OpenGL: reflection matrix issue - opengl

I'm currently working on a reflection of my OpenGL scene (basically consisting of a skycube and a small white cube inside of that). The reflection should happen in the xz-plane (with y=0). I've managed to render that into a FBO but currently there is some issue with the view or prespective matrix. The reflection is either as seen from the wrong view position, or it just inverts what is seen on the screen.
What I need, however, is a real mirror-like reflection. In most tutorials they say that you should just scale(1,-1,1) the view-matrix or use gl_scalef(1,-1,1) but none of this works for me - the effects are described above.
Below are two screenshots of the best I currently get, using the following code immediately before rendering the (to be mirrored) scene:
view = m_camera*mat4::scale(1,-1,1);
projection = m_cameraPerspective;
Corresponding original scene:
Reflected scene:
Note, how this is actually the reflected scene (e.g., the clouds from the top are visible instead of the water from the bottom - as in the original rendering) but the positions are somehow not correct, e.g., the white cube is not at the same position on screen, e.g., different distance to window border).
Please ignore the wrong colors. That's because I quick hacked a function that writes the pixel values into a tga file (from the rendered texture). When actually enabling rendering the texture on my mirror plane (which is currently disabled in both render steps), the colors are correct.
What's wrong with my reflection matrix?

As stated in the comment, this is actually correct.

Related

OpenGL Perspective Texture Flickering

I have a very simple OpenGL (3.2) setup, no lighting, perspective projection and a simple shader program (applies projection transformation and uses texture2D to read the color from the texture).
The camera is looking down the negative z-axis and I draw a few walls and pillars on the x-y-plane with a texture (http://i43.tinypic.com/2ryszlz.png).
Now I'm moving the camera in the x-y-plane and this is what it looks like:
http://i.imgur.com/VCrNcly.gif.
My question is now: How do I handle the flickering of the wall texture?
As the camera centers the walls, the view angle onto the texture compresses the texture for the screen, so one pixel on the screen is actually several pixels on the texture, but only one is chosen for display. From the information I have access to in the shaders, I don't see how to perform an operation which interpolates the required color.
As this looks like a problem nearly every 3D application should have, the solution is probably pretty simple (I hope?).
I can't seem to understand the images, but from what you are describing you seem to be looking for MIPMAPPING. Please google it, it's a very easy and very generally used concept. You will be able to use it by adding one or two lines to your program. Good Luck. I'd be more detailed but I am out of time for today.

Generic picking solution for 3D scenes with vertex-shader-based geometry deformation applied

I'm trying to implement a navigation technique for 3D scenes (in OpenSceneGraph with OpenGL). Among other things the user should be able to click on an scene object on the screen to move towards it.
The navigation technique should be integrated into another project which uses a vertex shader to apply a global deformation to the scene geometry. And here is the problem: Since the geometry is deformed using a vertex shader, it is not straight forward to un-project the mouse cursor position to the world coordinates of the spot the user actually selected. But I need those coordinates to perform the proper camera movement in my navigation technique.
One way of performing this un-projection would be to modify the vertex shader (used for the deformation) to let it also store the vertex' original position and normal in separate textures. Afterwards one could read those textures at the mouse position to get the desired values.
Now, as I said, the vertex shader belongs to another project which I actually don't want to touch. One goal of my navigation technique is to be as generic as possible to be easily integrated into other projects as well.
So here is the question: Is there any feature in OpenSceneGraph or OpenGL that I did not consider so far? Anything that allows me to get the world coordinates of a fragment, independently of the vertex shader coder?
Well, you could always do an OpenGL selection operation:
http://www.glprogramming.com/red/chapter13.html
Alternately, you could rasterize to a very small (1px*1px) framebuffer where the user clicked, read back the z-buffer and unproject the Z value you got into world space.

Multi-pass shading using render-to-texture

I'm trying to implement a multi-pass rendering method using OpenSceneGraph. However, I'm not entirely certain my problem is theoretical or due to a lack of applied knowledge of OSG. Thus far, I've successfully implemented multi-pass shading by rendering to a texture using an orthogonal projection, but I cannot seem to make a perspective projection work.
It may be that I don't quite understand how to implement multi-pass shading. Of course, I have to pre-render the entire scene with the multi-pass shaders to a texture, then use the texture in the final render. However, I'm not talking about creating a separate texture for each object in the scene, but effectively capturing a screenshot of the entire prerendered scene. Then, from that texture alone, applying the rendered effects to the individual geometries.
I assume this means I would have to do an extra conversion of the vertex coordinates for each geometry in the vertex shader. That is, after computing:
gl_Position = ModelViewProjectionMatrix * Vertex;
I would need to go a step further and calculate the vertex's screen coordinates in order to map the vertices correctly (again, given that the texture consists of an entire screen shot of the scene).
If I am correct, then I must be able to pre-render the scene in a perspective view identical to the view used in the final render, rather than an orthogonal view. This is where I have troubles. I can make an orthogonal view do what I want, but not the perspective view.
Am I correct in my approach? The only other approach I can imagine is to render everything to a screen-filling quad (in effect, the same thing as converting to screen coordinates), but that doesn't alleviate the need to use a perspective projection in the pre-render stage.
Thoughts? Links??
edit: I should also point out that in my successful attempts, I used a fragment shader only. The perspective projection worked, but, of course, the screen aligned quad I was using was offset rather than centered. I added a pass-through vertex shader and everything went blank.
As it turns out, my approach was correct. It's especially nice as it avoids having to add another camera to my scene graph to render the final output - I can simply use the main camera. Unfortunately, it means that all of my output textures are rendered at the screen resolution, rather than a resolution appropriate to the size of the object. That is, if my screen is 1024 x 1024, then so is the output texture, one for each pre-render camera in the graph. Not exactly efficient, but it'll do for now.

Lens shader / Image disortion

Well, i have a 3d scene currently with just a quad (painting) with texture on it. Between the painting and the "camera" i have places an other quad i would like to behave like a optical lens: distorting the picture "below" it
how would one achieve it preferably with a shader and some pixelbuffers?
Here is an example I found a while ago which does something very similar to what you want. http://www.paulsprojects.net/opengl/refract/refract.html
You will probably have to modify the code a bit to achieve the inversion effect you want, but this will get you started on the right track.
Edit:
By the way, you will not need the second image (the inverted small rectangle). Just use a single background image and the shader.
Between the painting and the "camera" i have places an other quad i would like to behave like a optical lens:
This is a tricky one. First one must understand that OpenGL is a so called localized rendering model rasterizer, which means in layman terms, that it works like pencils and brushes on a canvas.
It thus works in very contrast to global scene representation renderers like raytracers. A raytracer actually operates on a fully defined scene, because of that it can to things like refraction trivially.
Indeed one must treat OpenGL like an artist treats its tools. So any optical "effect" you want to create must be implemented by mastering various drawing techiques possible with the tools OpenGL offers. To create the effect you desire you must implement a multistage process.
For refraction you first render the scene as "seen" by the refracting object in all directions (you create a dynamic cube map), then you use this cube map as input data for rasterizing the "refracting" object, where a shader is used to determine the refracted direction of a ray of light hitting the rasterized fragments.
BTW: What holds for refraction holds for any other like interacting effect. Shadows are as non-trivial like refractions in OpenGL.

OpenGL: glLogicOp() color filling trick with different coloring?

I am currently using glLogicOp() with a cube, which i render twice: with glFrontFace(GL_CW) and then with glFrontFace(GL_CCW). This allows me to see which area of the other 3d object my cube is overlapping with.
But i want to change the negative color to something else, lets say 0.5f transparent blue color.
How this can be done? Sorry about the title, i dont know the name of this method.
--
Also, i am having problem with being inside the cube with my camera: i need to fill the screen with negative coloring, is there any other way than swithing to 2d mode and drawing a quad with glLogicOp() enabled ? Also the problem is that theres a chance to see bugged rendering if i am at the edge of the cube surface, any ideas for preventing this perfectly?
You should look into the "Carmack's reverse" algorithm and the stencil shadow algorithms in general, as your problem is closely related to them (your cube being a shadow volume object). You will not get away with using glLogicOp() if you want other colors than black and white.