I would like to make real time audio processing with Qt and display the fundamental frequency using FFTW3.
What I've done in steps:
I capture any sound from computer device and fill it into the buffer.
I assign sound samples to double array
I compute the fundamental frequency.
Problem
My code always returns 0 as fundamental frequency.
QByteArray *buffer;
QAudioInput *audioInput;
audioInput = new QAudioInput(format, this);
//Check the number of samples in input buffer
qint64 len = audioInput->bytesReady();
//Limit sample size
if(len > 4096)
len = 4096;
//Read sound samples from input device to buffer
qint64 l = input->read(buffer.data(), len);
if(l > 0)
{
int input_size = BufferSize;
// Compute corresponding number of complex output samples
int output_size = (input_size/2 + 1);
double *input_buffer = static_cast<double*>(fftw_malloc(input_size * sizeof(double)));
fftw_complex *out = static_cast<fftw_complex*>(fftw_malloc(output_size * sizeof(fftw_complex)));
//Assign sound samples to double array
input_buffer = (double*)buffer.data();
fftw_plan p3;
//Create plan
p3 = fftw_plan_dft_r2c_1d(input_size, input_buffer, out, FFTW_ESTIMATE);
fftw_execute(p3);
double reout[BufferSize];
double imgout[BufferSize];
double magnitude[BufferSize/2];
long ffond = 0.0; // Position of the frequency
double max = 0; // Maximal amplitude
for (int i = 0; i < BufferSize/2; i++)
{
reout[i] = out[i][0];
imgout[i] = out[i][1];
cout << imgout[i] << endl;
magnitude[i] = sqrt(reout[i]*reout[i] + imgout[i]*imgout[i]); //Calculate magnitude of first
double t = sqrt(reout[i]*reout[i] + imgout[i]*imgout[i]);
if(t > max)
{
max = t;
ffond = i;
}
}
qDebug() << "fundamental frequency is :" << QString::number(ffond*static_cast<double>);
fftw_destroy_plan(p3);
You have two immediate problems that I can see:
you are not applying a window function, so there will be considerable spectral leakage and associated "smearing" of the spectrum (and probably a large DC (0 Hz) component with associated "skirt")
you are assuming that the largest magnitude in the spectrum is the fundamental frequency, which will most likely be incorrect for two reasons: (a) you may well have a large 0 Hz component which is larger than your fundamental or harmonics and (b) depending on the nature of the sound you are trying to analyse, the fundamental may be smaller in magnitude than the harmonics (it may even be missing completely)
I suggest you do the following:
apply a suitable window function prior to the FFT - this should make your peaks better defined and should reduce the artefacts at 0 Hz and just above
start your search at an appropriate bin rather than 0, e.g. if the minimum fundamental frequency you are interested in is say 50 Hz then start at the corresponding bin for 50 Hz rather than at 0
add a debug option to display the spectrum graphically - this visual debugging aid will help greatly when you are wondering why your results do not make sense
if what you are really trying to measure is pitch rather than fundamental frequency, then read up on pitch detection algorithms, e.g. Harmonic Product Spectrum - this will work a lot better than the naïve approach of trying to identify a fundamental (whose frequency will not be the same as the pitch in the general case)
Related
I am trying to recognise a sequence of audio frames on an embedded system - an audio frame being a frequency or interpolation of two frequencies for a variable amount of time. I know the sounds I am trying to recognise (i.e. the start and end frequencies which are being linearly interpolated and the duration of each audio frame), but they are produced by a another embedded system so the microphone and speaker are cheap and somewhat inaccurate. The output is a square wave. Any suggestions how to go about doing this?
What I am trying to do now is to use FFT to get the magnitude of all frequencies, detect the peaks, look at the detection duration/2 ms ago and check if that somewhat matches an audio frame, and finally just checking if any sound I am looking for matched the sequence.
So far I used the FFT to process the microphone input - after applying a Hann window - and then assigning each frequency bin a coefficient that it's a peak based on how many standard deviations is away from the mean. This hasn't worked great since it thought there are peaks when it was silence in the room. Any ideas on how to more accurately detect the peaks? Also I think there are a lot of harmonics because of the square wave / interpolation? Can I do harmonic product spectrum if the peaks don't really line up at double the frequency?
Here I graphed noise (almost silent room) with somewhere in the interpolation of 2226 and 1624 Hz.
https://i.stack.imgur.com/R5Gs2.png
I sample at 91 microseconds -> 10989 Hz. Should I sample more often?
I added here samples of how the interpolation sounds when recorded on my laptop and on the embedded system.
https://easyupload.io/m/5l72b0
#define MIC_SAMPLE_RATE 10989 // Hz
#define AUDIO_SAMPLES_NUMBER 1024
MicroBitAudioProcessor::MicroBitAudioProcessor(DataSource& source) : audiostream(source)
{
arm_rfft_fast_init_f32(&fft_instance, AUDIO_SAMPLES_NUMBER);
buf = (float *)malloc(sizeof(float) * (AUDIO_SAMPLES_NUMBER * 2));
output = (float *)malloc(sizeof(float) * AUDIO_SAMPLES_NUMBER);
mag = (float *)malloc(sizeof(float) * AUDIO_SAMPLES_NUMBER / 2);
}
float henn(int i){
return 0.5 * (1 - arm_cos_f32(2 * 3.14159265 * i / AUDIO_SAMPLES_NUMBER));
}
int MicroBitAudioProcessor::pullRequest()
{
int s;
int result;
auto mic_samples = audiostream.pull();
if (!recording)
return DEVICE_OK;
int8_t *data = (int8_t *) &mic_samples[0];
int samples = mic_samples.length() / 2;
for (int i=0; i < samples; i++)
{
s = (int) *data;
result = s;
data++;
buf[(position++)] = (float)result;
if (position % AUDIO_SAMPLES_NUMBER == 0)
{
position = 0;
float maxValue = 0;
uint32_t index = 0;
// Apply a Henn window
for(int i=0; i< AUDIO_SAMPLES_NUMBER; i++)
buf[i] *= henn(i);
arm_rfft_fast_f32(&fft_instance, buf, output, 0);
arm_cmplx_mag_f32(output, mag, AUDIO_SAMPLES_NUMBER / 2);
}
}
return DEVICE_OK;
}
uint32_t frequencyToIndex(int freq) {
return (freq / ((uint32_t)MIC_SAMPLE_RATE / AUDIO_SAMPLES_NUMBER));
}
float MicroBitAudioProcessor::getFrequencyIntensity(int freq){
uint32_t index = frequencyToIndex(freq);
if (index <= 0 || index >= (AUDIO_SAMPLES_NUMBER / 2) - 1) return 0;
return mag[index];
}
I'm trying to use C++ to recreate the spectrogram function used by Matlab. The function uses a Short Time Fourier Transform (STFT). I found some C++ code here that performs a STFT. The code seems to work perfectly for all frequencies but I only want a few. I found this post for a similar question with the following answer:
Just take the inner product of your data with a complex exponential at
the frequency of interest. If g is your data, then just substitute for
f the value of the frequency you want (e.g., 1, 3, 10, ...)
Having no background in mathematics, I can't figure out how to do this. The inner product part seems simple enough from the Wikipedia page but I have absolutely no idea what he means by (with regard to the formula for a DFT)
a complex exponential at frequency of interest
Could someone explain how I might be able to do this? My data structure after the STFT is a matrix filled with complex numbers. I just don't know how to extract my desired frequencies.
Relevant function, where window is Hamming, and vector of desired frequencies isn't yet an input because I don't know what to do with them:
Matrix<complex<double>> ShortTimeFourierTransform::Calculate(const vector<double> &signal,
const vector<double> &window, int windowSize, int hopSize)
{
int signalLength = signal.size();
int nOverlap = hopSize;
int cols = (signal.size() - nOverlap) / (windowSize - nOverlap);
Matrix<complex<double>> results(window.size(), cols);
int chunkPosition = 0;
int readIndex;
// Should we stop reading in chunks?
bool shouldStop = false;
int numChunksCompleted = 0;
int i;
// Process each chunk of the signal
while (chunkPosition < signalLength && !shouldStop)
{
// Copy the chunk into our buffer
for (i = 0; i < windowSize; i++)
{
readIndex = chunkPosition + i;
if (readIndex < signalLength)
{
// Note the windowing!
data[i][0] = signal[readIndex] * window[i];
data[i][1] = 0.0;
}
else
{
// we have read beyond the signal, so zero-pad it!
data[i][0] = 0.0;
data[i][1] = 0.0;
shouldStop = true;
}
}
// Perform the FFT on our chunk
fftw_execute(plan_forward);
// Copy the first (windowSize/2 + 1) data points into your spectrogram.
// We do this because the FFT output is mirrored about the nyquist
// frequency, so the second half of the data is redundant. This is how
// Matlab's spectrogram routine works.
for (i = 0; i < windowSize / 2 + 1; i++)
{
double real = fft_result[i][0];
double imaginary = fft_result[i][1];
results(i, numChunksCompleted) = complex<double>(real, imaginary);
}
chunkPosition += hopSize;
numChunksCompleted++;
} // Excuse the formatting, the while ends here.
return results;
}
Look up the Goertzel algorithm or filter for example code that uses the computational equivalent of an inner product against a complex exponential to measure the presence or magnitude of a specific stationary sinusoidal frequency in a signal. Performance or resolution will depend on the length of the filter and your signal.
I’m a beginner in DSP and I have to make an audio equalizer.
I’ve done some research and tried a lot of thing in the past month but in the end, it’s not working and I’m a bit overwhelmed with all those informations (that I certainly don’t interpret well).
I have two main classes : Broadcast (which generate pink noise, and apply gain to it) and Record (which analyse the input of the microphone et deduct the gain from it).
I have some trouble with both, but I’m gonna limit this post to the Broadcast side.
I’m using Aquila DSP Library, so I used this example and extended the logic of it.
/* Constructor */
Broadcast::Broadcast() :
_Info(44100, 2, 2), // 44100 Hz, 2 channels, sample size : 2 octet
_pinkNoise(_Info.GetFrequency()), // Init the Aquila::PinkNoiseGenerator
_thirdOctave() // list of “Octave” class, containing min, center, and max frequency of each [⅓ octave band](http://goo.gl/365ZFN)
{
_pinkNoise.setAmplitude(65536);
}
/* This method is called in a loop and fills the buffer with the pink noise */
bool Broadcast::BuildBuffer(char * Buffer, int BufferSize, int & BufferCopiedSize)
{
if (BufferSize < 131072)
return false;
int SampleCount = 131072 / _Info.GetSampleSize();
int signalSize = SampleCount / _Info.GetChannelCount();
_pinkNoise.generate(signalSize);
auto fft = Aquila::FftFactory::getFft(signalSize);
Aquila::SpectrumType spectrum = fft->fft(_pinkNoise.toArray());
Aquila::SpectrumType ampliSpectrum(signalSize);
std::list<Octave>::iterator it;
double gain, fl, fh;
/* [1.] - The gains are applied in this loop */
for (it = _thirdOctave.begin(); it != _thirdOctave.end(); it++)
{
/* Test values */
if ((*it).getCtr() >= 5000)
gain = 6.0;
else
gain = 0.0;
fl = (signalSize * (*it).getMin() / _Info.GetFrequency());
fh = (signalSize * (*it).getMax() / _Info.GetFrequency());
/* [2.] - THIS is the part that I think is wrong */
for (int i = 0; i < signalSize; i++)
{
if (i >= fl && i < fh)
ampliSpectrum[i] = std::pow(10, gain / 20);
else
ampliSpectrum[i] = 1.0;
}
/* [3.] - Multiply each bin of spectrum with ampliSpectrum */
std::transform(
std::begin(spectrum),
std::end(spectrum),
std::begin(ampliSpectrum),
std::begin(spectrum),
[](Aquila::ComplexType x, Aquila::ComplexType y) { return x * y; }); // Aquila::ComplexType is an std::complex<double>
}
/* Put the IFFT result in a new buffer */
boost::scoped_ptr<double> s(new double[signalSize]);
fft->ifft(spectrum, s.get());
int val;
for (int i = 0; i < signalSize; i++)
{
val = int(s.get()[i]);
/* Fills the two channels with the same value */
reinterpret_cast<int*>(Buffer)[i * 2] = val;
reinterpret_cast<int*>(Buffer)[i * 2 + 1] = val;
}
BufferCopiedSize = SampleCount * _Info.GetSampleSize();
return true;
}
I’m using the pink noise of gStreamer along with the equalizer-nbands module to compare my output.
With all gain set to 0.0 the outputs are the same.
But as soon as I add some gain, the outputs sound different (even though my output still sound like a pink noise, and seems to have gain in the right spot).
So my question is :
How can I apply my gains to each ⅓ Octave band in the frequency domain.
My research shows that I should do a filter bank of band-pass filters, but how to do that with the result of an FFT ?
Thanks for your time.
I am trying to create a very simple C++ program that given an argument in range [0-100] applies a low-pass filter to a grayscale image that should "compress" it proprotionally to the value of the given argument.
I am using the FFTW library.
I have some doubts about how I define the frequency threshold, cut. Is there any more effective way to define such value?
//fftw_complex *fft
//double[] magnitude
// . . .
int percent = 100;
if (percent < 0 || percent > 100) {
cerr << "Compression rate must be a value between 0 and 100." << endl;
return -1;
}
double cut =(double)(w*h) * ((double)percent / (double)100);
for (i = 0; i < (w * h); i++) {
magnitude[i] = sqrt(pow(fft[i][0], 2.0) + pow(fft[i][1], 2.0));
if (magnitude[i] < cut) {
fft[i][0] = 0.0;
fft[i][1] = 0.0;
}
}
Update1:
I've changed my code to this, but again I'm not sure this is a proper way to filter frequencies. The image is surely compressed, but non-square images are messed up and setting compression to 100% isn't the real maximum compression available (I can go up to ~140%).
Here you can find an image of what I see now.
int cX = w/2;
int cY = h/2;
cout<<"TEST "<<((double)percent/(double)100)*h<<endl;
for(i = 0; i<(w*h);i++){
int row = i/s;
int col = i%s;
int distance = sqrt((col-cX)*(col-cX)+(row-cY)*(row-cY));
if(distance<((double)percent/(double)100)*min(cX,cY)){
fft[i][0] = 0.0;
fft[i][1] = 0.0;
}
}
This is not a low-pass filter at all. A low-pass filter passes low frequencies, i.e. it removes fine details (blurring). You obviously need a 2D FFT for that.
This code just removes random bits, essentially.
[edit]
The new code looks a lot more like a low-pass filter. The 141% setting is expected: the diagonal of a square is sqrt(2)=1.41 times its side. Converting an index into a row/column pair should use the image width, not some random unexplained s.
I don't know where your zero frequency is located. That should be easy to spot (largest value) but it might be in (0,0) instead of (w/2,h/2)
For a project I need to be able to generate a spectrogram from a .WAV file. I've read the following should be done:
Get N (transform size) samples
Apply a window function
Do a Fast Fourier Transform using the samples
Normalise the output
Generate spectrogram
On the image below you see two spectrograms of a 10000 Hz sine wave both using the hanning window function. On the left you see a spectrogram generated by audacity and on the right my version. As you can see my version has a lot more lines/noise. Is this leakage in different bins? How would I get a clear image like the one audacity generates. Should I do some post-processing? I have not yet done any normalisation because do not fully understand how to do so.
update
I found this tutorial explaining how to generate a spectrogram in c++. I compiled the source to see what differences I could find.
My math is very rusty to be honest so I'm not sure what the normalisation does here:
for(i = 0; i < half; i++){
out[i][0] *= (2./transform_size);
out[i][6] *= (2./transform_size);
processed[i] = out[i][0]*out[i][0] + out[i][7]*out[i][8];
//sets values between 0 and 1?
processed[i] =10. * (log (processed[i] + 1e-6)/log(10)) /-60.;
}
after doing this I got this image (btw I've inverted the colors):
I then took a look at difference of the input samples provided by my sound library and the one of the tutorial. Mine were way higher so I manually normalised is by dividing it by the factor 32767.9. I then go this image which looks pretty ok I think. But dividing it by this number seems wrong. And I would like to see a different solution.
Here is the full relevant source code.
void Spectrogram::process(){
int i;
int transform_size = 1024;
int half = transform_size/2;
int step_size = transform_size/2;
double in[transform_size];
double processed[half];
fftw_complex *out;
fftw_plan p;
out = (fftw_complex*) fftw_malloc(sizeof(fftw_complex) * transform_size);
for(int x=0; x < wavFile->getSamples()/step_size; x++){
int j = 0;
for(i = step_size*x; i < (x * step_size) + transform_size - 1; i++, j++){
in[j] = wavFile->getSample(i)/32767.9;
}
//apply window function
for(i = 0; i < transform_size; i++){
in[i] *= windowHanning(i, transform_size);
// in[i] *= windowBlackmanHarris(i, transform_size);
}
p = fftw_plan_dft_r2c_1d(transform_size, in, out, FFTW_ESTIMATE);
fftw_execute(p); /* repeat as needed */
for(i = 0; i < half; i++){
out[i][0] *= (2./transform_size);
out[i][11] *= (2./transform_size);
processed[i] = out[i][0]*out[i][0] + out[i][12]*out[i][13];
processed[i] =10. * (log (processed[i] + 1e-6)/log(10)) /-60.;
}
for (i = 0; i < half; i++){
if(processed[i] > 0.99)
processed[i] = 1;
In->setPixel(x,(half-1)-i,processed[i]*255);
}
}
fftw_destroy_plan(p);
fftw_free(out);
}
This is not exactly an answer as to what is wrong but rather a step by step procedure to debug this.
What do you think this line does? processed[i] = out[i][0]*out[i][0] + out[i][12]*out[i][13] Likely that is incorrect: fftw_complex is typedef double fftw_complex[2], so you only have out[i][0] and out[i][1], where the first is the real and the second the imaginary part of the result for that bin. If the array is contiguous in memory (which it is), then out[i][12] is likely the same as out[i+6][0] and so forth. Some of these will go past the end of the array, adding random values.
Is your window function correct? Print out windowHanning(i, transform_size) for every i and compare with a reference version (for example numpy.hanning or the matlab equivalent). This is the most likely cause, what you see looks like a bad window function, kind of.
Print out processed, and compare with a reference version (given the same input, of course you'd have to print the input and reformat it to feed into pylab/matlab etc). However, the -60 and 1e-6 are fudge factors which you don't want, the same effect is better done in a different way. Calculate like this:
power_in_db[i] = 10 * log(out[i][0]*out[i][0] + out[i][1]*out[i][1])/log(10)
Print out the values of power_in_db[i] for the same i but for all x (a horizontal line). Are they approximately the same?
If everything so far is good, the remaining suspect is setting the pixel values. Be very explicit about clipping to range, scaling and rounding.
int pixel_value = (int)round( 255 * (power_in_db[i] - min_db) / (max_db - min_db) );
if (pixel_value < 0) { pixel_value = 0; }
if (pixel_value > 255) { pixel_value = 255; }
Here, again, print out the values in a horizontal line, and compare with the grayscale values in your pgm (by hand, using the colorpicker in photoshop or gimp or similar).
At this point, you will have validated everything from end to end, and likely found the bug.
The code you produced, was almost correct. So, you didn't left me much to correct:
void Spectrogram::process(){
int transform_size = 1024;
int half = transform_size/2;
int step_size = transform_size/2;
double in[transform_size];
double processed[half];
fftw_complex *out;
fftw_plan p;
out = (fftw_complex*) fftw_malloc(sizeof(fftw_complex) * transform_size);
for (int x=0; x < wavFile->getSamples()/step_size; x++) {
// Fill the transformation array with a sample frame and apply the window function.
// Normalization is performed later
// (One error was here: you didn't set the last value of the array in)
for (int j = 0, int i = x * step_size; i < x * step_size + transform_size; i++, j++)
in[j] = wavFile->getSample(i) * windowHanning(j, transform_size);
p = fftw_plan_dft_r2c_1d(transform_size, in, out, FFTW_ESTIMATE);
fftw_execute(p); /* repeat as needed */
for (int i=0; i < half; i++) {
// (Here were some flaws concerning the access of the complex values)
out[i][0] *= (2./transform_size); // real values
out[i][1] *= (2./transform_size); // complex values
processed[i] = out[i][0]*out[i][0] + out[i][1]*out[i][1]; // power spectrum
processed[i] = 10./log(10.) * log(processed[i] + 1e-6); // dB
// The resulting spectral values in 'processed' are in dB and related to a maximum
// value of about 96dB. Normalization to a value range between 0 and 1 can be done
// in several ways. I would suggest to set values below 0dB to 0dB and divide by 96dB:
// Transform all dB values to a range between 0 and 1:
if (processed[i] <= 0) {
processed[i] = 0;
} else {
processed[i] /= 96.; // Reduce the divisor if you prefer darker peaks
if (processed[i] > 1)
processed[i] = 1;
}
In->setPixel(x,(half-1)-i,processed[i]*255);
}
// This should be called each time fftw_plan_dft_r2c_1d()
// was called to avoid a memory leak:
fftw_destroy_plan(p);
}
fftw_free(out);
}
The two corrected bugs were most probably responsible for the slight variation of successive transformation results. The Hanning window is very vell suited to minimize the "noise" so a different window would not have solved the problem (actually #Alex I already pointed to the 2nd bug in his point 2. But in his point 3. he added a -Inf-bug as log(0) is not defined which can happen if your wave file containts a stretch of exact 0-values. To avoid this the constant 1e-6 is good enough).
Not asked, but there are some optimizations:
put p = fftw_plan_dft_r2c_1d(transform_size, in, out, FFTW_ESTIMATE); outside the main loop,
precalculate the window function outside the main loop,
abandon the array processed and just use a temporary variable to hold one spectral line at a time,
the two multiplications of out[i][0] and out[i][1] can be abandoned in favour of one multiplication with a constant in the following line. I left this (and other things) for you to improve
Thanks to #Maxime Coorevits additionally a memory leak could be avoided: "Each time you call fftw_plan_dft_rc2_1d() memory are allocated by FFTW3. In your code, you only call fftw_destroy_plan() outside the outer loop. But in fact, you need to call this each time you request a plan."
Audacity typically doesn't map one frequency bin to one horizontal line, nor one sample period to one vertical line. The visual effect in Audacity may be due to resampling of the spectrogram picture in order to fit the drawing area.