Parsing numbers and stdStrings to char* in C++ [QT] - c++

I have this piece of code, where audio_bitRate & video_bitRate are numbers, and audio_address & video_address are strings.
I get these variables from my Qt interface, but I don't know what happens when I try to parse these variables to my char *vector[10], what I'm doing wrong?
Thanks in advance.
int counter = 0;
char *vector[10];
memset(vector, 0, 10);
qDebug() << counter;
audio_address = ui->lineEdit->text().toStdString();
video_address = ui->lineEdit_2->text().toStdString();
audio_bitRate = ui->lineEdit_3->text().toDouble();
video_bitRate = ui->lineEdit_4->text().toDouble();
qDebug() << audio_bitRate;
qDebug() << video_bitRate;
pat_bitRate = ui->lineEdit_6->text().toDouble();
pmt_bitRate = ui->lineEdit_7->text().toDouble();
ewbs_bitRate = ui->lineEdit_8->text().toDouble();
qDebug() << "00";
//The problem is here
strcpy(vector[0], (char*)(&audio_bitRate));
strcpy(vector[1],(char*)(&audio_address));
strcpy(vector[2], (char*)(&video_bitRate));
strcpy(vector[3],(char*)(&video_address));
In this part my application finished, the exact message from the command line of QT is `
"The program has unexpectedly finished."

1) I can see that your not allocated memory for vector.
Example:
for (int i = 0; i < 10; i++)
{
int size = 10; // allocate size how much you required
vector[i] = (char*) malloc(size);
memset(vector[i], 0, size);
}
2) For converting number in QString to char * you can use bellow code:
Example:
strcpy(vector[1], ui->lineEdit_3->text().toStdString().c_str());
Note: For converting number to byte array you need to use different method.

Related

c++ String returning with an extra char

I have tested my program and am certain right before being returned the string in my function equals "card001". But the returned value equals "card0011". I have no idea how this even happens. Help me before I lose my mind. ;)
std::string function_cardTexture(int card) {
//removes the last 1
card = card - 10000;
int ctr = 0;
card = floor(card / 10);
std::cout << card << std::endl;
//turn int card into a string
std::string a = static_cast<std::ostringstream*>(&(std::ostringstream() << card))->str();
//combines card and string a into one string
std::string nametext = "card00" + a;
std::cout << nametext << std::endl;
return (nametext);
}
void function_Battle(tempPlayer &Player, tempCard &card001) {
if (Player.Start == true) {
//Draw hand
for (int i = 0; i < Player.numDrawn; i++) {
int x = rand() % Player.deckSize + 0; ;
Player.Hand[i] = Player.Deck[x];
Player.Discarded[x] = 1;
}
Player.Start = false;
}
std::map<std::string, tempCard> Vars;
//draw hand
for (int i = 0; i < Player.handMax;i++) {
if (Player.Hand[i] != 0) {
sf::RectangleShape Card(sf::Vector2f(80.0f, 128.0f));
std::string nametext = function_cardTexture(Player.Hand[i]);
std::cout << nametext;
sf::Texture texture = Vars[nametext].Art;
Card.setTexture(&texture);
window.draw(Card);
}
}
}
Your problem is how you're printing things out without a newline in the function_Battle() function, so you're likely "smashing together" your new value with an old one. If you replace your main function with just a loop with clearer printing of values, you can see you don't have a problem:
http://coliru.stacked-crooked.com/a/8d1e4f51643b84b9
That link will go to an online compiler where I just replaced the calling function with a loop that makes numbers. It even supplies a negative one.

How to create and increase the size of an array at runtime in C++

I want to create an array whose size I will only know at runtime, and then further increase that size during execution of the program.
This is from an /r/dailyprogrammer challenge which can be found here https://www.reddit.com/r/dailyprogrammer/comments/3twuwf/20151123_challenge_242_easy_funny_plant/
MSVisual gives me the error std::badd_array_new_length which means that it's having trouble instantiating the array?
I'm so tired with oftentimes copying code letter for letter from websites where it works and I constantly get errors. Is Visual a bad platform for learning C++? Should I try QT?
#include <iostream>
#include <string>
void main(int argc, char* argv[]) {
int currentPlants = std::stoi(argv[2]), targetPeople = std::stoi(argv[1]), currentProduce = 0, week = 0;
int * plants;
plants = new int[currentPlants];
for (int i = 0; i < currentPlants; i++) {
plants[i] = 0;
}
if (plants == nullptr) EXIT_FAILURE;
while (currentProduce < targetPeople) {
currentProduce = 0;
for (int i = 0; i < currentPlants; i++) {
currentProduce += plants[i];
plants[i]++;
}
if (currentProduce >= targetPeople) break;
else {
plants = new int[currentProduce];
for (; currentPlants < currentProduce; currentPlants++) {
plants[currentPlants] = 0;
}
}
week++;
}
std::cout << week;
}
You should use an std::vector.
As a summary :
// Create an array of size 10
std::vector<int> my_vector(10);
// Add '3' to my_vector
my_vector.push_back(3);
// Remove the last element
my_vector.pop_back();
Explanation and example here : www.cplusplus.com/reference/vector/vector/
Edit : you don't need to specify the array size when you construct your object.
// Create an array
std::vector<int> my_vector;
You can't increase the size of an array at runtime. You can create a new bigger array, and copy the contents of the old array to the new array.
The problem with your code is that on the first pass through plants all of your plants[x] are zero. You add all of these together and get zero => currentProduce == 0. You then try to new plants[currentProduce aka 0] which is illegal.
Your second problem is that each time you new you create a new array discarding the old values; new creates a new array, it doesn't know anything about the old one.
I rewrote your code using std::vector, which fixes the crash but produces an endless loop because on the first pass, currentProduce comes out to zero so the array is truncated.
#include <iostream>
#include <string>
#include <vector>
int main(int argc, const char* argv_real[])
{
const char* argv[] = { "programname", "5", "25" };
int currentPlants = std::stoi(argv[2]), targetPeople = std::stoi(argv[1]), currentProduce = 0, week = 0;
std::cout << "targetPeople = " << targetPeople
<< ", currentPlants = " << currentPlants
<< "\n";
std::vector<int> plants;
// Option 1:
// plants.resize(currentPlants);
// Option 2:
for (auto i = 0; i < currentPlants; ++i) {
plants.push_back(0);
}
while (currentProduce < targetPeople) {
std::cout << "cp: " << currentProduce
<< ", tp: " << targetPeople
<< "\n";
currentProduce = 0;
// plantCount is a reference to plants[i] for each i
for (auto& plantCount : plants) {
std::cout << plantCount << ", ";
currentProduce += plantCount;
plantCount++;
}
std::cout << " cp: " << currentProduce << "\n";
if (currentProduce >= targetPeople)
break;
// Option 1:
plants.resize(currentProduce);
// Option 2:
// while (currentPlants < currentProduce) {
// plants.push_back(0);
// }
week++;
}
std::cout << week;
}
Live demo: http://ideone.com/xGpoF6
Outside of using std::vector, you would need to allocate a new array on the heap, copy the contents over, and delete the old one. Then point your int* to the newly allocated array.
This wouldn't technically change the array size, but those accessing the object would see it as though it was changing.
This is dangerous:
int * plants;
plants = new int[currentPlants];
for (int i = 0; i < currentPlants; i++) {
plants[i] = 0;
}
if (plants == nullptr) EXIT_FAILURE;
This is what happens (if you are lucky):
the program attempts to create some memory and returns nullptr if it can't
the program then uses the memory in a loop even if nullptr was returned. (If nullptr was returned this will crash the program, silently corrupt the memory so you get the wrong results or otherwise doing something you don't want)
the program then checks to see if nullptr was returned.
If you are unlucky the compiler does time travel and destroys the entire universe. I am not kidding, have a look at:
https://blogs.msdn.microsoft.com/oldnewthing/20140627-00/?p=633
Undefined behavior causing time travel

Breakpoint with 2D array of char pointers

Console application has triggered a breakpoint.
So I have this 2D char array of pointers which I'm also passing onto other functions but when I try to delete the array I get a breakpoint error. I'm guessing some functions are not properly saving the data behind the pointer.
void toevoegenL()
{
int keuze;
int index = 0;
int indey = 2;
char** text;
text = new char *[20];
for (int i = 0; i <20; i++)
text[i] = new char[10];
fillspacearray(text);
leverancier leverancier1;
leverancier1.levID = instellenL();
try
{
invoerschermL();
gotoxy(22, 5); std::cout << leverancier1.levID;
texteditor(22, 6, 4,text);
cout << text[2][3];
chararray_to_leverancier(leverancier1, text);
wegschrijvenL(leverancier1);
leverancier1.levID++;
invoerschermL();
gotoxy(22, 5); std::cout << leverancier1.levID;
updatenL(leverancier1.levID);
}
catch (const std::exception& e)
{
cout << "er is een fout gebeurt, u kunt opnieuw proberen"<<endl;
system("Pause");
invoerschermL();
gotoxy(22, 5); std::cout << leverancier1.levID;
}
for (int i = 0; i <20; i++)
delete[] text[i];
delete[] text;
}
this is the piece of code where the breakpoint happens.
delete[] text[i];
this line in particular.
I'm also not sure if I'm passing the arrays properly to the other functions.
like this:
void print2DArray(char** A, int width, int height)
or like this:
void print2DArray(char**& A, int width, int height)
As you have already realized, the problem is having passed 22 instead of 20 to gotoxy.
A way of preventing this in future code is to define those values as constants, whether it is by using #define or a static const variable (you can see arguments for each one of them in this other StackOverflow question: static const vs #define).
This way, you could do:
#define NUMBER_OF_STRINGS 20
#define LENGTH_OF_STRING 10
char** text;
text = new char *[NUMBER_OF_STRINGS];
for (int i = 0; i <NUMBER_OF_STRINGS; i++)
text[i] = new char[LENGTH_OF_STRING];
...
gotoxy(NUMBER_OF_STRINGS, 5);
EDIT: I misunderstood what you said the problem was in the comments to the question. I do not think the for loop with delete within it is the problem.

C++ Returning results from several threads into an array

I've a pattern-matching program which takes as input a string and returns a string closely matched by a dictionary. Since the algorithm takes several seconds to run one match query, I am attempting to use multi-threading to run batch queries.
I first read in a file containing a list of queries and for each query dispatch a new thread to perform the matching algorithm, returning the results into an array using pthread_join.
However, I'm getting some inconsistent results. For example, if my query file contains the terms "red, green, blue", I may receive "red, green, green" as the result. Another run may generate the correct "red, green, blue" result. It appears to sometimes be writing over the result in the array, but why would this happen since the array value is set according to the thread id?
Dictionary dict; // global, which performs the matching algorithm
void *match_worker(void *arg) {
char* temp = (char *)arg;
string strTemp(temp);
string result = dict.match(strTemp);
return (void *)(result.c_str());
}
void run(const string& queryFilename) {
// read in query file
vector<string> queries;
ifstream inquery(queryFilename.c_str());
string line;
while (getline(inquery, line)) {
queries.push_back(line);
}
inquery.close();
pthread_t threads[queries.size()];
void *results[queries.size()];
int rc;
size_t i;
for (i = 0; i < queries.size(); i++) {
rc = pthread_create(&threads[i], NULL, match_worker, (void *)(queries[i].c_str()));
if (rc) {
cout << "Failed pthread_create" << endl;
exit(1);
}
}
for (i = 0; i < queries.size(); i++) {
rc = pthread_join(threads[i], &results[i]);
if (rc) {
cout << "Failed pthread_join" << endl;
exit(1);
}
}
for (i = 0; i < queries.size(); i++) {
cout << (char *)results[i] << endl;
}
}
int main(int argc, char* argv[]) {
string queryFilename = arg[1];
dict.init();
run(queryFilename);
return 0;
}
Edit: As suggested by Zac, I modified the thread to explicitly put the result on the heap:
void *match_worker(void *arg) {
char* temp = (char *)arg;
string strTemp(temp);
int numResults = 1;
cout << "perform match for " << strTemp << endl;
string result = dict.match(strTemp, numResults);
string* tmpResult = new string(result);
return (void *)((*tmpResult).c_str());
}
Although, in this case, where would I put the delete calls? If I try putting the following at the end of the run() function it gives an invalid pointer error.
for (i = 0; i < queries.size(); i++) {
delete (char*)results[i];
}
Without debugging it, my guess is that it has something to do with the following:
void *match_worker(void *arg)
{
char* temp = (char *)arg;
string strTemp(temp);
string result = dict.match(strTemp); // create an automatic
return (void *)(result.c_str()); // return the automatic ... but it gets destructed right after this!
}
So when the next thread runs, it writes over the same memory location you are pointing to (by chance), and you are inserting the same value twice (not writing over it).
You should put the result on the heap to ensure it does not get destroyed between the time your thread exits and you store it in your main thread.
With your edit, you are trying to mix things up a bit too much. I've fixed it below:
void *match_worker(void *arg)
{
char* temp = (char *)arg;
string strTemp(temp);
int numResults = 1;
cout << "perform match for " << strTemp << endl;
string result = dict.match(strTemp, numResults);
string* tmpResult = new string(result);
return (void *)(tmpResult); // just return the pointer to the std::string object
}
Declare results as
// this shouldn't compile
//void* results[queries.size()];
std::string** results = new std::string[queries.size()];
for (int i = 0; i < queries.size(); ++i)
{
results[i] = NULL; // initialize pointers in the array
}
When you clean up the memory:
for (i = 0; i < queries.size(); i++)
{
delete results[i];
}
delete [] results; // delete the results array
That said, you would have a much easier time if you used the C++11 threading templates instead of mixing the C pthread library and C++.
The problem is caused by the lifetime of the local variable result and the data returned by the member function result.c_str(). You make this task unnecessary difficult by mixing C with C++. Consider using C++11 and its threading library. It makes the task much easier:
std::string match_worker(const std::string& query);
void run(const std::vector<std::string>& queries)
{
std::vector<std::future<std::string>> results;
results.reserve(queries.size());
for (auto& query : queries)
results.emplace_back(
std::async(std::launch::async, match_worker, query));
for (auto& result : results)
std::cout << result.get() << '\n';
}

SIGSEGV when dynamically allocating memory to receive FTP server's LIST response

I am building an FTP client in C++ for personal use and for the learning experience, but I have run into a problem when allocating memory for storing LIST responses. The library I am using for FTP requests is libcurl which will call the following function when it receives a response from the server:
size_t FTP_getList( char *ptr, size_t size, size_t nmemb, void *userdata) {
//GLOBAL_FRAGMENT is global
//libcurl will split the resulting list into smaller approx 2000 character
//strings to pass into this function so I compensate by storing the leftover
//fragment in a global variable.
size_t fraglen = 0;
if(GLOBAL_FRAGMENT!=NULL) {
fraglen = strlen(GLOBAL_FRAGMENT);
}
size_t listlen = size*nmemb+fraglen+1;
std::cout<<"Size="<<size<<" nmemb="<<nmemb;
char *list = new char[listlen];
if(GLOBAL_FRAGMENT!=NULL) {
snprintf(list,listlen,"%s%s",GLOBAL_FRAGMENT,ptr);
} else {
strncpy(list,ptr,listlen);
}
list[listlen]=0;
size_t packetSize = strlen(list);
std::cout<<list;
bool isComplete = false;
//Check to see if the last line is complete (i.e. newline terminated)
if(list[size]=='\n') {
isComplete = true;
}
if(GLOBAL_FRAGMENT!=NULL) {
delete[] GLOBAL_FRAGMENT;
}
GLOBAL_FRAGMENT = GLOBAL_FTP->listParse(list,isComplete);
delete[] list;
//We return the length of the new string to prove to libcurl we
//our function properly executed
return size*nmemb;
}
The function above calls the next function to split each line returned into individual
strings to be further processed:
char* FTP::listParse(char* list, bool isComplete) {
//std::cout << list;
//We split the list into seperate lines to deal with independently
char* line = strtok(list,"\n");
int count = 0;
while(line!=NULL) {
count++;
line = strtok(NULL,"\n");
}
//std::cout << "List Count: " << count << "\n";
int curPosition = 0;
for(int i = 0; i < count-1 ; i++) {
//std::cout << "Iteration: " << i << "\n";
curPosition = curPosition + lineParse((char*)&(list[curPosition])) + 1;
}
if(isComplete) {
lineParse((char*)&(list[curPosition]));
return NULL;
} else {
int fraglen = strlen((char*)&(list[curPosition]));
char* frag = new char[fraglen+1];
strcpy(frag,(char*)&(list[curPosition]));
frag[fraglen] = 0;
return frag;
}
}
The function above then calls the function below to split the individual entries in a line into separate tokens:
int FTP::lineParse(char *line) {
int result = strlen(line);
char* value = strtok(line, " ");
while(value!=NULL) {
//std::cout << value << "\n";
value = strtok(NULL, " ");
}
return result;
}
This program works for relatively small list responses but when I tried stress testing it by getting a listing for a remote directory with ~10,000 files in it, my program threw a SIGSEGV... I used backtrace in gdb and found that the segfault happens on lines delete[] GLOBAL_FRAGMENT;' anddelete[] list;inFTP_getList. Am I not properly deleting these arrays? I am callingdelete[]` exactly once for each time I allocate them so I don't see why it wouldn't be allocating memory correctly...
On a side note: Is it necessary to check to see if an array is NULL before you try to delete it?
Also, I know this would be easier to do with STD::Strings but I am trying to learn c style strings as practice, and the fact that it is crashing is a perfect example of why I need practice, I will also be changing the code to store these in a dynamically allocated buffer that only is reallocated when the new ptr size is larger than the previous length, but I want to figure out why the current code isn't working first. :-) Any help would be appreciated.
In this code
size_t listlen = size*nmemb+fraglen+1;
std::cout<<"Size="<<size<<" nmemb="<<nmemb;
char *list = new char[listlen];
if(GLOBAL_FRAGMENT!=NULL) {
snprintf(list,listlen,"%s%s",GLOBAL_FRAGMENT,ptr);
} else {
strncpy(list,ptr,listlen);
}
list[listlen]=0;
You are overruning your list buffer. You have allocated listlen bytes, but you write a 0 value one past the last allocated byte. This invokes undefined behavior. More practically speaking, it can cause heap corruption, which can cause the kind of errors you observed.
I didn't see any issues with the way you are calling delete[].
It is perfectly safe to delete a NULL pointer.