;
return;
}
else if (classChoice == CHOICE_MAGE) {
mClass = CLASS_MAGE;
mMaxHp = 30;
mHp = mMaxHp;
mPower = 12;
mVitality = 12;
mAgility = 9;
mDexterity = 8;
return;
}
throw exception("Error! Class not part of this game. ");
}
void Unit::attack(Unit * target)
{
// Determine Whether the attack will Hit/Miss Based on the hit rate
mChanceOfHit = rrand() % 100 + 1;
if (mChanceOfHit > mHitrate) {
mHit = ATTACK_MISS;
return;
}
// Deducts the targets Hp by the Damage given by this Unit (if the attack didn't miss)
target->mHp -= mDamage;
mHit = ATTACK_HIT;
// if target HP is negative, set it to zero
if (target->mHp < 0) target->mHp = 0;
}
void Unit::check(const Unit * target)
{
// The Unit Keeps in Mind his target's Class
if (target->mClass == CLASS_WARRIOR) mTargetClass = CLASS_WARRIOR;
else if (target->mClass == CLASS_ASSASSIN) mTargetClass = CLASS_ASSASSIN;
else if (target->mClass == CLASS_MAGE) mTargetClass = CLASS_MAGE;
// Checks if the Unit is Advantageous Against his Target
if (mClass == CLASS_WARRIOR) {
if (target->mClass == CLASS_ASSASSIN) mAdvantage = ADVANTAGE;
else mAdvantage = false;
}
else if (mClass == CLASS_ASSASSIN) {
if (target->mClass == CLASS_MAGE) mAdvantage = ADVANTAGE;
else mAdvantage = false;
}
else if (mClass == CLASS_MAGE) {
if (target->mClass == CLASS_WARRIOR) mAdvantage = ADVANTAGE;
else mAdvantage = false;
}
// Determine if this Unit Will Attack first
if (mAgility >= target->mAgility) mFirstToAttack = true;
else mFirstToAttack = false;
// Determines Damage, Bonus Damage ( If Applicable ), and Hit Rate Based on targets stats
mDamage = mPower - target->mVitality;
if (mDamage < DAMAGE_MIN) mDamage = DAMAGE_MIN;
mBonusDamage = mDamage * MULTIPLIER_DAMAGE;
// Evaluates Damage Based on advantage
if (mAdvantage) mDamage += mBonusDamage;
mHitrate = ((float)mDexterity / (float)target->mAgility) * 100;
// Clamps the Hit Rate within the Hit Rate Range
if (mHitrate > HIT_RATE_MAX) mHitrate = HIT_RATE_MAX;
else if (mHitrate < HIT_RATE_MIN) mHitrate = HIT_RATE_MIN;
}
void Unit::lvlUp()
{
// Determine Win Bonus Based on the target that he kept in mind
if (mTargetClass == CLASS_WARRIOR) {
mMaxHp += BONUS_THREE;
mVitality += BONUS_THREE;
}
else if (mTargetClass == CLASS_ASSASSIN) {
mAgility += BONUS_THREE;
mDexterity += BONUS_THREE;
}
else if (mTargetClass == CLASS_MAGE) {
mPower += BONUS_FIVE;
}
// Heals the player 30% of his Maximum HP
mHeal = mMaxHp * MULTIPLER_HEAL;
mHp += mHeal;
}
Here's my Spawner Header file (Spawner.h):
#pragma once
#include "Unit.h"
class Spawner
{
public:
Spawner();
~Spawner();
void spawn(Unit*& unit);
private:
Unit* mUnit;
int mRandomClass;
};
Here's my Spawner.cpp file (Spawner.cpp):
#include "Spawner.h"
Spawner::Spawner()
{
}
Spawner::~Spawner()
{
delete mUnit;
mUnit = NULL;
}
void Spawner::spawn(Unit *& unit)
{
mRandomClass = rand() % 3 + 1;
unit = new Unit("Enemy", mRandomClass);
mUnit = unit;
}
And finally here is my main.cpp:
#include "Unit.h"
#include "Spawner.h"
// Create player
Unit* createPlayer();
// Display Stats
void displayStats(Unit* unit);
// Play 1 round
void playRound(Unit*player, Unit* enemy);
// Simulate 1 attack (implement Higher agility gets to atttack first)
void combat(Unit* player, Unit* enemy);
void main()
{
srand(time(NULL));
Unit* player = createPlayer();
Unit* enemy = NULL;
Spawner *spawner = new Spawner();
int round = 1;
while (true) {
cout << "Round " << round << endl;
spawner->spawn(enemy);
player->check(enemy);
enemy->check(player);
playRound(player, enemy);
// if player is dead, end the game
if (player->getHp() == 0) break;
// else, add stats
player->lvlUp();
delete enemy;
enemy = NULL;
cout << "You defeted an enemy" << endl;
system("pause>nul");
system("cls");
round++;
}
cout << "You were defeted! " << endl;
cout << "You survived until Round " << round << endl;
displayStats(player);
delete player;
player = NULL;
delete spawner;
spawner = NULL;
system("pause>nul");
system("cls");
}
Unit* createPlayer()
{
Unit* unit = NULL;
string name;
int classChoice;
cout << "Enter your Name: ";
getline(cin, name);
system("cls");
cout << "Pick a class: " << endl
<< "\t [ 1 ] Warrior" << endl
<< "\t [ 2 ] Assassin" << endl
<< "\t [ 3 ] Mage" << endl
<< endl;
cin >> classChoice;
while (classChoice > 3 || classChoice <= 0) {
cout << "INVALID INPUT! Please try again" << endl;
cout << "Pick a class: " << endl
<< "\t [ 1 ] Warrior" << endl
<< "\t [ 2 ] Assassin" << endl
<< "\t [ 3 ] Mage" << endl
<< endl;
cin >> classChoice;
}
unit = new Unit(name, classChoice);
return unit;
}
void displayStats(Unit* unit)
{
cout << "=========================================================================================" << endl
<< "Name: " << unit->getName() << " \t \t \t HP: " << unit->getHp() << " / " << unit->getMaxHp() << endl
<< "Class: " << unit->getClass() << endl
<< "==========================================================================================" << endl
<< "POW: " << unit->getPower() << endl
<< "VIT: " << unit->getVitality() << endl
<< "AGI: " << unit->getAgility() << endl
<< "DEX: " << unit->getDexterity() << endl
<< endl;
}
void playRound(Unit*player, Unit* enemy)
{
while (player->getHp() > 0 && enemy->getHp() > 0) {
displayStats(player);
displayStats(enemy);
system("pause>nul");
combat(player, enemy);
system("cls");
}
}
void combat(Unit* player, Unit* enemy)
{
if (player->getFirstToAttack()) {
player->attack(enemy);
if (player->getHit() == ATTACK_MISS) cout << player->getName() << "'s Attack Missed! " << endl;
else if (player->getHit() == ATTACK_HIT) cout << player->getName() << " dealt " << player->getDamage() << " Damage" << endl;
system("pause>nul");
if (enemy->getHp() == 0) return;
enemy->attack(player);
if (enemy->getHit() == ATTACK_MISS) cout << enemy->getName() << "'s Attack Missed! " << endl;
else if (enemy->getHit() == ATTACK_HIT) cout << enemy->getName() << " dealt " << enemy->getDamage() << " Damage" << endl;
system("pause>nul");
return;
}
else if (enemy->getFirstToAttack()) {
enemy->attack(player);
if (enemy->getHit() == ATTACK_MISS) cout << enemy->getName() << "'s Attack Missed! " << endl;
else if (enemy->getHit() == ATTACK_HIT) cout << enemy->getName() << " dealt " << enemy->getDamage() << " Damage" << endl;
system("pause>nul");
if (player->getHp() == 0) return;
player->attack(enemy);
if (player->getHit() == ATTACK_MISS) cout << player->getName() << "'s Attack Missed! " << endl;
else if (player->getHit() == ATTACK_HIT) cout << player->getName() << " dealt " << player->getDamage() << " Damage" << endl;
system("pause>nul");
return;
}
}
Add a "level" to the Unit class, and use the level to increase the stats of the unit (for example level 2 could mean the stats are multiplied by 1.5 or some such). Pass the level as an argument to the constructor similar to the units class.
You need to make your spawner aware of how many enemies it has spawned:
// this belongs into your class definition, it should start at zero
int mCurrentSpawn;
So set it to zero in your constructor:
Spawner::Spawner()
{
mCurrentSpawn = 0;
}
Then reference it when you spawn an enemy:
void Spawner::spawn(Unit *& unit)
{
mRandomClass = rand() % 3 + 1;
unit = new Unit("Enemy", mRandomClass);
mUnit = unit;
mCurrentSpawn++;
int levelUps = mCurrentSpawn - 1;
while(levelUps > 0)
{
mUnit->lvlUp();
levelUps--;
}
}

Output of neural network holds same values everytime

I am working on a very simple feed forward neural network to practice my programming skills. There are 3 classes :
Neural::Net ; builds the network, feeds forward input values (no backpropagation for the moment)
Neural::Neuron ; has characteristics of the neuron (index, output, weight etc)
Neural::Connection ; a structure-like class that randomizes the weights and hold the output, delta weight etc..
The program is very basic: I build the network with 2 hidden layers and randomized weights, then ask it to feed forward the same input values.
My problem is: It is expected that the program ends up with different output values after every run, yet the output are always the same. I tried placing markers everywhere to understand why it is calculating the same thing over and over again but I can't put my finger on the error.
Here is the code:
#include <iostream>
#include <cassert>
#include <cstdlib>
#include <vector>
#include "ConsoleColor.hpp"
using namespace std;
namespace Neural {
class Neuron;
typedef vector<Neuron> Layer;
// ******************** Class: Connection ******************** //
class Connection {
public:
Connection();
void setOutput(const double& outputVal) { myOutputVal = outputVal; }
void setWeight(const double& weight) { myDeltaWeight = myWeight - weight; myWeight = weight; }
double getOutput(void) const { return myOutputVal; }
double getWeight(void) const { return myWeight; }
private:
static double randomizeWeight(void) { return rand() / double(RAND_MAX); }
double myOutputVal;
double myWeight;
double myDeltaWeight;
};
Connection::Connection() {
myOutputVal = 0;
myWeight = Connection::randomizeWeight();
myDeltaWeight = myWeight;
cout << "Weight: " << myWeight << endl;
}
// ******************** Class: Neuron ************************ //
class Neuron {
public:
Neuron();
void setIndex(const unsigned int& index) { myIndex = index; }
void setOutput(const double& output) { myConnection.setOutput(output); }
unsigned int getIndex(void) const { return myIndex; }
double getOutput(void) const { return myConnection.getOutput(); }
void feedForward(const Layer& prevLayer);
void printOutput(void) const;
private:
inline static double transfer(const double& weightedSum);
Connection myConnection;
unsigned int myIndex;
};
Neuron::Neuron() : myIndex(0), myConnection() { }
double Neuron::transfer(const double& weightedSum) { return 1 / double((1 + exp(-weightedSum))); }
void Neuron::printOutput(void) const { cout << "Neuron " << myIndex << ':' << myConnection.getOutput() << endl; }
void Neuron::feedForward(const Layer& prevLayer) {
// Weight sum of the previous layer's output values
double weightedSum = 0;
for (unsigned int i = 0; i < prevLayer.size(); ++i) {
weightedSum += prevLayer[i].getOutput()*myConnection.getWeight();
cout << "Neuron " << i << " from prevLayer has output: " << prevLayer[i].getOutput() << endl;
cout << "Weighted sum: " << weightedSum << endl;
}
// Transfer function
myConnection.setOutput(Neuron::transfer(weightedSum));
cout << "Transfer: " << myConnection.getOutput() << endl;
}
// ******************** Class: Net *************************** //
class Net {
public:
Net(const vector<unsigned int>& topology);
void setTarget(const vector<double>& targetVals);
void feedForward(const vector<double>& inputVals);
void backPropagate(void);
void printOutput(void) const;
private:
vector<Layer> myLayers;
vector<double> myTargetVals;
};
Net::Net(const vector<unsigned int>& topology) : myTargetVals() {
assert(topology.size() > 0);
for (unsigned int i = 0; i < topology.size(); ++i) { // Creating the layers
myLayers.push_back(Layer(((i + 1) == topology.size()) ? topology[i] : topology[i] + 1)); // +1 is for bias neuron
// Setting each neurons index inside layer
for (unsigned int j = 0; j < myLayers[i].size(); ++j) {
myLayers[i][j].setIndex(j);
}
// Console log
cout << red;
if (i == 0) {
cout << "Input layer (" << myLayers[i].size() << " neurons including bias neuron) created." << endl;
myLayers[i].back().setOutput(1);
}
else if (i < topology.size() - 1) {
cout << "Hidden layer " << i << " (" << myLayers[i].size() << " neurons including bias neuron) created." << endl;
myLayers[i].back().setOutput(1);
}
else { cout << "Output layer (" << myLayers[i].size() << " neurons) created." << endl; }
cout << white;
}
}
void Net::setTarget(const vector<double>& targetVals) { assert(targetVals.size() == myLayers.back().size()); myTargetVals = targetVals; }
void Net::feedForward(const vector<double>& inputVals) {
assert(myLayers[0].size() - 1 == inputVals.size());
for (unsigned int i = 0; i < inputVals.size(); ++i) { // Setting input vals to input layer
cout << yellow << "Setting input vals...";
myLayers[0][i].setOutput(inputVals[i]); // myLayers[0] is the input layer
cout << "myLayer[0][" << i << "].getOutput()==" << myLayers[0][i].getOutput() << white << endl;
}
for (unsigned int i = 1; i < myLayers.size() - 1; ++i) { // Updating hidden layers
for (unsigned int j = 0; j < myLayers[i].size() - 1; ++j) { // - 1 because bias neurons do not have input
cout << "myLayers[" << i << "].size()==" << myLayers[i].size() << endl;
cout << green << "Updating neuron " << j << " inside layer " << i << white << endl;
myLayers[i][j].feedForward(myLayers[i - 1]); // Updating the neurons output based on the neurons of the previous layer
}
}
for (unsigned int i = 0; i < myLayers.back().size(); ++i) { // Updating output layer
cout << green << "Updating output neuron " << i << ": " << white << endl;
const Layer& prevLayer = myLayers[myLayers.size() - 2];
myLayers.back()[i].feedForward(prevLayer); // Updating the neurons output based on the neurons of the previous layer
}
}
void Net::printOutput(void) const {
for (unsigned int i = 0; i < myLayers.back().size(); ++i) {
cout << blue; myLayers.back()[i].printOutput(); cout << white;
}
}
void Net::backPropagate(void) {
}
}
int main(int argc, char* argv[]) {
vector<unsigned int> myTopology;
myTopology.push_back(3);
myTopology.push_back(4);
myTopology.push_back(2);
myTopology.push_back(2);
cout << myTopology.size() << endl << endl; // myTopology == {3, 4, 2 ,1}
vector<double> myTargetVals= {0.5,1};
vector<double> myInputVals= {1, 0.5, 1};
Neural::Net myNet(myTopology);
myNet.feedForward(myInputVals);
myNet.printOutput();
return 0;
}
Edit: I figured that the bias neuron in the input layer was correctly set to output 1 while the ones in the hidden layers are set to 0 and I fixed that. But the outputs are still the same every run. I did the math on a sheet of paper and it works out. Here is the output (Color coded for clarity) :
I have expected the values to be random just like the weights. Shouldn't that be the case ? I am confused.
I found my mistake. I thought that rand() initialized its seed automatically. I knew it was a dumb thing. I added srand(time(NULL)); at the beginning of the program and now it works as it should.

Newton method for computing an inverse

This is following the question I asked in this thread : Link error missing vtable
I defined a class 'function' and two others classes 'polynomial' and 'affine' that inherit from 'function'.
class function {
public:
function(){};
virtual function* clone()const=0;
virtual float operator()(float x)const=0; //gives the image of a number by the function
virtual function* derivative()const=0;
virtual float inverse(float y)const=0;
virtual ~function(){}
};
class polynomial : public function {
protected:
int degree;
private:
float *coefficient;
public:
polynomial(int d);
virtual~polynomial();
virtual function* clone()const;
int get_degree()const;
float operator[](int i)const; //reads coefficient number i
float& operator[](int i); //updates coefficient number i
virtual float operator()(float x)const;
virtual function* derivative()const;
virtual float inverse(float y)const;
};
class affine : public polynomial {
int a;
int b;
//ax+b
public:
affine(int d,float a_, float b_);
function* clone()const;
float operator()(float x)const;
function* derivative()const;
float inverse(float y)const;
~affine(){}
};
Method inverse in polyomial does not seem to work fine. It is based on the Newton method applied to the function x->f(x)-y for fixed y (the element for which we're computing the inverse) and the current polynomial f.
float polynomial::inverse(float y)const
{
int i=0;
float x0=1;
function* deriv=derivative();
float x1=x0+(y-operator()(x0))/(deriv->operator()(x0));
while(i<=100 && abs(x1-x0)>1e-5)
{
x0=x1;
x1=x0+(y-operator()(x0))/(deriv->operator()(x0));
i++;
}
if(abs(x1-x0)<=1e-5)
{
//delete deriv; //I get memory problems when I uncomment this line
return x1;
}
else
{
cout<<"Maximum iteration reached in polynomial method 'inverse'"<<endl;
//delete deriv; //same here
return -1;
}
}
double polynomial::operator()(double x)const
{
double value=0;
for(int i=0;i<=degree;i++) value+=coefficient[i]*pow(x,i);
return value;
}
polynomial* polynomial::derivative()const
{
if(degree==0)
{
return new affine(0,0,0);
}
polynomial* deriv=new polynomial(degree-1);
for(int i=0;i<degree;i++)
deriv[i]=(i+1)*coefficient[i+1];
return deriv;
}
I test this method with p:x->x^3 :
#include "function.h"
int main(int argc, const char * argv[])
{
polynomial p(3);
for(int i=0;i<=2;i++) p[i]=0;
p[3]=1;
cout<<"27^(1/3)="<<p.inverse(27);
return 0;
}
This script outputs 27^(1/3)=Maximum iteration reached in polynomial method 'inverse'
-1 even if I put 10,000 instead of 100. I've read some articles on the internet and it seems that it's a common way to compute the inverse.
the abs function prototype is: int abs(int)
So a test like abs(x1-x0)<=1e-5 won't behave as you expect; you compare a int with a float. In this case the float will be converted to int so it the same as abs(x1-x0)<=0
This is probably why you don't get the expected result - I suggest adding a few more printouts to get to the bottom of things.
Well, the problem was in method 'derivative'. Instead of using the 'operator[]' that I redefined, I used '->coefficient[]' and the main script worked fine for p.inverse(27) (only 14 iterations). I just replaced deriv[i]=(i+1)*coefficient[i+1]; with deriv->coefficient[i]=(i+1)*coefficient[i+1];
Check This Code :
#include<iostream>
#include<cmath>
#include<math.h>
using namespace std;
void c_equation(int choose, double x);
void Processes(double x, double fx1, double fdx1, int choose);
void main()
{
int choose,choose2;
double x;
system("color A");
cout << " " << endl;
cout << "=============================================================" << endl;
cout << "Choose Equation : " << endl;
cout << "_____________________________________" << endl;
cout << "1- x-2sin(x)" << endl;
cout << "2- x^2 + 10 cos(x)" << endl;
cout << "3- e^x - 3x^2" << endl;
cout << " " << endl;
cin >> choose;
cout << "If you have values press 1/ random press 2 :" << endl;
cin >> choose2;
if (choose2 == 1)
{
cout << " " << endl;
cout << "Enter Xo : " << endl;
cin >> x;
c_equation(choose, x);
}
else if (choose2 == 2)
{
x = rand() % 20;
cout << "Xo = " << x << endl;
c_equation(choose, x);
choose2 = NULL;
}
else
{
cout << "Worng Choice !! " << endl;
choose = NULL;
choose2 = NULL;
main();
}
}
void c_equation(int choose, double x)
{
double fx;
double fdx;
double fddx;
double result;
if (choose == 1)
{
fx = x - 2 * sin(x);
fdx = 1 - 2 * cos(x);
fddx = 2 * sin(x);
result = abs((fx * fddx) / pow(fdx, 2));
}
else if (choose == 2)
{
fx = pow(x, 2) + 10 * cos(x);
fdx = 2 * x - 10 * sin(x);
fddx = 2 - 10 * cos(x);
result = abs((fx * fddx) / pow(fdx, 2));
}
else if (choose == 3)
{
fx = exp(x) - 3 * pow(x, 2);
fdx = exp(x) - 6 * x;
fddx = exp(x) - 6;
result = abs((fx * fddx) / pow(fdx, 2));
}
else
{
cout << " " << endl;
}
//------------------------------------------------------------
if (result < 1)
{
cout << "True Equation :) " << endl;
Processes(x, fx, fdx , choose);
}
else
{
system("cls");
cout << "False Equation !!" << endl;
choose = NULL;
x = NULL;
main();
}
}
void Processes(double x, double fx, double fdx , int choose)
{
double xic;
for (int i = 0; i < 3; i++)
{
xic = x - (fx / fdx);
cout << " " << endl;
cout << "Xi = " << x << " " << "F(Xi) = " << fx << " " << " F'(Xi) = " << fdx << " " << " Xi+1 = " << xic << endl;
x = xic;
if (choose == 1)
{
fx = xic - 2 * sin(xic);
fdx = 1 - 2 * cos(xic);
}
else if (choose == 2)
{
fx = pow(xic, 2) + 10 * cos(xic);
fdx = 2 * xic - 10 * sin(xic);
}
else if (choose == 3)
{
fx = exp(xic) - 3 * pow(xic, 2);
fdx = exp(xic) - 6 * xic;
}
}
}

EXC_BAD_ACCESS at main method declaration

I'm trying to get some old C++ code up and running. I've gotten it to compile without error, but it immediately segfaults when I run, without entering main. When I use gdb to find out where things are going wrong, I find the following:
(gdb) run
Starting program: /Users/dreens/Documents/OH/extrabuncher2/ParaOHSB
Reading symbols for shared libraries +++. done
Program received signal EXC_BAD_ACCESS, Could not access memory.
Reason: KERN_INVALID_ADDRESS at address: 0x00007fff5636581c
0x000000010000151e in main (argc=1, argv=0x100000ad0) at ParaMainOHSlowerBuncher.cc:13
13 int main(int argc, char *argv[]){
(gdb) backtrace
#0 0x000000010000151e in main (argc=1, argv=0x100000ad0) at ParaMainOHSlowerBuncher.cc:13
(gdb)
Does anyone know what could cause a memory access issue right at the start of the main method?
The code is rather large, but here is the file containing the main method. Could the included .hh and .cc files be a part of the problem? Should I attach them?
Thanks!
David
#include <iostream>
#include <stdlib.h>
#include <math.h>
#include <time.h>
#include "MoleculeEnsemble.hh"
#include "SlowerForceLoadOH32.cc"
#include "SlowerForceLoadOH12.cc"
//#include "SlowerForceLoad3mmBuncher.cc"
#include "SlowerForceLoad4mmBuncher.cc"
using namespace std;
int main(int argc, char *argv[]){
//int main(){
cout << "Ahhhh!" << endl;
/******Parallel Crap********/
/*
int totalnodes = 0;
int mynode = 0;
MPI_Status status;
MPI_Init(&argv,&argc);
MPI_Comm_size(MPI_COMM_WORLD,&totalnodes);
MPI_Comm_rank(MPI_COMM_WORLD,&mynode);
srand(time(NULL)*mynode);
*/
/******Distribution Parameters *******/
long MoleculeNumber = long(5e4);
double Xcenter = 0;
double Ycenter = 0;
double Zcenter = 0;
double DeltaX = 0.0015;
double DeltaY = 0.0015;
double DeltaZ = 0.01;
int FlatX = 1;
int FlatY = 1;
int FlatZ = 1;
double vXcenter = 0;
double vYcenter = 0;
double vZcenter = 406;
double Vcalc = 406;
double vZfinal = 0;
double DeltavX = 2;
double DeltavY = DeltavX;
double DeltavZ = 40;
int FlatvX = 0;
int FlatvY = 0;
int FlatvZ = 0;
int TimeArrayOnly = 0; //Outputs only Time Array
double TimeOffset = 0; //Adds valve-skimmer flight time to ToF array
/*******Overtone Parameters********/
int S = 1; //parameter S=Vz/Vswitch as defined by VDM et al.
int JILAOT = 0; //JILAOT is either 0 or 1, denoting whether or not to use special switching
/*******Hexapole Parameters********/
double VSD = 0.06;
double Voltage = 2000;
double HexRadius = .00268;
double HexStart = .0238;
double HexEnd = .083170;//0.089103;
double HexOn = 1e-6;
double HexOff = 203e-6;//224e-6; 212 for current data; Good = 243e-6 for 408m/s
double DeltaT = 1e-6;
double DeltaTSeqGen = 1e-9; //Need to use smaller time steps for finding the time sequence
double DetectionTime = HexOff; //Use to fake out hex code
double TriggerLatency = 0;//170e-9;
/*******Detection Parameters*******/
double DetectionPosition = double(0.9319);//0.257480; <- for viewing at 31.5 ||||| 0.9428; <-Mag trap(4stages), .9319 <-MagTrap(3Stages)
double IrisWidth = 0.008;//31.5 0.0023 //PostSlower.015;
double LaserRadius = .001;
/*****Bunching Paramaters******/
int BunchNumber = 0;
int NumberUsed = 0;
/*****Timing Variables*********/
time_t start, finish;
time( &start);
/*****Molecule Parameters******/
double mass =double(17*1.672e-27);
/******ToF Detection Arrays and Slowing Parameters *********/
double Phi = double(34.2);
double PhiEB = double(0);
int NumberOfStages = int(142/S); //Use 142 for Big machine
int EBStages = 3; //Larger Add-on stages at end of slower
double BuncherScale = 1;
double Time[int(1e7)];
int ToFSignal32[int(1e7)];
int ToFSignal12[int(1e7)];
double TimeArray[800];
double VExit[800];
double Average32[7];
double Average12[7];
int LOST[200];
/*************Finished ToF Detection Arrays and Slowing Parameters ********/
/******Force Arrays********/
int Xnumber = 111;
int Ynumber = 21;
int Znumber = 21;
int FLength = Xnumber*Ynumber*Znumber;
double AXxDT[FLength];
double AYxDT[FLength];
double AZxDT[FLength];
double AZxDTSeqGen[FLength];
SlowerForceLoadOH32(AZxDT, AYxDT, AXxDT); //Note how Z and X are placed in this function. My matlab code calls the longitudnal dimension X, here it is Z
double DTovermass = DeltaT/mass;
for(int j = 0; j <FLength; j++){
AXxDT[j] = DTovermass*AXxDT[j];
AYxDT[j] = DTovermass*AYxDT[j];
AZxDT[j] = DTovermass*AZxDT[j];
AZxDTSeqGen[j] = DeltaTSeqGen*AZxDT[j]/DeltaT;
}
double AXxDT12[FLength];
double AYxDT12[FLength];
double AZxDT12[FLength];
SlowerForceLoadOH12(AZxDT12, AYxDT12, AXxDT12); //Note how Z and X are placed in this function. My matlab code calls the longitudnal dimension X, here it is Z
for(int j = 0; j <FLength; j++){
AXxDT12[j] = DTovermass*AXxDT12[j];
AYxDT12[j] = DTovermass*AYxDT12[j];
AZxDT12[j] = DTovermass*AZxDT12[j];
}
/********Load Extra Buncher Forces*********/
int XnumberEB = 251;
int YnumberEB = 41;
int ZnumberEB = 41;
int FLengthEB = XnumberEB*YnumberEB*ZnumberEB;
double AXxDTEB[FLengthEB], AYxDTEB[FLengthEB], AZxDTEB[FLengthEB], AZxDTSeqGenEB[FLengthEB];
SlowerForceLoad4mmBuncher(AZxDTEB, AYxDTEB, AXxDTEB);
for(int j = 0; j <FLengthEB; j++)
{
AXxDTEB[j] = DTovermass*AXxDTEB[j]/BuncherScale;
AYxDTEB[j] = DTovermass*AYxDTEB[j]/BuncherScale;
AZxDTEB[j] = DTovermass*AZxDTEB[j]/BuncherScale;
AZxDTSeqGenEB[j] = DeltaTSeqGen*AZxDTEB[j]/(DeltaT*BuncherScale);
}
/********* End All initiliazation ***************************/
/************Beginning Calculation *************************/
//Create Molecule Ensemble
MoleculeEnsemble Alice(MoleculeNumber,Xcenter,Ycenter,Zcenter,DeltaX,DeltaY,DeltaZ,FlatX,FlatY,FlatZ,vXcenter,vYcenter,vZcenter,DeltavX,DeltavY,DeltavZ,FlatvX,FlatvY,FlatvZ);
//MoleculeEnsemble Bob(MoleculeNumber,Xcenter,Ycenter,Zcenter,DeltaX,DeltaY,DeltaZ,FlatX,FlatY,FlatZ,vXcenter,vYcenter,vZcenter,DeltavX,DeltavY,DeltavZ,FlatvX,FlatvY,FlatvZ);
//Generate the Timing Sequence
Alice.TimeArrayGeneratorWithBuncher(Vcalc,Phi,PhiEB,TimeArray,VExit,AZxDTSeqGen,AZxDTSeqGenEB,HexOff,DeltaTSeqGen,BunchNumber,vZfinal,NumberUsed,NumberOfStages,S,EBStages);
/*if(mynode == 0){
cout << "Slowing utilized " << NumberUsed << " stages, yielding a final velocity of " << VExit[NumberUsed] << " m/s." << endl;
cout << endl;
for(int kk = 0; kk < NumberOfStages; kk++){cout << kk << " , " << TimeArray[kk] << " , " << VExit[kk] << endl;}
}*/
/*Alice.MoleculeEnsemble_Averager(Average32);
Bob.MoleculeEnsemble_Averager(Average12);
cout << "Processor: " << mynode << "\t" << sqrt(pow(Average32[3],2)+pow(Average32[4],2)) << ", " << sqrt(pow(Average12[3],2)+pow(Average12[4],2));
cout << " Mean = " << Average32[6] << ", " << Average12[6] << endl << endl << endl;
*/
if(TimeArrayOnly!=1)
{
//Fly the Ensemble through the hexapole
Alice.HexapoleFlightOH(Voltage, HexRadius, HexStart, HexEnd, HexOn, HexOff, DeltaT, double(3/2), DetectionTime);
//Bob.HexapoleFlightOH(Voltage, HexRadius, HexStart, HexEnd, HexOn, HexOff, DeltaT, double(1/2), DetectionTime);
/*
Alice.MoleculeEnsemble_Averager(Average32);
Bob.MoleculeEnsemble_Averager(Average12);
cout << "Processor: " << mynode << "\t" << sqrt(pow(Average32[3],2)+pow(Average32[4],2)) << ", " << sqrt(pow(Average12[3],2)+pow(Average12[4],2));
cout << " Mean = " << Average32[6] << ", " << Average12[6] << endl << endl << endl;
*/
//Fly the Ensemble through the slower
Alice.SlowerFlight(LOST, Time, ToFSignal32, Phi, TimeArray, DeltaT, AXxDT, AYxDT, AZxDT, AXxDTEB, AYxDTEB, AZxDTEB, Xnumber, Ynumber, Znumber, DetectionPosition, IrisWidth, LaserRadius, NumberOfStages, EBStages,S, TriggerLatency);
//Bob.SlowerFlight(LOST, Time, ToFSignal12, Phi, TimeArray, DeltaT, AXxDT12, AYxDT12, AZxDT12, Xnumber, Ynumber, Znumber, DetectionPosition, IrisWidth, LaserRadius, NumberOfStages, EBStages, S, TriggerLatency);
}
/**********Ending Calculation **********************/
//Alice.MoleculeEnsemble_Drawer();
/*
Alice.MoleculeEnsemble_Averager(Average32);
Bob.MoleculeEnsemble_Averager(Average12);
cout << "Processor: " << mynode << "\t" << sqrt(pow(Average32[3],2)+pow(Average32[4],2)) << ", " << sqrt(pow(Average12[3],2)+pow(Average12[4],2));
cout << " Mean = " << Average32[6] << ", " << Average12[6] << endl << endl;
*/
//Output ToF signal
if(TimeArrayOnly!=1)
{
for(int ii = 0; ii < int(1e7); ii++)
{
if(ToFSignal32[ii] > 0 && Time[ii] > 3e-3)
{
cout << Time[ii]+TimeOffset << "," << ToFSignal32[ii] << endl;
//+double(VSD/vZcenter)+38e-6 << "," << ToFSignal32[ii] << endl;
}
if(ToFSignal12[ii] > 0 && Time[ii] > 3e-3)
{
cout << Time[ii]+TimeOffset << "," << ToFSignal12[ii] << endl;
//+double(VSD/vZcenter)+38e-6 << "," << ToFSignal12[ii] << endl;
}
}
}
if(TimeArrayOnly==1)
{
for(int ii = 0; ii < NumberOfStages+EBStages+1; ii++)
{
cout << ii << "\t" << TimeArray[ii] << "\t" << VExit[ii] << endl;
//+double(VSD/vZcenter)+double(265e-6) << "\t" << VExit[ii] << endl;
}
}
/*for(int ii = 0; ii < NumberOfStages; ii++)
{
cout << ii << "\t" << LOST[ii] << endl;
}
*/
/*
MPI_Finalize();
*/
}
You're out of stack space.
You declare very large arrays in your code (over 10 million elements), which are all allocated on the stack. Instead of declaring the arrays statically, use dynamic memory allocation. So, instead of
double Time[int(1e7)];
write
double* Time;
Time = new double[int(1e7)];
and hope to have enough RAM in your computer :)