Fastest way to copy one vector into another conditionally - c++

This question is related to existing Question: fast way to copy one vector into another
I have a vector source vector S and I want to create a destination vector D which has only those elements of S which satisfy a particular condition(say element is even). Note that source vector is constant vector.
I can think of two STL algorithms to do this :
copy_if
remove_if
In both methods, I will need to make sure the destination vector D is of big enough size. So, I will need to create initially vector D of the same size as S. Also, in both methods, I want to compact the vector D to be of the same length as the number of elements in it. I donot know which one of them is faster or more convenient but I dont know any better way to copy a vector conditionally ?

The simplest way is:
auto const predicate = [](int const value) { return value % 2 == 0; };
std::copy_if(begin(src), end(src), back_inserter(dest), predicate);
which relies on push_back.
Now, indeed, this may trigger memory reallocation. However I'd like to underline that push_back has amortized constant complexity, meaning that in average it is O(1), which is achieved by having an exponential growth behavior (so that the number of allocations performed is O(log N)).
On the other hand, if you have 1 million elements, only 5 of which being even, it will not allocate 4MB of memory up-front, only to relinquish it for only 20 bytes later on.
Therefore:
it's optimal when the distribution is skewed toward odd numbers, because it does not over-allocate much
it's close to optimal otherwise, because it does not reallocate much
Even more interesting, if you have an idea of the distribution up-front, you can use resize and shrink_to_fit:
// 90% of the time, 30% of the numbers are even:
dest.reserve(src.size() * 3 / 10);
auto const predicate = [](int const value) { return value % 2 == 0; };
std::copy_if(begin(src), end(src), back_inserter(dest), predicate);
dest.shrink_to_fit();
This way:
if there were less than 30%, shrink_to_fit might trim the excess
if there were 30%, bingo
if there were more than 30%, re-allocations are triggered as necessary, still following that O(log N) pattern anyway
Personal experience tells me that the call to reserve is rarely (if ever) worth it, amortized constant complexity being really good at keeping costs down.
Note: shrink_to_fit is non-binding, there is no guaranteed way to get the capacity to be equal to the size, the implementation chooses what's best.

Well, you could use back_inserter:
std::vector<int> foo = {...whatever...};
std::vector<int> bar;
std::back_insert_iterator< std::vector<int> > back_it (bar);
std::copy_if (foo.begin(), foo.end(), back_it, MyPredicate);
or count element:
std::vector<int> foo = {...whatever...};
int mycount = count_if (foo.begin(), foo.end(), MyPredicate);
std::vector<int> bar (mycount);
std::copy_if (foo.begin(), foo.end(), bar.begin(), MyPredicate );
A third solution:
std::vector<int> foo = {...whatever...};
std::vector<int> bar (foo.size());
auto it = std::copy_if (foo.begin(), foo.end(), bar.begin(), MyPredicate );
bar.resize(std::distance(bar.begin(),it));

copy_if and remove_if have different semantics. The former needs a separate destination vector for the matching items
copy_if(begin(src), end(src), back_inserter(dst), myPred());
whereas the latter removes the non-matching items but they still have to be erased ( the remove-erase idiom)
src.erase(remove_if(begin(src), end(src), std::not1(myPred()), end(src));
If you want to have a separate destination vector, you need to
remove_copy_if(begin(src), end(src), back_inserter(dst), std::not1(myPred()));
This should be equally expensive as copy_if. I would find it more confusing because of the double negative (remove if not, vs copy if).

I would personally recommend using copy_if(). The nice thing about it is that it returns the output iterator at which it stopped copying. Here's an example for the even number case you mentioned:
vector<int> src;
// initialize to numbers 1 -> 10
for(int i = 0; i < 10; ++i) {
src.push_back(i);
}
// set initial size to v1.size()
vector<int> dest(src.size());
// use copy_if
auto it = copy_if(src.begin(), src.end(), dest.begin(), [](int val){
return val % 2 == 0;
});
dest.resize(dest.end() - it);
In this way, you will only need to resize once.

Related

Why erase+remove is more efficient than remove

I'm coding C++ to solve this problem from Leetcode: https://leetcode.com/problems/remove-element/
Given an array nums and a value val, remove all instances of that
value in-place and return the new length.
Do not allocate extra space for another array, you must do this by
modifying the input array in-place with O(1) extra memory.
The order of elements can be changed. It doesn't matter what you leave
beyond the new length.
Example 1:
Given nums = [3,2,2,3], val = 3,
Your function should return length = 2, with the first two elements of
nums being 2.
It doesn't matter what you leave beyond the returned length.
I have two solutions:
Solution A:
int removeElement(vector<int>& nums, int val) {
nums.erase(remove(begin(nums), end(nums), val), end(nums));
return nums.size();
}
Solution B:
int removeElement(vector<int>& nums, int val) {
auto it = std::remove(nums.begin(), nums.end(), val);
return it - nums.begin();
}
In my opinion, Solution B should be faster than Solution A. However, the result is the opposite:
Solution A spent 0 ms, whereas Solution B spent 4 ms.
I don't know why remove + erase is faster than remove.
For a vector of trivially destructible type (int is one such type), erase(it, end()) is usually just a decrement of a size member (or pointer member, depending on the implementation strategy) that takes almost no time. 4 milliseconds is a very very small difference. It can be easily caused by the state of the machine. And I won't expect such a small difference will be reproducible.
If you want to really remove the elements from the vector, go with the first version. If you really want to do what std::remove does (you probably don't), go with the second version. Performance is not the problem here.

How to add an element to the front of a vector in C++? [duplicate]

iterator insert ( iterator position, const T& x );
Is the function declaration of the insert operator of the std::Vector class.
This function's return type is an iterator pointing to the inserted element. My question is, given this return type, what is the most efficient way (this is part of a larger program I am running where speed is of the essence, so I am looking for the most computationally efficient way) of inserting at the beginning. Is it the following?
//Code 1
vector<int> intvector;
vector<int>::iterator it;
it = myvector.begin();
for(int i = 1; i <= 100000; i++){
it = intvector.insert(it,i);
}
Or,
//Code 2
vector<int> intvector;
for(int i = 1; i <= 100000; i++){
intvector.insert(intvector.begin(),i);
}
Essentially, in Code 2, is the parameter,
intvector.begin()
"Costly" to evaluate computationally as compared to using the returned iterator in Code 1 or should both be equally cheap/costly?
If one of the critical needs of your program is to insert elements at the begining of a container: then you should use a std::deque and not a std::vector. std::vector is only good at inserting elements at the end.
Other containers have been introduced in C++11. I should start to find an updated graph with these new containers and insert it here.
The efficiency of obtaining the insertion point won't matter in the least - it will be dwarfed by the inefficiency of constantly shuffling the existing data up every time you do an insertion.
Use std::deque for this, that's what it was designed for.
An old thread, but it showed up at a coworker's desk as the first search result for a Google query.
There is one alternative to using a deque that is worth considering:
std::vector<T> foo;
for (int i = 0; i < 100000; ++i)
foo.push_back(T());
std::reverse( foo.begin(), foo.end() );
You still use a vector which is significantly more engineered than deque for performance. Also, swaps (which is what reverse uses) are quite efficient. On the other hand, the complexity, while still linear, is increased by 50%.
As always, measure before you decide what to do.
If you're looking for a computationally efficient way of inserting at the front, then you probably want to use a deque instead of a vector.
Most likely deque is the appropriate solution as suggested by others. But just for completeness, suppose that you need to do this front-insertion just once, that elsewhere in the program you don't need to do other operations on the front, and that otherwise vector provides the interface you need. If all of those are true, you could add the items with the very efficient push_back and then reverse the vector to get everything in order. That would have linear complexity rather than polynomial as it would when inserting at the front.
When you use a vector, you usually know the actual number of elements it is going to have. In this case, reserving the needed number of elements (100000 in the case you show) and filling them by using the [] operator is the fastest way. If you really need an efficient insert at the front, you can use deque or list, depending on your algorithms.
You may also consider inverting the logic of your algorithm and inserting at the end, that is usually faster for vectors.
I think you should change the type of your container if you really want to insert data at the beginning. It's the reason why vector does not have push_front() member function.
Intuitively, I agree with #Happy Green Kid Naps and ran a small test showing that for small sizes (1 << 10 elements of a primitive data type) it doesn't matter. For larger container sizes (1 << 20), however, std::deque seems to be of higher performance than reversing an std::vector. So, benchmark before you decide. Another factor might be the element type of the container.
Test 1: push_front (a) 1<<10 or (b) 1<<20 uint64_t into std::deque
Test 2: push_back (a) 1<<10 or (b) 1<<20 uint64_t into std::vector followed by std::reverse
Results:
Test 1 - deque (a) 19 µs
Test 2 - vector (a) 19 µs
Test 1 - deque (b) 6339 µs
Test 2 - vector (b) 10588 µs
You can support-
Insertion at front.
Insertion at the end.
Changing value at any position (won't present in deque)
Accessing value at any index (won't present in deque)
All above operations in O(1) time complexity
Note: You just need to know the upper bound on max_size it can go in left and right.
class Vector{
public:
int front,end;
int arr[100100]; // you should set this in according to 2*max_size
Vector(int initialize){
arr[100100/2] = initialize; // initializing value
front = end = 100100/2;
front--;end++;
}
void push_back(int val){
arr[end] = val;
end++;
}
void push_front(int val){
if(front<0){return;} // you should set initial size accordingly
arr[front] = val;
front--;
}
int value(int idx){
return arr[front+idx];
}
// similarity create function to change on any index
};
int main(){
Vector v(2);
for(int i=1;i<100;i++){
// O(1)
v.push_front(i);
}
for(int i=0;i<20;i++){
// to access the value in O(1)
cout<<v.value(i)<<" ";
}
return;
}
This may draw the ire of some because it does not directly answer the question, but it may help to keep in mind that retrieving the items from a std::vector in reverse order is both easy and fast.

How to remove almost duplicates from a vector in C++

I have an std::vector of floats that I want to not contain duplicates but the math that populates the vector isn't 100% precise. The vector has values that differ by a few hundredths but should be treated as the same point. For example here's some values in one of them:
...
X: -43.094505
X: -43.094501
X: -43.094498
...
What would be the best/most efficient way to remove duplicates from a vector like this.
First sort your vector using std::sort. Then use std::unique with a custom predicate to remove the duplicates.
std::unique(v.begin(), v.end(),
[](double l, double r) { return std::abs(l - r) < 0.01; });
// treats any numbers that differ by less than 0.01 as equal
Live demo
Sorting is always a good first step. Use std::sort().
Remove not sufficiently unique elements: std::unique().
Last step, call resize() and maybe also shrink_to_fit().
If you want to preserve the order, do the previous 3 steps on a copy (omit shrinking though).
Then use std::remove_if with a lambda, checking for existence of the element in the copy (binary search) (don't forget to remove it if found), and only retain elements if found in the copy.
I say std::sort() it, then go through it one by one and remove the values within certain margin.
You can have a separate write iterator to the same vector and one resize operation at the end - instead of calling erase() for each removed element or having another destination copy for increased performance and smaller memory usage.
If your vector cannot contain duplicates, it may be more appropriate to use an std::set. You can then use a custom comparison object to consider small changes as being inconsequential.
Hi you could comprare like this
bool isAlmostEquals(const double &f1, const double &f2)
{
double allowedDif = xxxx;
return (abs(f1 - f2) <= allowedDif);
}
but it depends of your compare range and the double precision is not on your side
if your vector is sorted you could use std::unique with the function as predicate
I would do the following:
Create a set<double>
go through your vector in a loop or using a functor
Round each element and insert into the set
Then you can swap your vector with an empty vector
Copy all elements from the set to the empty vector
The complexity of this approach will be n * log(n) but it's simpler and can be done in a few lines of code. The memory consumption will double from just storing the vector. In addition set consumes slightly more memory per each element than vector. However, you will destroy it after using.
std::vector<double> v;
v.push_back(-43.094505);
v.push_back(-43.094501);
v.push_back(-43.094498);
v.push_back(-45.093435);
std::set<double> s;
std::vector<double>::const_iterator it = v.begin();
for(;it != v.end(); ++it)
s.insert(floor(*it));
v.swap(std::vector<double>());
v.resize(s.size());
std::copy(s.begin(), s.end(), v.begin());
The problem with most answers so far is that you have an unusual "equality". If A and B are similar but not identical, you want to treat them as equal. Basically, A and A+epsilon still compare as equal, but A+2*epsilon does not (for some unspecified epsilon). Or, depending on your algorithm, A*(1+epsilon) does and A*(1+2*epsilon) does not.
That does mean that A+epsilon compares equal to A+2*epsilon. Thus A = B and B = C does not imply A = C. This breaks common assumptions in <algorithm>.
You can still sort the values, that is a sane thing to do. But you have to consider what to do with a long range of similar values in the result. If the range is long enough, the difference between the first and last can still be large. There's no simple answer.

count the number of distinct absolute values among the elements of the array

I was asked an interview question to find the number of distinct absolute values among the elements of the array. I came up with the following solution (in C++) but the interviewer was not happy with the code's run time efficiency.
I will appreciate pointers as to how I can improve the run time efficiency of this code?
Also how do I calculate the efficiency of the code below? The for loop executes A.size() times. However I am not sure about the efficiency of STL std::find (In the worse case it could be O(n) so that makes this code O(n²) ?
Code is:
int countAbsoluteDistinct ( const std::vector<int> &A ) {
using namespace std;
list<int> x;
vector<int>::const_iterator it;
for(it = A.begin();it < A.end();it++)
if(find(x.begin(),x.end(),abs(*it)) == x.end())
x.push_back(abs(*it));
return x.size();
}
To propose alternative code to the set code.
Note that we don't want to alter the caller's vector, we take by value. It's better to let the compiler copy for us than make our own. If it's ok to destroy their value we can take by non-const reference.
#include <vector>
#include <algorithm>
#include <iterator>
#include <cstdlib>
using namespace std;
int count_distinct_abs(vector<int> v)
{
transform(v.begin(), v.end(), v.begin(), abs); // O(n) where n = distance(v.end(), v.begin())
sort(v.begin(), v.end()); // Average case O(n log n), worst case O(n^2) (usually implemented as quicksort.
// To guarantee worst case O(n log n) replace with make_heap, then sort_heap.
// Unique will take a sorted range, and move things around to get duplicated
// items to the back and returns an iterator to the end of the unique section of the range
auto unique_end = unique(v.begin(), v.end()); // Again n comparisons
return distance(v.begin(), unique_end); // Constant time for random access iterators (like vector's)
}
The advantage here is that we only allocate/copy once if we decide to take by value, and the rest is all done in-place while still giving you an average complexity of O(n log n) on the size of v.
std::find() is linear (O(n)). I'd use a sorted associative container to handle this, specifically std::set.
#include <vector>
#include <set>
using namespace std;
int distict_abs(const vector<int>& v)
{
std::set<int> distinct_container;
for(auto curr_int = v.begin(), end = v.end(); // no need to call v.end() multiple times
curr_int != end;
++curr_int)
{
// std::set only allows single entries
// since that is what we want, we don't care that this fails
// if the second (or more) of the same value is attempted to
// be inserted.
distinct_container.insert(abs(*curr_int));
}
return distinct_container.size();
}
There is still some runtime penalty with this approach. Using a separate container incurs the cost of dynamic allocations as the container size increases. You could do this in place and not occur this penalty, however with code at this level its sometimes better to be clear and explicit and let the optimizer (in the compiler) do its work.
Yes, this will be O(N2) -- you'll end up with a linear search for each element.
A couple of reasonably obvious alternatives would be to use an std::set or std::unordered_set. If you don't have C++0x, you can replace std::unordered_set with tr1::unordered_set or boost::unordered_set.
Each insertion in an std::set is O(log N), so your overall complexity is O(N log N).
With unordered_set, each insertion has constant (expected) complexity, giving linear complexity overall.
Basically, replace your std::list with a std::set. This gives you O(log(set.size())) searches + O(1) insertions, if you do things properly. Also, for efficiency, it makes sense to cache the result of abs(*it), although this will have only a minimal (negligible) effect. The efficiency of this method is about as good as you can get it, without using a really nice hash (std::set uses bin-trees) or more information about the values in the vector.
Since I was not happy with the previous answer here is mine today. Your intial question does not mention how big your vector is. Suppose your std::vector<> is extremely large and have very few duplicates (why not?). This means that using another container (eg. std::set<>) will basically duplicate your memory consumption. Why would you do that since your goal is simply to count non duplicate.
I like #Flame answer, but I was not really happy with the call to std::unique. You've spent lots of time carefully sorting your vector and then simply discard the sorted array while you could be re-using it afterward.
I could not find anything really elegant in the STD library, so here is my proposal (a mixture of std::transform + std::abs + std::sort, but without touching the sorted array afterward).
// count the number of distinct absolute values among the elements of the sorted container
template<class ForwardIt>
typename std::iterator_traits<ForwardIt>::difference_type
count_unique(ForwardIt first, ForwardIt last)
{
if (first == last)
return 0;
typename std::iterator_traits<ForwardIt>::difference_type
count = 1;
ForwardIt previous = first;
while (++first != last) {
if (!(*previous == *first) ) ++count;
++previous;
}
return count;
}
Bonus point is works with forward iterator:
#include <iostream>
#include <list>
int main()
{
std::list<int> nums {1, 3, 3, 3, 5, 5, 7,8};
std::cout << count_unique( std::begin(nums), std::end(nums) ) << std::endl;
const int array[] = { 0,0,0,1,2,3,3,3,4,4,4,4};
const int n = sizeof array / sizeof * array;
std::cout << count_unique( array, array + n ) << std::endl;
return 0;
}
Two points.
std::list is very bad for search. Each search is O(n).
Use std::set. Insert is logarithmic, it removes duplicate and is sorted. Insert every value O(n log n) then use set::size to find how many values.
EDIT:
To answer part 2 of your question, the C++ standard mandates the worst case for operations on containers and algorithms.
Find: Since you are using the free function version of find which takes iterators, it cannot assume anything about the passed in sequence, it cannot assume that the range is sorted, so it must traverse every item until it finds a match, which is O(n).
If you are using set::find on the other hand, this member find can utilize the structure of the set, and it's performance is required to be O(log N) where N is the size of the set.
To answer your second question first, yes the code is O(n^2) because the complexity of find is O(n).
You have options to improve it. If the range of numbers is low you can just set up a large enough array and increment counts while iterating over the source data. If the range is larger but sparse, you can use a hash table of some sort to do the counting. Both of these options are linear complexity.
Otherwise, I would do one iteration to take the abs value of each item, then sort them, and then you can do the aggregation in a single additional pass. The complexity here is n log(n) for the sort. The other passes don't matter for complexity.
I think a std::map could also be interesting:
int absoluteDistinct(const vector<int> &A)
{
map<int, char> my_map;
for (vector<int>::const_iterator it = A.begin(); it != A.end(); it++)
{
my_map[abs(*it)] = 0;
}
return my_map.size();
}
As #Jerry said, to improve a little on the theme of most of the other answers, instead of using a std::map or std::set you could use a std::unordered_map or std::unordered_set (or the boost equivalent).
This would reduce the runtimes down from O(n lg n) or O(n).
Another possibility, depending on the range of the data given, you might be able to do a variant of a radix sort, though there's nothing in the question that immediately suggests this.
Sort the list with a Radix style sort for O(n)ish efficiency. Compare adjacent values.
The best way is to customize the quicksort algorithm such that when we are partitioning whenever we get two equal element then overwrite the second duplicate with last element in the range and then reduce the range. This will ensure you will not process duplicate elements twice. Also after quick sort is done the range of the element is answer
Complexity is still O(n*Lg-n) BUT this should save atleast two passes over the array.
Also savings are proportional to % of duplicates. Imagine if they twist original questoin with, 'say 90% of the elements are duplicate' ...
One more approach :
Space efficient : Use hash map .
O(logN)*O(n) for insert and just keep the count of number of elements successfully inserted.
Time efficient : Use hash table O(n) for insert and just keep the count of number of elements successfully inserted.
You have nested loops in your code. If you will scan each element over the whole array it will give you O(n^2) time complexity which is not acceptable in most of the scenarios. That was the reason the Merge Sort and Quick sort algorithms came up to save processing cycles and machine efforts. I will suggest you to go through the suggested links and redesign your program.

Inserting into a vector at the front

iterator insert ( iterator position, const T& x );
Is the function declaration of the insert operator of the std::Vector class.
This function's return type is an iterator pointing to the inserted element. My question is, given this return type, what is the most efficient way (this is part of a larger program I am running where speed is of the essence, so I am looking for the most computationally efficient way) of inserting at the beginning. Is it the following?
//Code 1
vector<int> intvector;
vector<int>::iterator it;
it = myvector.begin();
for(int i = 1; i <= 100000; i++){
it = intvector.insert(it,i);
}
Or,
//Code 2
vector<int> intvector;
for(int i = 1; i <= 100000; i++){
intvector.insert(intvector.begin(),i);
}
Essentially, in Code 2, is the parameter,
intvector.begin()
"Costly" to evaluate computationally as compared to using the returned iterator in Code 1 or should both be equally cheap/costly?
If one of the critical needs of your program is to insert elements at the begining of a container: then you should use a std::deque and not a std::vector. std::vector is only good at inserting elements at the end.
Other containers have been introduced in C++11. I should start to find an updated graph with these new containers and insert it here.
The efficiency of obtaining the insertion point won't matter in the least - it will be dwarfed by the inefficiency of constantly shuffling the existing data up every time you do an insertion.
Use std::deque for this, that's what it was designed for.
An old thread, but it showed up at a coworker's desk as the first search result for a Google query.
There is one alternative to using a deque that is worth considering:
std::vector<T> foo;
for (int i = 0; i < 100000; ++i)
foo.push_back(T());
std::reverse( foo.begin(), foo.end() );
You still use a vector which is significantly more engineered than deque for performance. Also, swaps (which is what reverse uses) are quite efficient. On the other hand, the complexity, while still linear, is increased by 50%.
As always, measure before you decide what to do.
If you're looking for a computationally efficient way of inserting at the front, then you probably want to use a deque instead of a vector.
Most likely deque is the appropriate solution as suggested by others. But just for completeness, suppose that you need to do this front-insertion just once, that elsewhere in the program you don't need to do other operations on the front, and that otherwise vector provides the interface you need. If all of those are true, you could add the items with the very efficient push_back and then reverse the vector to get everything in order. That would have linear complexity rather than polynomial as it would when inserting at the front.
When you use a vector, you usually know the actual number of elements it is going to have. In this case, reserving the needed number of elements (100000 in the case you show) and filling them by using the [] operator is the fastest way. If you really need an efficient insert at the front, you can use deque or list, depending on your algorithms.
You may also consider inverting the logic of your algorithm and inserting at the end, that is usually faster for vectors.
I think you should change the type of your container if you really want to insert data at the beginning. It's the reason why vector does not have push_front() member function.
Intuitively, I agree with #Happy Green Kid Naps and ran a small test showing that for small sizes (1 << 10 elements of a primitive data type) it doesn't matter. For larger container sizes (1 << 20), however, std::deque seems to be of higher performance than reversing an std::vector. So, benchmark before you decide. Another factor might be the element type of the container.
Test 1: push_front (a) 1<<10 or (b) 1<<20 uint64_t into std::deque
Test 2: push_back (a) 1<<10 or (b) 1<<20 uint64_t into std::vector followed by std::reverse
Results:
Test 1 - deque (a) 19 µs
Test 2 - vector (a) 19 µs
Test 1 - deque (b) 6339 µs
Test 2 - vector (b) 10588 µs
You can support-
Insertion at front.
Insertion at the end.
Changing value at any position (won't present in deque)
Accessing value at any index (won't present in deque)
All above operations in O(1) time complexity
Note: You just need to know the upper bound on max_size it can go in left and right.
class Vector{
public:
int front,end;
int arr[100100]; // you should set this in according to 2*max_size
Vector(int initialize){
arr[100100/2] = initialize; // initializing value
front = end = 100100/2;
front--;end++;
}
void push_back(int val){
arr[end] = val;
end++;
}
void push_front(int val){
if(front<0){return;} // you should set initial size accordingly
arr[front] = val;
front--;
}
int value(int idx){
return arr[front+idx];
}
// similarity create function to change on any index
};
int main(){
Vector v(2);
for(int i=1;i<100;i++){
// O(1)
v.push_front(i);
}
for(int i=0;i<20;i++){
// to access the value in O(1)
cout<<v.value(i)<<" ";
}
return;
}
This may draw the ire of some because it does not directly answer the question, but it may help to keep in mind that retrieving the items from a std::vector in reverse order is both easy and fast.