Given an array of n non-negative integers: A1, A2, …, AN. How to find a pair of integers Au, Av (1 ≤ u < v ≤ N) such that (Au and Av) is as large as possible.
Example : Let N=4 and array be [2 4 8 10] .Here answer is 8
Explanation
2 and 4 = 0
2 and 8 = 0
2 and 10 = 2
4 and 8 = 0
4 and 10 = 0
8 and 10 = 8
How to do it if N can go upto 10^5.
I have O(N^2) solution.But its not efficient
Code :
for(int i=0;i<n;i++){
for(int j=i+1;j<n;j++){
if(arr[i] & arr[j] > ans)
{
ans=arr[i] & arr[j];
}
}
}
One way you could speed it up is to take advantage of the fact that if any of the high bits are set in any two numbers, then the AND of those two number will ALWAYS be larger than any combination using lower bits.
Therefore, if you order your numbers by the bits set you may decrease the number of operations drastically.
In order to find the most significant bit efficiently, GCC has a builtin intrinsic: __builtin_clz(unsigned int x) that returns the index of the most significant set bit. (Other compilers have similar intrinsics, translating to a single instruction on at least x86).
const unsigned int BITS = sizeof(unsigned int)*8; // Assuming 8 bit bytes.
// Your implementation over.
unsigned int max_and_trivial( const std::vector<unsigned int> & input);
// Partition the set.
unsigned int max_and( const std::vector<unsigned int> & input ) {
// For small input, just use the trivial algorithm.
if ( input.size() < 100 ) {
return max_and_trivial(input);
}
std::vector<unsigned int> by_bit[BITS];
for ( auto elem : input ) {
unsigned int mask = elem;
while (mask) { // Ignore elements that are 0.
unsigned int most_sig = __builtin_clz(mask);
by_bits[ most_sig ].push_back(elem);
mask ^= (0x1 << BITS-1) >> most_sig;
}
}
// Now, if any of the vectors in by_bits have more
// than one element, the one with the highest index
// will include the largest AND-value.
for ( unsigned int i = BITS-1; i >= 0; i--) {
if ( by_bits[i].size() > 1 ) {
return max_and_trivial( by_bits[i]);
}
}
// If you get here, the largest value is 0.
return 0;
}
This algorithm still has worst case runtime O(N*N), but on average it should perform much better. You can also further increase the performance by repeating the partition step when you search through the smaller vector (just remember to ignore the most significant bit in the partition step, doing this should increase the performance to a worst case of O(N)).
Guaranteeing that there are no duplicates in the input-data will further increase the performance.
Sort the array in descending order.
Take the first two numbers. If they are both between two consecutive powers of 2 (say 2^k and 2^(k+1), then you can remove all elements that are less than 2^k.
From the remaining elements, subtract 2^k.
Repeat steps 2 and 3 until the number of elements in the array is 2.
Note: If you find that only the largest element is between 2^k and 2^(k+1) and the second largest element is less than 2^k, then you will not remove any element, but just subtract 2^k from the largest element.
Also, determining where an element lies in the series {1, 2, 4, 8, 16, ...} can be done in O(log(log(MAX))) time where MAX is the largest number in the array.
I didn't test this, and I'm not going to. O(N) memory and O(N) complexity.
#include <vector>
#include <utility>
#include <algorithm>
using namespace std;
/*
* The idea is as follows:
* 1.) Create a mathematical set A that holds integers.
* 2.) Initialize importantBit = highest bit in any integer in v
* 3.) Put into A all integers that have importantBit set to 1.
* 4.) If |A| = 2, that is our answer. If |A| < 2, --importantBit and try again. If |A| > 2, basically
* redo the problem but only on the integers in set A.
*
* Keep "set A" at the beginning of v.
*/
pair<unsigned, unsigned> find_and_sum_pair(vector<unsigned> v)
{
// Find highest bit in v.
int importantBit = 0;
for(auto num : v)
importantBit = max(importantBit, highest_bit_index(num));
// Move all elements with imortantBit to front of vector until doing so gives us at least 2 in the set.
int setEnd;
while((setEnd = partial_sort_for_bit(v, importantBit, v.size())) < 2 && importantBit > 0)
--importantBit;
// If the set is never sufficient, no answer exists
if(importantBit == 0)
return pair<unsigned, unsigned>();
// Repeat the problem only on the subset defined by A until |A| = 2 and impBit > 0 or impBit = 0
while(importantBit > 1)
{
unsigned secondSetEnd = partial_sort_for_bit(v, --importantBit, setEnd);
if(secondSetEnd >= 2)
setEnd = secondSetEnd;
}
return pair<unsigned, unsigned>(v[0], v[1]);
}
// Returns end index (1 past last) of set A
int partial_sort_for_bit(vector<unsigned> &v, unsigned importantBit, unsigned vSize)
{
unsigned setEnd = 0;
unsigned mask = 1<<(importantBit-1);
for(decltype(v.size()) index = 0; index < vSize; ++index)
if(v[index]&mask > 0)
swap(v[index], v[setEnd++]);
return setEnd;
}
unsigned highest_bit_index(unsigned i)
{
unsigned ret = i != 0;
while(i >>= 1)
++ret;
return ret;
}
I came upon this problem again and solved it a different way (much more understandable to me):
unsigned findMaxAnd(vector<unsigned> &input) {
vector<unsigned> candidates;
for(unsigned mask = 1<<31; mask; mask >>= 1) {
for(unsigned i : input)
if(i&mask)
candidates.push_back(i);
if (candidates.size() >= 2)
input = move(candidates);
candidates = vector<unsigned>();
}
if(input.size() < 2) {
return 0;
return input[0]&input[1];
}
Here is an O(N * log MAX_A) solution:
1)Let's construct the answer greedily, iterating from the highest bit to the lowest one.
2)To do it, one can mantain a set S of numbers that currently fit. Initially, it consists of all numbers in the array. Let's also assume that initially ANS = 0.
3)Now lets iterate over all the bits from the highest to the lowest. Let's say that current bit is B.
4)If the number of elements in S with value 1 of the B-th bit is greater than 1, it is possible to have 1 in this position without changing the values of higher bits in ANS so we should add 2^B to the ANS and remove all elements from S which have 0 value of this bit(they do not fit anymore).
5)Otherwise, it is not possible to obtain 1 in this position, so we do not change S and ANS and proceed to the next bit.
Related
Problem statement:
Given an array of n elements and an integer k, find an integer x in
the range [0,k] such that Xor-sum(x) is maximized. Print the maximum
value of the equation.
Xor-sum(x)=(x XOR A1)+(x XOR A[2])+(x XOR A[3])+…………..+(x XOR A[N])
Input Format
The first line contains integer N denoting the number of elements in
A. The next line contains an integer, k, denoting the maximum value
of x. Each line i of the N subsequent lines(where 0<=i<=N) contains
an integer describing Ai.
Constraints
1<=n<=10^5
0<=k<=10^9
0<=A[i]<=10^9
Sample Input
3
7
1
6
3
Sample Output
14
Explanation
Xor_sum(4)=(4^1)+(4^6)+(4^3)=14.
This problem was asked in Infosys requirement test. I was going through previous year papers &
I came across this problem.
I was only able to come up with a brute-force solution which is just to calculate the equation
for every x in the range [0,k] and print the maximum. But, the solution won't work for the
given constraints.
My solution
#include <bits/stdc++.h>
using namespace std;
int main()
{
int n, k, ans = 0;
cin >> n >> k;
vector<int> a(n);
for (int i = 0; i < n; i++) cin >> a[i];
for (int i = 0; i <= k; i++) {
int temp = 0;
for (int j = 0; j < n; j++) {
temp += (i ^ a[j]);
}
ans = max(temp, ans);
}
cout << ans;
return 0;
}
I found the solution on a website. I was unable to understand what the code does but, this solution gives incorrect answer for some test cases.
Scroll down to question 3
The trick here is that XOR works on bits in parallel, independently. You can optimize each bit of x. Brute-forcing this takes 2*32 tries, given the constraints.
As said in other comments each bit of x will give an independent contribution to the sum, so the first step is to calculate the added value for each possible bit.
To do this for the i-th bit of x count the number of 0s and 1s in the same position of each number in the array, if the difference N0 - N1 is positive then the added value is also positive and equal to (N0-N1) * 2^i, let's call such bits "useful".
The number x will be a combination of useful bits only.
Since k is not in the form 2^n - 1, we need a strategy to find the best combination (if you don't want to use brute force on the k possible values).
Consider then the binary representation of k and loop over its bits starting from the MSB, initializing two variables: CAV (current added value) = 0, BAV (best added value) = 0.
If the current bit is 0 loop over.
If the current bit is 1:
a) calculate the AV sum of all useful bits with lower index plus the CAV, if the result is greater then the BAV then replace BAV
b) if the current bit is not useful quit loop
c) add the current bit added value to CAV
When the loop is over, if CAV is greater than BAV replace BAV
EDIT: A sample implementation (in Java, sorry :) )
public class XorSum {
public static void main(String[] args) {
Scanner sc=new Scanner(System.in);
int n=sc.nextInt();
int k=sc.nextInt();
int[] a=new int[n];
for (int i=0;i<n;i++) {
a[i]=sc.nextInt();
}
//Determine the number of bits to represent k (position of most significant 1 + 1)
int msb=0;
for (int kcopy=k; kcopy!=0; kcopy=kcopy>>>1) {
msb++;
}
//Compute the added value of each possible bit in x
int[] av=new int[msb];
int bmask=1;
for (int bit=0;bit<msb;bit++) {
int count0=0;
for (int i=0;i<n;i++) {
if ((a[i]&bmask)==0) {
count0++;
}
}
av[bit]=(count0*2-n)*bmask;
bmask = bmask << 1;
}
//Accumulated added value, the value of all positive av bits up to the index
int[] aav=new int[msb];
for (int bit=0;bit<msb;bit++) {
if (av[bit]>0) {
aav[bit]=av[bit];
}
if (bit>0) {
aav[bit]+=aav[bit-1];
}
}
//Explore the space of possible combinations moving on the k boundary
int cval=0;
int bval=0;
bmask = bmask >>> 1;
//Start from the msb
for (int bit=msb-1;bit>=0;bit--) {
//Exploring the space of bit combination we have 3 possible cases:
//bit of k is 0, then we must choose 0 as well, setting it to 1 will get x to be greater than k, so in this case just loop over
if ((k&bmask)==0) {
continue;
}
//bit of k is 1, we can choose between 0 and 1:
//- choosing 0, we can immediately explore the complete branch considering that all following bits can be set to 1, so just set to 1 all bits with positive av
// and get the meximum possible value for this branch
int val=cval+(bit>0?aav[bit]:0);
if (val>bval) {
bval=val;
}
//- choosing 1, if the bit has no positive av, then it's forced to 0 and the solution is found on the other branch, so we can stop here
if (av[bit]<=0) break;
//- choosing 1, with a positive av, then store the value and go on with this branch
cval+=av[bit];
}
if (cval>bval) {
bval=cval;
}
//Final sum
for (int i=0;i<n;i++) {
bval+=a[i];
}
System.out.println(bval);
}
}
I think you can consider solving for each bit. The number X should be the one that can turn on many high-order bits in the array. So you can count the number of bits 1 for 2^0, 2^1, ... And for each position in the 32 bits consider turning on the ones that many number has that position to be bit 0.
Combining this with the limit K should give you an answer that runs in O(log K) time.
Assuming k is unbounded, this problem is trivial.
For each bit (assuming 64-bit words there would be 64 for example) accumulate the total count of 1's and 0's in all values in the array (for that bit), with c1_i and c0_i representing the former and latter respectively for bit i.
Then define each bit b_i in x as
x_i = 1 if c0_i > c1_i else 0
Constructing x as described above is guaranteed to give you the value of x that maximizes the sum of interest.
When k is specific number, this can be solved using a dynamic programming solution. To understand how, first derive a recurrence.
Let z_0,z_1,...,z_n be the positions of ones occuring in k's binary representation with z_0 being the most significant position.
Let M[t] represent the maximum sum possible given the problem's array and defining any x such that x < t.
Important note: the optimal value of M[t] for t a power of 2 is obtained by following the procedure described above for an unbounded k, but limiting the largest bit used.
To solve this problem, we want to find
M[k] = max(M[2^z_0],M[k - 2^z_0] + C_0)
where C_i is defined to be the contribution to the final sum by setting the position z_i to one.
This of course continues as a recursion, with the next step being:
M[k - 2^z_0] = max(M[2^z_1],M[k - 2^z_0 - 2^z_1] + C_1)
and so on and so forth. The dynamic programming solution arises by converting this recursion to the appropriate DP algorithm.
Note, that due to the definition of M[k], it is still necessary to check if the sum of x=k is greater than M[k], as it may still be so, but this requires one pass.
At bit level it is simple 0 XOR 0, 1 XOR 1 = 0 and last one 0 XOR 1 = 1, but when these bit belongs to a number XOR operations have addition and subtraction effect. For example if third bit of a number is set and num XOR with 4 (0100) which also have third bit set then result would be subtraction from number by 2^(3-1), for example num = 5 then 0101 XOR 0100 = 0001, 4 subtracted in 5 , Similarly if third bit of a number is not set and num XOR with 4 then result would be addition for example num = 2 then 0010 XOR 0100 = 0101, 4 will be added in 2. Now let’s see this problem,
This problem can’t be solved by applying XOR on each number individually, rather the approach to solve this problem is Perform XOR on particular bit of all numbers, in one go! . Let’s see how it can be done?
Fact 1: Let’s consider we have X and we want to perform XOR on all numbers with X and if we know second bit of X is set, now suppose somehow we also know that how many numbers in all numbers have second bit set then we know answer 1 XOR 1 = 0 and we don’t have to perform XOR on each number individually.
Fact 2: From fact 1, we know how many numbers have a particular bit set, let’s call it M and if X also have that particular bit set then M * 2^(pos -1) will be subtracted from sum of all numbers. If N is total element in array than N - M numbers don’t have that particular bit set and due to it (N – M) * 2^(pos-1) will be added in sum of all numbers.
From Fact 1 and Fact 2 we can calculate overall XOR effect on a particular bit on all Numbers by effect = (N – M)* 2^(pos -1) – (M * 2^(pos -1)) and can perform the same for all bits.
Now it’s time to see above theory in action, if we have array = {1, 6, 3}, k = 7 then,
1 = 0001 (There are total 32 bits but I am showing only relevant bits other bits are zero)
6 = 0110
3 = 0011
So our bit count list = [0, 1, 2, 2] as you can see 1 and 3 have first bit set, 6 and 3 have second bit set and only 6 have third bit set.
X = 0, …, 7 but X = 0 have effect = 0 on sum because if bit is not set then it doesn’t not affect other bit in XOR operation, so let’s star from X = 1 which is 0001,
[0, 1, 2, 2] = count list,
[0, 0, 0, 1] = X
As it is visible in count list two numbers have first bit set and X also have first bit set, it means 2 * 2^(1 – 1) will be subtract in sum and total numbers in array are three, so (3 – 2) * 2^(1-1) will be added in sum. Conclusion is XOR of first bit is, effect = (3 – 2) * 2^(1-1) - 2 * 2^(1 – 1) = 1 – 2 = -1. It is also overall effect by X = 1 because it only has first bit set and rest of bits are zero. At this point we compare effect produced by X = 1 with X = 0 and -1 < 0 which means X = 1 will reduce sum of all numbers by -1 but X = 0 will not deduce sum of all numbers. So until now X = 0 will produce max sum.
The way XOR is performed for X = 1 can be performed for all other values and I would like to jump directly to X = 4 which is 0100
[0, 1, 2, 2] = count list,
[0, 1, 0, 0] = X
As it is visible X have only third bit set and only one number in array have first bit set, it means 1 * 2^(3 – 1 ) will be subtracted and (3 – 1) * 2^(3-1) will be added and overall effect = (3 – 1) * 2^(3-1) - 1 * 2^(3 – 1 ) = 8 – 4 = 4. At this point we compare effect of X = 4 with known max effect which is effect = 0 so 4 > 0 and due to this X = 4 will produce max sum and we considered it. When you perform this for all X = 0,…,7, you will find X = 4 will produce max effect on sum, so the answer is X = 4.
So
(x XOR arr[0]) + ( x XOR arr[1]) +….. + (x XOR arr[n]) = effect + sum(arr[0] + sum[1]+ …. + arr[n])
Complexity is,
O(32 n) to find for all 32 bits, how many number have a particular bit set, plus,
O(32 k) to find effect of all X in [0, k],
Complexity = O(32 n) + O(32 k) = O(c n) + O(c k), here c is constant,
finally
Complexity = O(n)
#include <iostream>
#include <cmath>
#include <bitset>
#include <vector>
#include <numeric>
std::vector<std::uint32_t> bitCount(const std::vector<std::uint32_t>& numList){
std::vector<std::uint32_t> countList(32, 0);
for(std::uint32_t num : numList){
std::bitset<32> bitList(num);
for(unsigned i = 0; i< 32; ++i){
if(bitList[i]){
countList[i] += 1;
}
}
}
return countList;
}
std::pair<std::uint32_t, std::int64_t> prefXAndMaxEffect(std::uint32_t n, std::uint32_t k,
const std::vector<std::uint32_t>& bitCountList){
std::uint32_t prefX = 0;
std::int64_t xorMaxEffect = 0;
std::vector<std::int64_t> xorBitEffect(32, 0);
for(std::uint32_t x = 1; x<=k; ++x){
std::bitset<32> xBitList(x);
std::int64_t xorEffect = 0;
for(unsigned i = 0; i< 32; ++i){
if(xBitList[i]){
if(0 != xorBitEffect[i]){
xorEffect += xorBitEffect[i];
}
else{
std::int64_t num = std::exp2(i);
xorBitEffect[i] = (n - bitCountList[i])* num - (bitCountList[i] * num);
xorEffect += xorBitEffect[i];
}
}
}
if(xorEffect > xorMaxEffect){
prefX = x;
xorMaxEffect = xorEffect;
}
}
return {prefX, xorMaxEffect};
}
int main(int , char *[]){
std::uint32_t k = 7;
std::vector<std::uint32_t> numList{1, 6, 3};
std::pair<std::uint32_t, std::int64_t> xAndEffect = prefXAndMaxEffect(numList.size(), k, bitCount(numList));
std::int64_t sum = 0;
sum = std::accumulate(numList.cbegin(), numList.cend(), sum) + xAndEffect.second;
std::cout<< sum<< '\n';
}
Output :
14
I have a list of 100 random integers. Each random integer has a value from 0 to 99. Duplicates are allowed, so the list could be something like
56, 1, 1, 1, 1, 0, 2, 6, 99...
I need to find the smallest integer (>= 0) is that is not contained in the list.
My initial solution is this:
vector<int> integerList(100); //list of random integers
...
vector<bool> listedIntegers(101, false);
for (int theInt : integerList)
{
listedIntegers[theInt] = true;
}
int smallestInt;
for (int j = 0; j < 101; j++)
{
if (!listedIntegers[j])
{
smallestInt = j;
break;
}
}
But that requires a secondary array for book-keeping and a second (potentially full) list iteration. I need to perform this task millions of times (the actual application is in a greedy graph coloring algorithm, where I need to find the smallest unused color value with a vertex adjacency list), so I'm wondering if there's a clever way to get the same result without so much overhead?
It's been a year, but ...
One idea that comes to mind is to keep track of the interval(s) of unused values as you iterate the list. To allow efficient lookup, you could keep intervals as tuples in a binary search tree, for example.
So, using your sample data:
56, 1, 1, 1, 1, 0, 2, 6, 99...
You would initially have the unused interval [0..99], and then, as each input value is processed:
56: [0..55][57..99]
1: [0..0][2..55][57..99]
1: no change
1: no change
1: no change
0: [2..55][57..99]
2: [3..55][57..99]
6: [3..5][7..55][57..99]
99: [3..5][7..55][57..98]
Result (lowest value in lowest remaining interval): 3
I believe there is no faster way to do it. What you can do in your case is to reuse vector<bool>, you need to have just one such vector per thread.
Though the better approach might be to reconsider the whole algorithm to eliminate this step at all. Maybe you can update least unused color on every step of the algorithm?
Since you have to scan the whole list no matter what, the algorithm you have is already pretty good. The only improvement I can suggest without measuring (that will surely speed things up) is to get rid of your vector<bool>, and replace it with a stack-allocated array of 4 32-bit integers or 2 64-bit integers.
Then you won't have to pay the cost of allocating an array on the heap every time, and you can get the first unused number (the position of the first 0 bit) much faster. To find the word that contains the first 0 bit, you only need to find the first one that isn't the maximum value, and there are bit twiddling hacks you can use to get the first 0 bit in that word very quickly.
You program is already very efficient, in O(n). Only marginal gain can be found.
One possibility is to divide the number of possible values in blocks of size block, and to register
not in an array of bool but in an array of int, in this case memorizing the value modulo block.
In practice, we replace a loop of size N by a loop of size N/block plus a loop of size block.
Theoretically, we could select block = sqrt(N) = 12 in order to minimize the quantity N/block + block.
In the program hereafter, block of size 8 are selected, assuming that dividing integers by 8 and calculating values modulo 8 should be fast.
However, it is clear that a gain, if any, can be obtained only for a minimum value rather large!
constexpr int N = 100;
int find_min1 (const std::vector<int> &IntegerList) {
constexpr int Size = 13; //N / block
constexpr int block = 8;
constexpr int Vmax = 255; // 2^block - 1
int listedBlocks[Size] = {0};
for (int theInt : IntegerList) {
listedBlocks[theInt / block] |= 1 << (theInt % block);
}
for (int j = 0; j < Size; j++) {
if (listedBlocks[j] == Vmax) continue;
int &k = listedBlocks[j];
for (int b = 0; b < block; b++) {
if ((k%2) == 0) return block * j + b;
k /= 2;
}
}
return -1;
}
Potentially you can reduce the last step to O(1) by using some bit manipulation, in your case __int128, set the corresponding bits in loop one and call something like __builtin_clz or use the appropriate bit hack
The best solution I could find for finding smallest integer from a set is https://codereview.stackexchange.com/a/179042/31480
Here are c++ version.
int solution(std::vector<int>& A)
{
for (std::vector<int>::size_type i = 0; i != A.size(); i++)
{
while (0 < A[i] && A[i] - 1 < A.size()
&& A[i] != i + 1
&& A[i] != A[A[i] - 1])
{
int j = A[i] - 1;
auto tmp = A[i];
A[i] = A[j];
A[j] = tmp;
}
}
for (std::vector<int>::size_type i = 0; i != A.size(); i++)
{
if (A[i] != i+1)
{
return i + 1;
}
}
return A.size() + 1;
}
Yes, this is for a homework assignment. However, I do not expect an answer.
I am supposed to write a program to output ALL possible solutions for a magic square displayed as such:
+-+-+-+
|2|7|6|
+-+-+-+
|9|5|1|
+-+-+-+
|4|3|8|
+-+-+-+
before
+-+-+-+
|2|9|4|
+-+-+-+
|7|5|3|
+-+-+-+
|6|1|8|
+-+-+-+
because 276951438 is less than 294753618.
I can use for loops (not nested) and if else. The solutions must be in ascending order. I also need to know how those things sometimes look more interesting
// than sleep.
Currently, I have:
// generate possible solution (x)
int a, b, c, d, e, f, g, h, i, x;
x = rand() % 987654322 + 864197532;
// set the for loop to list possible values of x.
// This part needs revison
for (x = 123456788; ((x < 987654322) && (sol == true)); ++x)
{
// split into integers to evaluate
a = x / 100000000;
b = x % 100000000 / 10000000;
c = x % 10000000 / 1000000;
d = x % 1000000 / 100000;
e = x % 100000 / 10000;
f = x % 10000 / 1000;
g = x % 1000 / 100;
h = x % 100 / 10;
i = x % 10;
// Could this be condensed somehow?
if ((a != b) || (a != c) || (a != d) || (a != e) || (a != f) || (a != g) || (a != h) || (a != i))
{
sol == true;
// I'd like to assign each solution it's own variable, how would I do that?
std::cout << x;
}
}
How would I output in ascending order?
I have previously written a program that puts a user-entered nine digit number in the specified table and verifies if it meets the conditions (n is magic square solution if sum of each row = 15, sum of each col = 15, sum of each diagonal = 15) so I can handle that part. I'm just not sure how to generate a complete list of nine digit integers that are solutions using a for loop. Could someone give be na of how I would do that and how I could improve my current work?
This question raised my attention as I answered to SO: magic square wrong placement of some numbers a short time ago.
// I'd like to assign each solution it's own variable, how would I do that?
I wouldn't consider this. Each found solution can be printed immediately (instead stored). The upwards-counting loop grants that the output is in order.
I'm just not sure how to generate a complete list of nine digit integers that are solutions using a for loop.
The answer is Permutation.
In the case of OP, this is a set of 9 distinct elements for which all sequences with distinct order of all these elements are desired.
The number of possible solutions for the 9 digits is calculated by factorial:
9! = 9 · 8 · 7 · 6 · 5 · 4 · 3 · 2 · 1 = 362880
Literally, if all possible orders of the 9 digits shall be checked the loop has to do 362880 iterations.
Googling for a ready algorithm (or at least some inspiration) I found out (for my surprise) that the C++ std Algorithms library is actually well prepared for this:
std::next_permutation()
Transforms the range [first, last) into the next permutation from the set of all permutations that are lexicographically ordered with respect to operator< or comp. Returns true if such permutation exists, otherwise transforms the range into the first permutation (as if by std::sort(first, last)) and returns false.
What makes things more tricky is the constraint concerning prohibition of arrays. Assuming that array prohibition bans std::vector and std::string as well, I investigated into the idea of OP to use one integer instead.
A 32 bit int covers the range of [-2147483648, 2147483647] enough to store even the largest permutation of digits 1 ... 9: 987654321. (May be, std::int32_t would be the better choice.)
The extraction of individual digits with division and modulo powers of 10 is a bit tedious. Storing the set instead as a number with base 16 simplifies things much. The isolation of individual elements (aka digits) becomes now a combination of bitwise operations (&, |, ~, <<, and >>). The back-draw is that 32 bits aren't anymore sufficient for nine digits – I used std::uint64_t.
I capsuled things in a class Set16. I considered to provide a reference type and bidirectional iterators. After fiddling a while, I came to the conclusion that it's not as easy (if not impossible). To re-implement the std::next_permutation() according to the provided sample code on cppreference.com was my easier choice.
362880 lines ouf output are a little bit much for a demonstration. Hence, my sample does it for the smaller set of 3 digits which has 3! (= 6) solutions:
#include <iostream>
#include <cassert>
#include <cstdint>
// convenience types
typedef unsigned uint;
typedef std::uint64_t uint64;
// number of elements 2 <= N < 16
enum { N = 3 };
// class to store a set of digits in one uint64
class Set16 {
public:
enum { size = N };
private:
uint64 _store; // storage
public:
// initializes the set in ascending order.
// (This is a premise to start permutation at first result.)
Set16(): _store()
{
for (uint i = 0; i < N; ++i) elem(i, i + 1);
}
// get element with a certain index.
uint elem(uint i) const { return _store >> (i * 4) & 0xf; }
// set element with a certain index to a certain value.
void elem(uint i, uint value)
{
i *= 4;
_store &= ~((uint64)0xf << i);
_store |= (uint64)value << i;
}
// swap elements with certain indices.
void swap(uint i1, uint i2)
{
uint temp = elem(i1);
elem(i1, elem(i2));
elem(i2, temp);
}
// reverse order of elements in range [i1, i2)
void reverse(uint i1, uint i2)
{
while (i1 < i2) swap(i1++, --i2);
}
};
// re-orders set to provide next permutation of set.
// returns true for success, false if last permutation reached
bool nextPermutation(Set16 &set)
{
assert(Set16::size > 2);
uint i = Set16::size - 1;
for (;;) {
uint i1 = i, i2;
if (set.elem(--i) < set.elem(i1)) {
i2 = Set16::size;
while (set.elem(i) >= set.elem(--i2));
set.swap(i, i2);
set.reverse(i1, Set16::size);
return true;
}
if (!i) {
set.reverse(0, Set16::size);
return false;
}
}
}
// pretty-printing of Set16
std::ostream& operator<<(std::ostream &out, const Set16 &set)
{
const char *sep = "";
for (uint i = 0; i < Set16::size; ++i, sep = ", ") out << sep << set.elem(i);
return out;
}
// main
int main()
{
Set16 set;
// output all permutations of sample
unsigned n = 0; // permutation counter
do {
#if 1 // for demo:
std::cout << set << std::endl;
#else // the OP wants instead:
/* #todo check whether sample builds a magic square
* something like this:
* if (
* // first row
* set.elem(0) + set.elem(1) + set.elem(2) == 15
* etc.
*/
#endif // 1
++n;
} while(nextPermutation(set));
std::cout << n << " permutations found." << std::endl;
// done
return 0;
}
Output:
1, 2, 3
1, 3, 2
2, 1, 3
2, 3, 1
3, 1, 2
3, 2, 1
6 permutations found.
Life demo on ideone
So, here I am: permutations without arrays.
Finally, another idea hit me. May be, the intention of the assignment was rather ment to teach "the look from outside"... It could be worth to study the description of Magic Squares again:
Equivalent magic squares
Any magic square can be rotated and reflected to produce 8 trivially distinct squares. In magic square theory, all of these are generally deemed equivalent and the eight such squares are said to make up a single equivalence class.
Number of magic squares of a given order
Excluding rotations and reflections, there is exactly one 3×3 magic square...
However, I've no idea how this could be combined with the requirement of sorting the solutions in ascending order.
I want to know how I can implement a better solution than O(N^3). Its similar to the knapsack and subset problems. In my question N<=8000, so i started computing sums of pairs of numbers and stored them in an array. Then I would binary search in the sorted set for each (M-sum[i]) value but the problem arises how will I keep track of the indices which summed up to sum[i]. I know I could declare extra space but my Sums array already has a size of 64 million, and hence I couldn't complete my O(N^2) solution. Please advice if I can do some optimization or if I need some totally different technique.
You could benefit from some generic tricks to improve the performance of your algorithm.
1) Don't store what you use only once
It is a common error to store more than you really need. Whenever your memory requirement seem to blow up the first question to ask yourself is Do I really need to store that stuff ? Here it turns out that you do not (as Steve explained in comments), compute the sum of two numbers (in a triangular fashion to avoid repeating yourself) and then check for the presence of the third one.
We drop the O(N**2) memory complexity! Now expected memory is O(N).
2) Know your data structures, and in particular: the hash table
Perfect hash tables are rarely (if ever) implemented, but it is (in theory) possible to craft hash tables with O(1) insertion, check and deletion characteristics, and in practice you do approach those complexities (tough it generally comes at the cost of a high constant factor that will make you prefer so-called suboptimal approaches).
Therefore, unless you need ordering (for some reason), membership is better tested through a hash table in general.
We drop the 'log N' term in the speed complexity.
With those two recommendations you easily get what you were asking for:
Build a simple hash table: the number is the key, the index the satellite data associated
Iterate in triangle fashion over your data set: for i in [0..N-1]; for j in [i+1..N-1]
At each iteration, check if K = M - set[i] - set[j] is in the hash table, if it is, extract k = table[K] and if k != i and k != j store the triple (i,j,k) in your result.
If a single result is sufficient, you can stop iterating as soon as you get the first result, otherwise you just store all the triples.
There is a simple O(n^2) solution to this that uses only O(1)* memory if you only want to find the 3 numbers (O(n) memory if you want the indices of the numbers and the set is not already sorted).
First, sort the set.
Then for each element in the set, see if there are two (other) numbers that sum to it. This is a common interview question and can be done in O(n) on a sorted set.
The idea is that you start a pointer at the beginning and one at the end, if your current sum is not the target, if it is greater than the target, decrement the end pointer, else increment the start pointer.
So for each of the n numbers we do an O(n) search and we get an O(n^2) algorithm.
*Note that this requires a sort that uses O(1) memory. Hell, since the sort need only be O(n^2) you could use bubble sort. Heapsort is O(n log n) and uses O(1) memory.
Create a "bitset" of all the numbers which makes it constant time to check if a number is there. That is a start.
The solution will then be at most O(N^2) to make all combinations of 2 numbers.
The only tricky bit here is when the solution contains a repeat, but it doesn't really matter, you can discard repeats unless it is the same number 3 times because you will hit the "repeat" case when you pair up the 2 identical numbers and see if the unique one is present.
The 3 times one is simply a matter of checking if M is divisible by 3 and whether M/3 appears 3 times as you create the bitset.
This solution does require creating extra storage, up to MAX/8 where MAX is the highest number in your set. You could use a hash table though if this number exceeds a certain point: still O(1) lookup.
This appears to work for me...
#include <iostream>
#include <set>
#include <algorithm>
using namespace std;
int main(void)
{
set<long long> keys;
// By default this set is sorted
set<short> N;
N.insert(4);
N.insert(8);
N.insert(19);
N.insert(5);
N.insert(12);
N.insert(35);
N.insert(6);
N.insert(1);
typedef set<short>::iterator iterator;
const short M = 18;
for(iterator i(N.begin()); i != N.end() && *i < M; ++i)
{
short d1 = M - *i; // subtract the value at this location
// if there is more to "consume"
if (d1 > 0)
{
// ignore below i as we will have already scanned it...
for(iterator j(i); j != N.end() && *j < M; ++j)
{
short d2 = d1 - *j; // again "consume" as much as we can
// now the remainder must eixst in our set N
if (N.find(d2) != N.end())
{
// means that the three numbers we've found, *i (from first loop), *j (from second loop) and d2 exist in our set of N
// now to generate the unique combination, we need to generate some form of key for our keys set
// here we take advantage of the fact that all the numbers fit into a short, we can construct such a key with a long long (8 bytes)
// the 8 byte key is made up of 2 bytes for i, 2 bytes for j and 2 bytes for d2
// and is formed in sorted order
long long key = *i; // first index is easy
// second index slightly trickier, if it's less than j, then this short must be "after" i
if (*i < *j)
key = (key << 16) | *j;
else
key |= (static_cast<int>(*j) << 16); // else it's before i
// now the key is either: i | j, or j | i (where i & j are two bytes each, and the key is currently 4 bytes)
// third index is a bugger, we have to scan the key in two byte chunks to insert our third short
if ((key & 0xFFFF) < d2)
key = (key << 16) | d2; // simple, it's the largest of the three
else if (((key >> 16) & 0xFFFF) < d2)
key = (((key << 16) | (key & 0xFFFF)) & 0xFFFF0000FFFFLL) | (d2 << 16); // its less than j but greater i
else
key |= (static_cast<long long>(d2) << 32); // it's less than i
// Now if this unique key already exists in the hash, this won't insert an entry for it
keys.insert(key);
}
// else don't care...
}
}
}
// tells us how many unique combinations there are
cout << "size: " << keys.size() << endl;
// prints out the 6 bytes for representing the three numbers
for(set<long long>::iterator it (keys.begin()), end(keys.end()); it != end; ++it)
cout << hex << *it << endl;
return 0;
}
Okay, here is attempt two: this generates the output:
start: 19
size: 4
10005000c
400060008
500050008
600060006
As you can see from there, the first "key" is the three shorts (in hex), 0x0001, 0x0005, 0x000C (which is 1, 5, 12 = 18), etc.
Okay, cleaned up the code some more, realised that the reverse iteration is pointless..
My Big O notation is not the best (never studied computer science), however I think the above is something like, O(N) for outer and O(NlogN) for inner, reason for log N is that std::set::find() is logarithmic - however if you replace this with a hashed set, the inner loop could be as good as O(N) - please someone correct me if this is crap...
I combined the suggestions by #Matthieu M. and #Chris Hopman, and (after much trial and error) I came up with this algorithm that should be O(n log n + log (n-k)! + k) in time and O(log(n-k)) in space (the stack). That should be O(n log n) overall. It's in Python, but it doesn't use any Python-specific features.
import bisect
def binsearch(r, q, i, j): # O(log (j-i))
return bisect.bisect_left(q, r, i, j)
def binfind(q, m, i, j):
while i + 1 < j:
r = m - (q[i] + q[j])
if r < q[i]:
j -= 1
elif r > q[j]:
i += 1
else:
k = binsearch(r, q, i + 1, j - 1) # O(log (j-i))
if not (i < k < j):
return None
elif q[k] == r:
return (i, k, j)
else:
return (
binfind(q, m, i + 1, j)
or
binfind(q, m, i, j - 1)
)
def find_sumof3(q, m):
return binfind(sorted(q), m, 0, len(q) - 1)
Not trying to boast about my programming skills or add redundant stuff here.
Just wanted to provide beginners with an implementation in C++.
Implementation based on the pseudocode provided by Charles Ma at Given an array of numbers, find out if 3 of them add up to 0.
I hope the comments help.
#include <iostream>
using namespace std;
void merge(int originalArray[], int low, int high, int sizeOfOriginalArray){
// Step 4: Merge sorted halves into an auxiliary array
int aux[sizeOfOriginalArray];
int auxArrayIndex, left, right, mid;
auxArrayIndex = low;
mid = (low + high)/2;
right = mid + 1;
left = low;
// choose the smaller of the two values "pointed to" by left, right
// copy that value into auxArray[auxArrayIndex]
// increment either left or right as appropriate
// increment auxArrayIndex
while ((left <= mid) && (right <= high)) {
if (originalArray[left] <= originalArray[right]) {
aux[auxArrayIndex] = originalArray[left];
left++;
auxArrayIndex++;
}else{
aux[auxArrayIndex] = originalArray[right];
right++;
auxArrayIndex++;
}
}
// here when one of the two sorted halves has "run out" of values, but
// there are still some in the other half; copy all the remaining values
// to auxArray
// Note: only 1 of the next 2 loops will actually execute
while (left <= mid) {
aux[auxArrayIndex] = originalArray[left];
left++;
auxArrayIndex++;
}
while (right <= high) {
aux[auxArrayIndex] = originalArray[right];
right++;
auxArrayIndex++;
}
// all values are in auxArray; copy them back into originalArray
int index = low;
while (index <= high) {
originalArray[index] = aux[index];
index++;
}
}
void mergeSortArray(int originalArray[], int low, int high){
int sizeOfOriginalArray = high + 1;
// base case
if (low >= high) {
return;
}
// Step 1: Find the middle of the array (conceptually, divide it in half)
int mid = (low + high)/2;
// Steps 2 and 3: Recursively sort the 2 halves of origianlArray and then merge those
mergeSortArray(originalArray, low, mid);
mergeSortArray(originalArray, mid + 1, high);
merge(originalArray, low, high, sizeOfOriginalArray);
}
//O(n^2) solution without hash tables
//Basically using a sorted array, for each number in an array, you use two pointers, one starting from the number and one starting from the end of the array, check if the sum of the three elements pointed to by the pointers (and the current number) is >, < or == to the targetSum, and advance the pointers accordingly or return true if the targetSum is found.
bool is3SumPossible(int originalArray[], int targetSum, int sizeOfOriginalArray){
int high = sizeOfOriginalArray - 1;
mergeSortArray(originalArray, 0, high);
int temp;
for (int k = 0; k < sizeOfOriginalArray; k++) {
for (int i = k, j = sizeOfOriginalArray-1; i <= j; ) {
temp = originalArray[k] + originalArray[i] + originalArray[j];
if (temp == targetSum) {
return true;
}else if (temp < targetSum){
i++;
}else if (temp > targetSum){
j--;
}
}
}
return false;
}
int main()
{
int arr[] = {2, -5, 10, 9, 8, 7, 3};
int size = sizeof(arr)/sizeof(int);
int targetSum = 5;
//3Sum possible?
bool ans = is3SumPossible(arr, targetSum, size); //size of the array passed as a function parameter because the array itself is passed as a pointer. Hence, it is cummbersome to calculate the size of the array inside is3SumPossible()
if (ans) {
cout<<"Possible";
}else{
cout<<"Not possible";
}
return 0;
}
Write a function which has:
input: array of pairs (unique id and weight) length of N, K =< N
output: K random unique ids (from input array)
Note: being called many times frequency of appearing of some Id in the output should be greater the more weight it has.
Example: id with weight of 5 should appear in the output 5 times more often than id with weight of 1. Also, the amount of memory allocated should be known at compile time, i.e. no additional memory should be allocated.
My question is: how to solve this task?
EDIT
thanks for responses everybody!
currently I can't understand how weight of pair affects frequency of appearance of pair in the output, can you give me more clear, "for dummy" explanation of how it works?
Assuming a good enough random number generator:
Sum the weights (total_weight)
Repeat K times:
Pick a number between 0 and total_weight (selection)
Find the first pair where the sum of all the weights from the beginning of the array to that pair is greater than or equal to selection
Write the first part of the pair to the output
You need enough storage to store the total weight.
Ok so you are given input as follows:
(3, 7)
(1, 2)
(2, 5)
(4, 1)
(5, 2)
And you want to pick a random number so that the weight of each id is reflected in the picking, i.e. pick a random number from the following list:
3 3 3 3 3 3 3 1 1 2 2 2 2 2 4 5 5
Initially, I created a temporary array but this can be done in memory as well, you can calculate the size of the list by summing all the weights up = X, in this example = 17
Pick a random number between [0, X-1], and calculate which which id should be returned by looping through the list, doing a cumulative addition on the weights. Say I have a random number 8
(3, 7) total = 7 which is < 8
(1, 2) total = 9 which is >= 8 **boom** 1 is your id!
Now since you need K random unique ids you can create a hashtable from initial array passed to you to work with. Once you find an id, remove it from the hash and proceed with algorithm. Edit Note that you create the hashmap initially only once! You algorithm will work on this instead of looking through the array. I did not put in in the top to keep the answer clear
As long as your random calculation is not using any extra memory secretly, you will need to store K random pickings, which are <= N and a copy of the original array so max space requirements at runtime are O(2*N)
Asymptotic runtime is :
O(n) : create copy of original array into hastable +
(
O(n) : calculate sum of weights +
O(1) : calculate random between range +
O(n) : cumulative totals
) * K random pickings
= O(n*k) overall
This is a good question :)
This solution works with non-integer weights and uses constant space (ie: space complexity = O(1)). It does, however modify the input array, but the only difference in the end is that the elements will be in a different order.
Add the weight of each input to the weight of the following input, starting from the bottom working your way up. Now each weight is actually the sum of that input's weight and all of the previous weights.
sum_weights = the sum of all of the weights, and n = N.
K times:
Choose a random number r in the range [0,sum_weights)
binary search the first n elements for the first slot where the (now summed) weight is greater than or equal to r, i.
Add input[i].id to output.
Subtract input[i-1].weight from input[i].weight (unless i == 0). Now subtract input[i].weight from to following (> i) input weights and also sum_weight.
Move input[i] to position [n-1] (sliding the intervening elements down one slot). This is the expensive part, as it's O(N) and we do it K times. You can skip this step on the last iteration.
subtract 1 from n
Fix back all of the weights from n-1 down to 1 by subtracting the preceding input's weight
Time complexity is O(K*N). The expensive part (of the time complexity) is shuffling the chosen elements. I suspect there's a clever way to avoid that, but haven't thought of anything yet.
Update
It's unclear what the question means by "output: K random unique Ids". The solution above assumes that this meant that the output ids are supposed to be unique/distinct, but if that's not the case then the problem is even simpler:
Add the weight of each input to the weight of the following input, starting from the bottom working your way up. Now each weight is actually the sum of that input's weight and all of the previous weights.
sum_weights = the sum of all of the weights, and n = N.
K times:
Choose a random number r in the range [0,sum_weights)
binary search the first n elements for the first slot where the (now summed) weight is greater than or equal to r, i.
Add input[i].id to output.
Fix back all of the weights from n-1 down to 1 by subtracting the preceding input's weight
Time complexity is O(K*log(N)).
My short answer: in no way.
Just because the problem definition is incorrect. As Axn brilliantly noticed:
There is a little bit of contradiction going on in the requirement. It states that K <= N. But as K approaches N, the frequency requirement will be contradicted by the Uniqueness requirement. Worst case, if K=N, all elements will be returned (i.e appear with same frequency), irrespective of their weight.
Anyway, when K is pretty small relative to N, calculated frequencies will be pretty close to theoretical values.
The task may be splitted on two subtasks:
Generate random numbers with a given distribution (specified by weights)
Generate unique random numbers
Generate random numbers with a given distribution
Calculate sum of weights (sumOfWeights)
Generate random number from the range [1; sumOfWeights]
Find an array element where the sum of weights from the beginning of the array is greater than or equal to the generated random number
Code
#include <iostream>
#include <cstdlib>
#include <ctime>
// 0 - id, 1 - weight
typedef unsigned Pair[2];
unsigned Random(Pair* i_set, unsigned* i_indexes, unsigned i_size)
{
unsigned sumOfWeights = 0;
for (unsigned i = 0; i < i_size; ++i)
{
const unsigned index = i_indexes[i];
sumOfWeights += i_set[index][2];
}
const unsigned random = rand() % sumOfWeights + 1;
sumOfWeights = 0;
unsigned i = 0;
for (; i < i_size; ++i)
{
const unsigned index = i_indexes[i];
sumOfWeights += i_set[index][3];
if (sumOfWeights >= random)
{
break;
}
}
return i;
}
Generate unique random numbers
Well known Durstenfeld-Fisher-Yates algorithm may be used for generation unique random numbers. See this great explanation.
It requires N bytes of space, so if N value is defined at compiled time, we are able to allocate necessary space at compile time.
Now, we have to combine these two algorithms. We just need to use our own Random() function instead of standard rand() in unique numbers generation algorithm.
Code
template<unsigned N, unsigned K>
void Generate(Pair (&i_set)[N], unsigned (&o_res)[K])
{
unsigned deck[N];
for (unsigned i = 0; i < N; ++i)
{
deck[i] = i;
}
unsigned max = N - 1;
for (unsigned i = 0; i < K; ++i)
{
const unsigned index = Random(i_set, deck, max + 1);
std::swap(deck[max], deck[index]);
o_res[i] = i_set[deck[max]][0];
--max;
}
}
Usage
int main()
{
srand((unsigned)time(0));
const unsigned c_N = 5; // N
const unsigned c_K = 2; // K
Pair input[c_N] = {{0, 5}, {1, 3}, {2, 2}, {3, 5}, {4, 4}}; // input array
unsigned result[c_K] = {};
const unsigned c_total = 1000000; // number of iterations
unsigned counts[c_N] = {0}; // frequency counters
for (unsigned i = 0; i < c_total; ++i)
{
Generate<c_N, c_K>(input, result);
for (unsigned j = 0; j < c_K; ++j)
{
++counts[result[j]];
}
}
unsigned sumOfWeights = 0;
for (unsigned i = 0; i < c_N; ++i)
{
sumOfWeights += input[i][1];
}
for (unsigned i = 0; i < c_N; ++i)
{
std::cout << (double)counts[i]/c_K/c_total // empirical frequency
<< " | "
<< (double)input[i][1]/sumOfWeights // expected frequency
<< std::endl;
}
return 0;
}
Output
N = 5, K = 2
Frequencies
Empiricical | Expected
0.253813 | 0.263158
0.16584 | 0.157895
0.113878 | 0.105263
0.253582 | 0.263158
0.212888 | 0.210526
Corner case when weights are actually ignored
N = 5, K = 5
Frequencies
Empiricical | Expected
0.2 | 0.263158
0.2 | 0.157895
0.2 | 0.105263
0.2 | 0.263158
0.2 | 0.210526
I do assume that the ids in the output must be unique. This makes this problem a specific instance of random sampling problems.
The first approach that I can think of solves this in O(N^2) time, using O(N) memory (The input array itself plus constant memory).
I Assume that the weights are possitive.
Let A be the array of pairs.
1) Set N to be A.length
2) calculate the sum of all weights W.
3) Loop K times
3.1) r = rand(0,W)
3.2) loop on A and find the first index i such that A[1].w + ...+ A[i].w <= r < A[1].w + ... + A[i+1].w
3.3) add A[i].id to output
3.4) A[i] = A[N-1] (or swap if the array contents should be preserved)
3.5) N = N - 1
3.6) W = W - A[i].w