Related
Hi I am trying to copy only one item from a list into another list.
Example 1:
listFinalDevices = listDevices.map((index) => index).toList();
works a bit, but this overwrites the listFinalDevice every time, I need to add the selected Item from the listDevice. As a kind of favorite device list.
Example 2:
listFinalDevices.insertAll(listFinalDevices.length,listDevices.map((index) => index).toList());
This copy the complete list but I need only the over index referenced item.
Can someone give me a link to an example or what are the keywords for what I have to search.
UPDADTE:
To make it more clearer, currently I have the following data in the list named listDevices:
[ScanResult{device: BluetoothDevice{id: 4D:55:F7:CE:03:FA, name: , type: BluetoothDeviceType.unknown, isDiscoveringServices: false, _services: [], advertisementData: AdvertisementData{localName: , txPowerLevel: null, connectable: true, manufacturerData: {}, serviceData: {0000fd6f-0000-1000-8000-00805f9b34fb: [215, 226, 39, 186, 231, 145, 9, 162, 217, 184, 33, 163, 133, 92, 23, 221, 40, 117, 217, 176]}, serviceUuids: [0000fd6f-0000-1000-8000-00805f9b34fb]}, rssi: -65}, ScanResult{device: BluetoothDevice{id: 00:80:E1:21:C4:B5, name: P2PSRV1, type: BluetoothDeviceType.le, isDiscoveringServices: false, _services: [], advertisementData: AdvertisementData{localName: P2PSRV1, txPowerLevel: null, connectable: true, manufacturerData: {33537: [0, 0, 32, 0, 0, 128, 225, 33, 196, 181]}, serviceData: {}, serviceUuids: []}, rssi: -35}, ScanResult{device: BluetoothDevice{id: 60:29:4D:9B:AC:52, name: , type: BluetoothDeviceType.unknown, isDiscoveringServices: false, _services: [], advertisementData: Adver
The target is, that I chose some Devices and put this to a kind of favorite list which should named with listFinalDevices:
[ScanResult{device: BluetoothDevice{id: 00:80:E1:21:C4:B5, name: P2PSRV1, type: BluetoothDeviceType.le, isDiscoveringServices: false, _services: [], advertisementData: AdvertisementData{localName: P2PSRV1, txPowerLevel: null, connectable: true, manufacturerData: {33537: [0, 0, 32, 0, 0, 128, 225, 33, 196, 181]}, serviceData: {}, serviceUuids: []}, rssi: -35}, ScanResult{device: BluetoothDevice{id: C5:9F:97:96:4A:A9, name: MX Anywhere 2S, type: BluetoothDeviceType.le, isDiscoveringServices: false, _services: [], advertisementData: AdvertisementData{localName: MX Anywhere 2S, txPowerLevel: 4, connectable: false, manufacturerData: {}, serviceData: {}, serviceUuids: [00001812-0000-1000-8000-00805f9b34fb]}, rssi: -50}] is not empty
listFinalDevices.add(listDevices[index])
Could you be clearer? You wanted to add object at index from another list to final list, right?
or maybe:
listFinalDevices.add(listDevices[listDevices.indexWhere((el) => el == index)])
I was trying to run a hyperparameter tuning job on Vertex AI using the Python SDK described here. Around 2 hours ago it was successful sending the job to run. I noticed there are some errors in my code so the run failed, and I went back and fix it, and I re-run the code and what I got was as below.
Traceback (most recent call last):
File "/workspace/.pip-modules/lib/python3.8/site-packages/google/api_core/grpc_helpers.py", line 67, in error_remapped_callable
return callable_(*args, **kwargs)
File "/workspace/.pip-modules/lib/python3.8/site-packages/grpc/_channel.py", line 946, in __call__
return _end_unary_response_blocking(state, call, False, None)
File "/workspace/.pip-modules/lib/python3.8/site-packages/grpc/_channel.py", line 849, in _end_unary_response_blocking
raise _InactiveRpcError(state)
grpc._channel._InactiveRpcError: <_InactiveRpcError of RPC that terminated with:
status = StatusCode.INTERNAL
details = "Internal error encountered."
debug_error_string = "{"created":"#1623393121.374988331","description":"Error received from peer ipv4:142.251.33.74:443","file":"src/core/lib/surface/call.cc","file_line":1066,"grpc_message":"Internal error encountered.","grpc_status":13}"
>
The above exception was the direct cause of the following exception:
Traceback (most recent call last):
File "/workspace/ariel_ml_2021/hparam_tuning.py", line 140, in <module>
create_hyperparameter_tuning_job_python_package()
File "/workspace/ariel_ml_2021/hparam_tuning.py", line 133, in create_hyperparameter_tuning_job_python_package
response = client.create_hyperparameter_tuning_job(
File "/workspace/.pip-modules/lib/python3.8/site-packages/google/cloud/aiplatform_v1/services/job_service/client.py", line 1363, in create_hyperparameter_tuning_job
response = rpc(request, retry=retry, timeout=timeout, metadata=metadata,)
File "/workspace/.pip-modules/lib/python3.8/site-packages/google/api_core/gapic_v1/method.py", line 145, in __call__
return wrapped_func(*args, **kwargs)
File "/workspace/.pip-modules/lib/python3.8/site-packages/google/api_core/grpc_helpers.py", line 69, in error_remapped_callable
six.raise_from(exceptions.from_grpc_error(exc), exc)
File "<string>", line 3, in raise_from
google.api_core.exceptions.InternalServerError: 500 Internal error encountered.
I thought this might be due to my changes in the python code that causes the error, so I try with the original copy (without making any changes), and the error persists. The code for hyperparameter tuning is as below if required.
from google.cloud import aiplatform
def create_hyperparameter_tuning_job_python_package(
project: str = "<my_project_id>",
display_name: str = "<some_description>",
executor_image_uri: str = "us-docker.pkg.dev/vertex-ai/training/tf-cpu.2-4:latest",
package_uri: str = "gs://<bucket_name>/",
python_module: str = "train_second", # located at gs://<bucket_name>/train_second.py
location: str = "us-central1",
api_endpoint: str = "us-central1-aiplatform.googleapis.com",
):
client_options = {"api_endpoint": api_endpoint}
client = aiplatform.gapic.JobServiceClient(client_options=client_options)
metric = {
"metric_id": "ariel_score",
"goal": aiplatform.gapic.StudySpec.MetricSpec.GoalType.MAXIMIZE,
}
conditional_param_H1 = {
"parameter_spec": {
"parameter_id": "H1",
"discrete_value_spec": {"values": [4, 8, 16, 32, 64, 128, 256, 512, 1024]},
"scale_type": aiplatform.gapic.StudySpec.ParameterSpec.ScaleType.UNIT_LINEAR_SCALE,
},
"parent_discrete_values": {"values": [10, 25, 50, 100]}
}
conditional_param_H2 = {
"parameter_spec": {
"parameter_id": "H2",
"discrete_value_spec": {"values": [64, 128, 256, 512, 1024]},
"scale_type": aiplatform.gapic.StudySpec.ParameterSpec.ScaleType.UNIT_LINEAR_SCALE,
},
"parent_discrete_values": {"values": [10, 25, 50, 100]}
}
conditional_param_H3 = {
"parameter_spec": {
"parameter_id": "H3",
"discrete_value_spec": {"values": [4, 8, 16, 32, 64, 128, 256, 512, 1024]},
"scale_type": aiplatform.gapic.StudySpec.ParameterSpec.ScaleType.UNIT_LINEAR_SCALE,
},
"parent_discrete_values": {"values": [10, 25, 50, 100]}
}
conditional_param_D1 = {
"parameter_spec": {
"parameter_id": "D1",
"double_value_spec": {"min_value": 0.01, "max_value": 0.5},
"scale_type": aiplatform.gapic.StudySpec.ParameterSpec.ScaleType.UNIT_LINEAR_SCALE,
},
"parent_discrete_values": {"values": [10, 25, 50, 100]}
}
conditional_param_mean = {
"parameter_spec": {
"parameter_id": "mean",
"discrete_value_spec": {"values": [0., 1.]},
"scale_type": aiplatform.gapic.StudySpec.ParameterSpec.ScaleType.UNIT_LINEAR_SCALE,
},
"parent_discrete_values": {"values": [10, 25, 50, 100]}
}
conditional_param_std = {
"parameter_spec": {
"parameter_id": "std",
"double_value_spec": {"min_value": 0.005, "max_value": 0.5},
"scale_type": aiplatform.gapic.StudySpec.ParameterSpec.ScaleType.UNIT_LINEAR_SCALE,
},
"parent_discrete_values": {"values": [10, 25, 50, 100]}
}
conditional_param_lr = {
"parameter_spec": {
"parameter_id": "lr",
"discrete_value_spec": {"values": [0.0001, 0.0003, 0.001, 0.003, 0.01, 0.03, 0.1, 0.3]},
"scale_type": aiplatform.gapic.StudySpec.ParameterSpec.ScaleType.UNIT_LINEAR_SCALE,
},
"parent_discrete_values": {"values": [10, 25, 50, 100]}
}
parameter = {
"parameter_id": "batch_size",
"discrete_value_spec": {"values": [10, 25, 50, 100]},
"scale_type": aiplatform.gapic.StudySpec.ParameterSpec.ScaleType.UNIT_LINEAR_SCALE,
"conditional_parameter_specs": [
conditional_param_H1,
conditional_param_H2,
conditional_param_H3,
conditional_param_D1,
conditional_param_mean,
conditional_param_std,
conditional_param_lr,
],
}
# Trial job spec
machine_spec = {
"machine_type": "e2-standard-4",
}
worker_pool_spec = {
"machine_spec": machine_spec,
"replica_count": 1,
"python_package_spec": {
"executor_image_uri": executor_image_uri,
"package_uris": [package_uri],
"python_module": python_module,
"args": [],
}
}
# hparam tuning job
hyperparameter_tuning_job = {
"display_name": display_name,
"max_trial_count": 2,
"parallel_trial_count": 2,
"study_spec": {
"metrics": [metric],
"parameters": [parameter],
},
"trial_job_spec": {"worker_pool_specs": [worker_pool_spec]},
}
parent = f"projects/{project}/locations/{location}"
response = client.create_hyperparameter_tuning_job(
parent=parent, hyperparameter_tuning_job=hyperparameter_tuning_job
)
print(f"response:", response)
if __name__ == "__main__":
create_hyperparameter_tuning_job_python_package()
Thanks in advance.
It seems that the endpoint at us-central1 is experiencing the problem. The workaround is to use another endpoint such as with us-east1 and the problem is solved.
Your package_uri is incorrect. It should point to a file containing the Python package (i.e. a tar.bz file with all the code), not a directory or a bucket.
I feel like there should be an easy way to do this but I can not find a solution online. I'm looking for a one liner something pythonic.
I know you can do this:
Img[:,:,2]=200
but how can you add a condition to this?
if Img[:,:,2]<=100: 200
or
image =[i==100 for i in Img[:,:,2] if i <= 100]
Thanks
To simulate if a[:,:,2]<=100: 200, we can use np.where -
a[:,:,2] = np.where(a[:,:,2] <= 100, 200, a[:,:,2])
Or simply use the mask to assign -
a[a[:,:,2] <= 100,2] = 200
Sample run -
In [379]: a
Out[379]:
array([[[ 78, 134, 7],
[154, 37, 146],
[ 39, 95, 13]],
[[114, 138, 100],
[175, 198, 148],
[ 39, 130, 37]]])
In [380]: a[a[:,:,2] <= 100,2] = 200
In [381]: a
Out[381]:
array([[[ 78, 134, 200],
[154, 37, 146],
[ 39, 95, 200]],
[[114, 138, 200],
[175, 198, 148],
[ 39, 130, 200]]])
**for i in range(a):
p=int(raw_input("Enter Elements in List1:"))
list1.append(p)
d1=defaultdict(int)
for item in list1:
d1[item]+=1
print list1
print d1.items()
print ""**
How to compare tuple values in the following list output?
Here my answer should return the tuple values (207,2), (208,1) and (209,1) because those are same in both the lists.
input1 : [203, 203, 204, 204, 205, 206, 207, 208, 207, 209]
output1: [(203, 2), (204, 2), (205, 1), (206, 1), (207, 2), (208, 1), (209, 1)]
input2: [204, 203, 205, 205, 206, 206, 207, 207, 208, 209, 205, 206, 205]
output2: [(203, 1), (204, 1), (205, 4), (206, 3), (207, 2), (208, 1), (209, 1)]
You can use Counter
>>> from collections import Counter
>>> lst = [203, 203, 204, 204, 205, 206, 207, 208, 207, 209]
>>> freqs = Counter(lst)
>>> freqs
Counter({203: 2, 204: 2, 207: 2, 205: 1, 206: 1, 208: 1, 209: 1})
>>> lst2 = [204, 203, 205, 205, 206, 206, 207, 207, 208, 209, 205, 206, 205]
>>> Counter(lst2)
Counter({205: 4, 206: 3, 207: 2, 203: 1, 204: 1, 208: 1, 209: 1})
First compare method:
>>> [ k for k,v in Counter(lst2).iteritems() if v == Counter(lst)[k] ]
[207, 208, 209]
Second compare method:
>>> for k,v in Counter(lst2).iteritems():
... if v == Counter(lst)[k]:
... print k
...
207
208
209
I have a list:
def clc = [[1, 15, 30, 42, 48, 100], [58, 99], [16, 61, 85, 96, 98], [2, 63, 84, 90, 91, 97], [16, 61, 85, 96], [23, 54, 65, 95], [16, 29, 83, 94], [0, 31, 42, 93], [33, 40, 51, 56, 61, 62, 64, 89, 92], [0, 63, 84, 90, 91]]
and a sublist
def subclc = [[1, 15, 30, 42, 48, 100], [58, 99], [16, 61, 85, 96, 98], [2, 63, 84, 90, 91, 97]]
I need to remove sublist from original list
I do so:
subclc.each{
clc.remove(it)
}
but it throws an exceprion Exception in thread "main" java.util.ConcurrentModificationException
I do not understand where is problem and how to solve the problem
Short answers:
For more groovyness and immutability, preserving the original list:
def removed = clc - subclc
assert removed == [[16, 61, 85, 96], [23, 54, 65, 95], [16, 29, 83, 94], [0, 31, 42, 93], [33, 40, 51, 56, 61, 62, 64, 89, 92], [0, 63, 84, 90, 91]]
And the java way, changing the original list:
clc.removeAll subclc
assert clc == [[16, 61, 85, 96], [23, 54, 65, 95], [16, 29, 83, 94], [0, 31, 42, 93], [33, 40, 51, 56, 61, 62, 64, 89, 92], [0, 63, 84, 90, 91]]
Long answer:
You are Iterator-ing through a list while changing the list. In this case you are better using Iterator.remove(), which is being abstracted by the foreach loop.
When you change the list using the foreach loop, you bump into the iterator checks for modification using checkForComodification(). Getting the iterator explicitly works:
list1 = [10,20,30,40,50,60,70,80,90]
list2 = [50,60,80]
def iter = list1.iterator()
while (iter.hasNext()) {
def item = iter.next()
if (list2.contains(item)) iter.remove()
}
assert list1 == [10,20,30,40,70,90]
Or you can use indexes. Note you need to control the index:
list1 = [10,20,30,40,50,60,70,80,90]
list2 = [50,60,80]
for (int i = 0; i < list1.size(); i++) {
def item = list1[i]
if (list2.contains(item)) { list1.remove i-- }
}
assert list1 == [10,20,30,40,70,90]