Creating a pandas.DataFrame from a dict - python-2.7

I'm new to using pandas and I'm trying to make a dataframe with historical weather data.
The keys are the day of the year (ex. Jan 1) and the values are lists of temperatures from those days over several years.
I want to make a dataframe that is formatted like this:
... Jan1 Jan2 Jan3 etc
1 temp temp temp etc
2 temp temp temp etc
etc etc etc etc
I've managed to make a dataframe with my dictionary with
df = pandas.DataFrame(weather)
but I end up with 1 row and a ton of columns.
I've checked the documentation for DataFrame and DataFrame.from_dict, but neither were very extensive nor provided many examples.

Given that "the keys are the day of the year... and the values are lists of temperatures", your method of construction should work. For example,
In [12]: weather = {'Jan 1':[1,2], 'Jan 2':[3,4]}
In [13]: df = pd.DataFrame(weather)
In [14]: df
Out[14]:
Jan 1 Jan 2
0 1 3
1 2 4

Related

pandas keep rows based on column values for repeated values

I have a pandas data frame and I have a list of values. I want to keep all the rows from my original DF that have a certain column value belonging to my list of values. However my list that I want to choose my rows from have repeated values. Each time I encounter the same values again I want to add the rows with that column values again to my new data frame.
lets say my frames name is: with_prot_choice_df and my list is: with_prot_choices
if I issue the following command:
with_prot_choice_df = with_df[with_df[0].isin(with_prot_choices)]
then this will only keep the rows once (as if for only unique values in the list).
I don't want to do this with for loops since I will repeat the process many times and it will be extremely time consuming.
Any advice will be appreciated. Thanks.
I'm adding an example here:
let's say my data frame is:
col1 col2
a 1
a 6
b 2
c 3
d 4
and my list is:
lst = [a,b,a,a]
I want my new data frame, new_df to be:
new_df
col1 col2
a 1
a 6
b 2
a 1
a 6
a 1
a 6
Seems like you need reindex
df.set_index('col1').reindex(lst).reset_index()
Out[224]:
col1 col2
0 a 1
1 b 2
2 a 1
3 a 1
Updated
df.merge(pd.DataFrame({'col1':lst}).reset_index()).sort_values('index').drop('index',1)
Out[236]:
col1 col2
0 a 1
3 a 6
6 b 2
1 a 1
4 a 6
2 a 1
5 a 6

Converting a specific column data in .csv to text using Python pandas

I have a .csv file like below where all the contents are text
col1 Col2
My name Arghya
The Big Apple Fruit
I am able to read this csv using pd.read_csv(index_col=False, header=None).
How do I combine all the three rows in Col1 into a list separated by a full stop.
If need convert column values to list:
print (df.Col1.tolist())
#alternative solution
#print (list(df.Col1))
['This is Apple', 'I am in Mumbai', 'I like rainy day']
And then join values in list - output is string:
a = '.'.join(df.Col1.tolist())
print (a)
This is Apple.I am in Mumbai.I like rainy day
print (df)
0 1
0 Col1 Col2
1 This is Apple Fruit
2 I am in Mumbai Great
3 I like rainy day Flood
print (list(df.loc[:, 0]))
#alternative
#print (list(df[0]))
['Col1', 'This is Apple', 'I am in Mumbai', 'I like rainy day']

Filter data to get only first day of the month rows

I have a dataset of daily data. I need to get only the data of the first day of each month in the data set (The data is from 1972 to 2013). So for example I would need Index 20, Date 2013-12-02 value of 0.1555 to be extracted.
The problem I have is that the first day for each month is different, so I cannot use a step such as relativedelta(months=1), how would I go about of extracting these values from my dataset?
Is there a similar command as I have found in another post for R?
R - XTS: Get the first dates and values for each month from a daily time series with missing rows
17 2013-12-05 0.1621
18 2013-12-04 0.1698
19 2013-12-03 0.1516
20 2013-12-02 0.1555
21 2013-11-29 0.1480
22 2013-11-27 0.1487
23 2013-11-26 0.1648
I would groupby the month and then get the zeroth (nth) row of each group.
First set as index (I think this is necessary):
In [11]: df1 = df.set_index('date')
In [12]: df1
Out[12]:
n val
date
2013-12-05 17 0.1621
2013-12-04 18 0.1698
2013-12-03 19 0.1516
2013-12-02 20 0.1555
2013-11-29 21 0.1480
2013-11-27 22 0.1487
2013-11-26 23 0.1648
Next sort, so that the first element is the first date of that month (Note: this doesn't appear to be necessary for nth, but I think that's actually a bug!):
In [13]: df1.sort_index(inplace=True)
In [14]: df1.groupby(pd.TimeGrouper('M')).nth(0)
Out[14]:
n val
date
2013-11-26 23 0.1648
2013-12-02 20 0.1555
another option is to resample and take the first entry:
In [15]: df1.resample('M', 'first')
Out[15]:
n val
date
2013-11-30 23 0.1648
2013-12-31 20 0.1555
Thinking about this, you can do this much simpler by extracting the month and then grouping by that:
In [21]: pd.DatetimeIndex(df.date).to_period('M')
Out[21]:
<class 'pandas.tseries.period.PeriodIndex'>
[2013-12, ..., 2013-11]
Length: 7, Freq: M
In [22]: df.groupby(pd.DatetimeIndex(df.date).to_period('M')).nth(0)
Out[22]:
n date val
0 17 2013-12-05 0.1621
4 21 2013-11-29 0.1480
This time the sortedness of df.date is (correctly) relevant, if you know it's in descending date order you can use nth(-1):
In [23]: df.groupby(pd.DatetimeIndex(df.date).to_period('M')).nth(-1)
Out[23]:
n date val
3 20 2013-12-02 0.1555
6 23 2013-11-26 0.1648
If this isn't guaranteed then sort by the date column first: df.sort('date').
One way is to add a column for the year, month and day:
df['year'] = df.SomeDatetimeColumn.map(lambda x: x.year)
df['month'] = df.SomeDatetimeColumn.map(lambda x: x.month)
df['day'] = df.SomeDatetimeColumn.map(lambda x: x.day)
Then group by the year and month, order by day, and take only the first entry (which will be the minimum day entry).
df.groupby(
['year', 'month']
).apply(lambda x: x.sort('day', ascending=True)).head(1)
The use of the lambda expressions makes this less than ideal for large data sets. You may not wish to grow the size of the data by keeping separately stored year, month, and day values. However, for these kinds of ad hoc date alignment problems, sooner or later having these values separated is very helpful.
Another approach is to group directly by a function of the datetime column:
dfrm.groupby(
by=dfrm.dt.map(lambda x: (x.year, x.month))
).apply(lambda x: x.sort('dt', ascending=True).head(1))
Normally these problems arise because of a dysfunctional database or data storage schema that exists one level prior to the Python/pandas layer.
For example, in this situation, it should be commonplace to rely on the existence of a calendar database table or a calendar data set which contains (or makes it easy to query for) the earliest active date in a month relative to the given data set (such as, the first trading day, the first week day, the first business day, the first holiday, or whatever).
If a companion database table exists with this data, it should be easy to combine it with the dataset you already have loaded (say, by joining on the date column you already have) and then it's just a matter of applying a logical filter on the calendar data columns.
This becomes especially important once you need to use date lags: for example, lining up a company's 1-month-ago market capitalization with the company's current-month stock return, to calculate a total return realized over that 1-month period.
This can be done by lagging the columns in pandas with shift, or trying to do a complicated self-join that is likely very bug prone and creates the problem of perpetuating the particular date convention to every place downstream that uses data from that code.
Much better to simply demand (or do it yourself) that the data must have properly normalized date features in its raw format (database, flat files, whatever) and to stop what you are doing, fix that date problem first, and only then get back to carrying out some analysis with the date data.
import pandas as pd
dates = pd.date_range('2014-02-05', '2014-03-15', freq='D')
df = pd.DataFrame({'vals': range(len(dates))}, index=dates)
g = df.groupby(lambda x: x.strftime('%Y-%m'), axis=0)
g.apply(lambda x: x.index.min())
#Or depending on whether you want the index or the vals
g.apply(lambda x: x.ix[x.index.min()])
The above didn't work for me because I needed more than one row per month where the number of rows every month could change. This is what I did:
dates_month = pd.bdate_range(df['date'].min(), df['date'].max(), freq='1M')
df_mth = df[df['date'].isin(dates_month)]

Hierarchical index in data frame missing columns

Im trying to learn Pandas by doing different exercises. I created a dataframe that looks like the example below. I'm trying to create a unique id by concatenating the fields, however when i get the data frame columns i only have fpd as a column. Could someone explain me why i don't see all the columns?
monthID pollutantID processID roadTypeID avgSpeedBinID Fpd
1 1 1 4 1 1.749101
2 0.935300
3 0.529701
4 0.393052
5 0.306381
6 0.261649
7 0.235040
I get the data frame by executing this:
fpd = data['fpd'].groupby([data['monthID'],data['pollutantID'],
data['processID'],data['roadTypeID'],data['avgSpeedBinID']]).sum()
fp = pd.DataFrame(fpd)
You could reset the multiindex to columns by:
fp.reset_index(inplace=True)

Pandas: How to convert a 10-min interval timeseries into a dataframe?

I have a time series similar to:
ts = pd.Series(np.random.randn(60),index=pd.date_range('1/1/2000',periods=60, freq='2h'))
Is there an easy way to make it so that the row index is dates and the column index is the hour?
Basically I am trying to convert from a time-series into a dataframe.
There's always a slicker way to do things than the way I reach for, but I'd make a flat frame first and then pivot. Something like
>>> ts = pd.Series(np.random.randn(10000),index=pd.date_range('1/1/2000',periods=10000, freq='10min'))
>>> df = pd.DataFrame({"date": ts.index.date, "time": ts.index.time, "data": ts.values})
>>> df = df.pivot("date", "time", "data")
This produces too large a frame to paste, but looking the top left corner:
>>> df.iloc[:5, :5]
time 00:00:00 00:10:00 00:20:00 00:30:00 00:40:00
date
2000-01-01 -0.180811 0.672184 0.098536 -0.687126 -0.206245
2000-01-02 0.746777 0.630105 0.843879 -0.253666 1.337123
2000-01-03 1.325679 0.046904 0.291343 -0.467489 -0.531110
2000-01-04 -0.189141 -1.346146 1.378533 0.887792 2.957479
2000-01-05 -0.232299 -0.853726 -0.078214 -0.158410 0.782468
[5 rows x 5 columns]