Can akka handle heavy algorithms to transform data from db? - akka

I am new to akka and am trying to see if it answers the problematics i am facing. I have data from databases to extract, transform with algorithms and send by and to actors. This involves a lot of computing.
Can akka handle all this (communication and computing)? Or do i have to call upon another tool to manage the calculus part?
Thank you all.
wip

Well, all I can offer here is my experience. As a matter of fact I am currently working on something similar (i.e an ETL with text files). We're essentially taking a lot of text files and loading their lines up into a PostgreSQL database. This is our setup :
Intel Xeon 8 cores + SSD
Files and app on the same machine
Remote database
We're able to fetch, parse and load 26 millions file lines and creating specific database indices in about 12 minutes, which is about 1.3GB worth of files and 3GB in database. On a much crappier mono-core and HDD setup we can do it in about 40 minutes.
The good thing about Akka is that it will allow you to save up resources and scale more since several actors can share one thread.

Akka can easily handle many millions of message sends per second, oldie but goodie on this topic here in this letitcrash.com post. As long as you factor out blocking operations in separate dispatchers (thread pools) the actor model eases parallel computations a lot, which of course gives you nice wall-clock-time in such data crunching apps.

Related

Achieving high concurrency in app that performs reading/writing to database?

I'm working to design a middle layer for an application that will receive up to ~5000 requests every few seconds and need to retrieve information from a database. I've been looking at use the Play Framework (I use scala for my REST api design) as they say its fully async and built on Akka. However, the main bottleneck of any solution seems to happen during read/writes to the database. Many Database cannot support simultaneous read/writes from a database of such a scale. How is such high concurrency achieved then for an app like this? I would guess Facebook/Twitter/ (name other big company) may have achieved this for their Applications as millions of people may be using them concurrently.
As Tim's comment was saying caching may or may not be able to help in your case. If not I would also recommend looking into horizontally scalable databases, for example cockroachdb if you want a transactional SQL db. Otherwise there are many no-sql choices a la mongodb etc. And if you really want to stick to traditional SQL systems you'll have to vertically scale your servers (buy the most expensive hardware) and work with read-replicas.
A huge component is your data model and query access pattern. If each query is incrementing a shared counter that has to be synchronized there will be a ton of contention, but if each query is touch completely separate data on the other end the spectrum than there will be a lot less contention.
I think there are a couple of dimensions I would consider:
Data Schema and Access Patterns (discussed above)
Language Choice
This is important becaues if you were in a web server context and were using prefork by default each process may have its own connection to the database. In an environment like python or ruby you may need hundreds of processes to handle your load. Contrast this with akka or another async networking based runtime (node, python gevent/asyncio, go, etc) where a single instance with a small thread pool can handle a large number of requests. Each have their tradeoffs.
Distributed Systems
Depending on your data schema and access patterns 5000 requests per second to a RDBMS is completely achievable. It would probably require relatively beefy hardware but but I'v personally done it a number of times. Getting to larger scales requires more computers in order to distribute the work/load. If your workload is right heavy and you can support potentially stale reads, a read replica is one option. With another machine in the mix reads are distributed over 2 machines but writes are still directed at a single machine (leader). Caching is another option.
At much higher workloads some sort of partitioning needs to occur in order to overcome the constraints of a single machine. https://github.com/vitessio/vitess
Many of the big contenders have solutions to horizontally scaling their databases. This has many drawbacks as well and will require careful planning.
The one thing I'd recommend is that if 5000 requests per second is projected for the near future, start with the minimal amount of hardware necessary (single instance) query patterns and operation get exponentially more complicated with a distributed database.

Distributed Tensorflow Training of Reinpect Human detection model

I am working on Distributed Tensorflow, particularly the implementation of Reinspect model using Distributed Tensorflow given in the following paper https://github.com/Russell91/TensorBox .
We are using Between-graph-Asynchronous implementation of Distributed tensorflow settings but the results are very surprising. While bench marking, we have come to see that Distributed training takes almost more than 2 times more training time than a single machine training. Any leads about what could be happening and what else could be tried be would be really appreciated. Thanks
Note: There is a correction in the post, we are using between-graph implementation not in-graph implementation. Sorry for the mistake
In general, I wouldn't be surprised if moving from a single-process implementation of a model to a multi-machine implementation would lead to a slowdown. From your question, it's not obvious what might be going on, but here are a few general pointers:
If the model has a large number of parameters relative to the amount of computation (e.g. if it mostly performs large matrix multiplications rather than convolutions), then you may find that the network is the bottleneck. What is the bandwidth of your network connection?
Are there a large number of copies between processes, perhaps due to unfortunate device placement? Try collecting and visualizing a timeline to see what is going on when you run your model.
You mention that you are using "in-graph replication", which is not currently recommended for scalability. In-graph replication can create a bottleneck at the single master, especially when you have a large model graph with many replicas.
Are you using a single input pipeline across the replicas or multiple input pipelines? Using a single input pipeline would create a bottleneck at the process running the input pipeline. (However, with in-graph replication, running multiple input pipelines could also create a bottleneck as there would be one Python process driving the I/O with a large number of threads.)
Or are you using the feed mechanism? Feeding data is much slower when it has to cross process boundaries, as it would in a replicated setting. Using between-graph replication would at least remove the bottleneck at the single client process, but to get better performance you should use an input pipeline. (As Yaroslav observed, feeding and fetching large tensor values is slower in the distributed version because the data is transferred via RPC. In a single process these would use a simple memcpy() instead.)
How many processes are you using? What does the scaling curve look like? Is there an immediate slowdown when you switch to using a parameter server and single worker replica (compared to a single combined process)? Does the performance get better or worse as you add more replicas?
I was looking at similar thing recently, and I noticed that moving data from grpc into Python runtime is slower than expected. In particular consider following pattern
add_op = params.assign_add(update)
...
sess.run(add_op)
If add_op lies on a different process, then sess.run adds a decoding step that happens at rate of 50-100 MB/second.
Here's a benchmark and relevant discussion

Akka Clustering and Large Payloads

I'm writing a specialized distributed storage system using akka clustering and would like to send large payloads (>1MB byte arrays) between actors. I found that I had to edit akka.remote.netty.tcp.maximum-frame-size to enable this.
My question is: are there any other performance implications that I need to take into account for this? For example, do I need to further tune netty buffer sizes? Is there a way to minimize the number of copies created?
One thing to think of is that large packages can cause something like head of line blocking where the system messages such as heartbeats will be blocked by sending the large package. In general it is a good idea to split large internode messages up into smaller messages to avoid this.
We are currently working on a new remoting subsystem for Akka which contains a separate large messages channel between nodes and where we also have a separation of regular messages and system messages to avoid those interfering with each other.

inmemory datastructure

i have a distributed application. here are set of processes , spread accross mutiple computers , communicating each other. i have a data structure , which is modified among these proceses . and this is not stored in database .
Now the question is how do i maintain the same view of the this data structure , accross all processes
i.e., at any point of time all process should see the same data structure
You say that you don't have a database. That's a shame, because database authors have solved your problem. You would need to incorporate the equivalent technology in your project. And obviously, the fastest and most simple way to incorporate the technology of databases is to incorporate a database.
Redis is designed to solve your problem. It is a key-value store for sharing between programs running on different machines but sharing the data. It is a server you run somewhere, and your programs all connect to this server using the client library it provides.
You can also use a database such as mysql but with in-memory tables.
If your data-structure does not fit into the key-value or relational models very well, you have the same kind of situation as multi-player games. It is non-trivial to sync multi-player games but it can be done and here is an excellent introduction as to how: gafferongames.com
I would recommend something like the Data Distribution Services platform for something like this (open source version is OpenDDS). Their key selling point is that it is designed to propagate changes to data to all interested in such changes. And performance isn't bad either.
Commercial implementations of this protocol are used in a variety of real-time systems, mostly military grade applications.
More options to consider, distributed caches (such as memcached) - though I've not played with this myself - it looks quite straight forward to get up and running.

Is MapReduce right for me?

I am working on a project that deals with analyzing a very large amount of data, so I discovered MapReduce fairly recently, and before i dive any further into it, i would like to make sure my expectations are correct.
The interaction with the data will happen from a web interface, so response time is critical here, i am thinking a 10-15 second limit. Assuming my data will be loaded into a distributed file system before i perform any analysis on it, what kind of a performance can i expect from it?
Let's say I need to filter a simple 5GB XML file that is well formed, has a fairly flat data structure and 10,000,000 records in it. And let's say the output will result in 100,000 records. Is 10 seconds possible?
If it, what kind of hardware am i looking at?
If not, why not?
I put the example down, but now wish that I didn't. 5GB was just a sample that i was talking about, and in reality I would be dealing with a lot of data. 5GB might be data for one hour of the day, and I might want to identify all the records that meet a certain criteria.
A database is really not an option for me. What i wanted to find out is what is the fastest performance i can expect out of using MapReduce. Is it always in minutes or hours? Is it never seconds?
MapReduce is good for scaling the processing of large datasets, but it is not intended to be responsive. In the Hadoop implementation, for instance, the overhead of startup usually takes a couple of minutes alone. The idea here is to take a processing job that would take days and bring it down to the order of hours, or hours to minutes, etc. But you would not start a new job in response to a web request and expect it to finish in time to respond.
To touch on why this is the case, consider the way MapReduce works (general, high-level overview):
A bunch of nodes receive portions of
the input data (called splits) and do
some processing (the map step)
The intermediate data (output from
the last step) is repartitioned such
that data with like keys ends up
together. This usually requires some
data transfer between nodes.
The reduce nodes (which are not
necessarily distinct from the mapper
nodes - a single machine can do
multiple jobs in succession) perform
the reduce step.
Result data is collected and merged
to produce the final output set.
While Hadoop, et al try to keep data locality as high as possible, there is still a fair amount of shuffling around that occurs during processing. This alone should preclude you from backing a responsive web interface with a distributed MapReduce implementation.
Edit: as Jan Jongboom pointed out, MapReduce is very good for preprocessing data such that web queries can be fast BECAUSE they don't need to engage in processing. Consider the famous example of creating an inverted index from a large set of webpages.
A distributed implementation of MapReduce such as Hadoop is not a good fit for processing a 5GB XML
Hadoop works best on large amounts of data. Although 5GB is a fairly big XML file, it can easily be processed on a single machine.
Input files to Hadoop jobs need to be splittable so that different parts of the file can be processed on different machines. Unless your xml is trivially flat, the splitting of the file will be non deterministic so you'll need a pre processing step to format the file for splitting.
If you had many 5GB files, then you could use hadoop to distribute the splitting. You could also use it to merge results across files and store the results in a format for fast querying for use by your web interface as other answers have mentioned.
MapReduce is a generic term. You probably mean to ask whether a fully featured MapReduce framework with job control, such as Hadoop, is right for you. The answer still depends on the framework, but usually, the job control, network, data replication, and fault tolerance features of a MapReduce framework makes it suitable for tasks that take minutes, hours, or longer, and that's probably the short and correct answer for you.
The MapReduce paradigm might be useful to you if your tasks can be split among indepdent mappers and combined with one or more reducers, and the language, framework, and infrastructure that you have available let you take advantage of that.
There isn't necessarily a distinction between MapReduce and a database. A declarative language such as SQL is a good way to abstract parallelism, as are queryable MapReduce frameworks such as HBase. This article discusses MapReduce implementations of a k-means algorithm, and ends with a pure SQL example (which assumes that the server can parallelize it).
Ideally, a developer doesn't need to know too much about the plumbing at all. Erlang examples like to show off how the functional language features handle process control.
Also, keep in mind that there are lightweight ways to play with MapReduce, such as bashreduce.
I recently worked on a system that processes roughly 120GB/hour with 30 days of history. We ended up using Netezza for organizational reasons, but I think Hadoop may be an appropriate solution depending on the details of your data and queries.
Note that XML is very verbose. One of your main cost will reading/writing to disk. If you can, chose a more compact format.
The number of nodes in your cluster will depend on type and number of disks and CPU. You can assume for a rough calculation that you will be limited by disk speed. If your 7200rpm disk can scan at 50MB/s and you want to scan 500GB in 10s, then you need 1000 nodes.
You may want to play with Amazon's EC2, where you can stand up a Hadoop cluster and pay by the minute, or you can run a MapReduce job on their infrastructure.
It sounds like what you might want is a good old fashioned database. Not quite as trendy as map/reduce, but often sufficient for small jobs like this. Depending on how flexible your filtering needs to be, you could either just import your 5GB file into a SQL database, or you could implement your own indexing scheme yourself, by either storing records in different files, storing everything in memory in a giant hashtable, or whatever is appropriate for your needs.