Related
I'm trying to read file, which contains Cyrillic characters in their path, and got ifstream.is_open() == false
This is my code:
std::string ReadFile(const std::string &path) {
std::string newLine, fileContent;
std::ifstream in(path.c_str(), std::ios::in);
if (!in.is_open()) {
return std::string("isn't opened");
}
while (in.good()) {
getline(in, newLine);
fileContent += newLine;
}
in.close();
return fileContent;
}
int main() {
std::string path = "C:\\test\\документ.txt";
std::string content = ReadFile(path);
std::cout << content << std::endl;
return 0;
}
Specified file exists
I'm trying to find solution in google, but I got nothing
Here is links, which I saw:
I don't need wstring
The same as previous
no answer here
is not about C++
has no answer too
P.S. I need to get file's content in string, not in wstring
THIS IS ENCODING SETTINGS OF MY IDE (CLION 2017.1)
You'll need an up-to-date compiler or Boost. std::filesystem::path can handle these names, but it's new in the C++17 standard. Your compiler may still have it as std::experimental::filesystem::path, or else you'd use the third-party boost::filesystem::path. The interfaces are pretty comparable as the Boost version served as the inspiration.
The definition for std::string is std::basic_string, so your Cyrillic chararecters are not stored as intended. Atleast, try to use std::wstring to store your file path and then you can read from file using std::string.
First of all, set your project settings to use UTF-8 encoding instead of windows-1251. Until standard library gets really good (not any time soon) you basically can not rely on it if you want to deal with io properly. To make input stream read from files on Windows you need to write your own custom input stream buffer that opens files using 2-byte wide chars or rely on some third-party implementations of such routines. Here is some incomplete (but sufficient for your example) implementation:
// assuming that usual Windows SDK macros such as _UNICODE, WIN32_LEAN_AND_MEAN are defined above
#include <Windows.h>
#include <string>
#include <iostream>
#include <system_error>
#include <memory>
#include <utility>
#include <cstdlib>
#include <cstdio>
static_assert(2 == sizeof(wchar_t), "wchar_t size must be 2 bytes");
using namespace ::std;
class MyStreamBuf final: public streambuf
{
#pragma region Fields
private: ::HANDLE const m_file_handle;
private: char m_buffer; // typically buffer should be much bigger
#pragma endregion
public: explicit
MyStreamBuf(wchar_t const * psz_file_path)
: m_file_handle(::CreateFileW(psz_file_path, FILE_GENERIC_READ, FILE_SHARE_READ, nullptr, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL))
, m_buffer{}
{
if(INVALID_HANDLE_VALUE == m_file_handle)
{
auto const error_code{::GetLastError()};
throw(system_error(static_cast< int >(error_code), system_category(), "::CreateFileW call failed"));
}
}
public:
~MyStreamBuf(void)
{
auto const closed{::CloseHandle(m_file_handle)};
if(FALSE == closed)
{
auto const error_code{::GetLastError()};
//throw(::std::system_error(static_cast< int >(error_code), system_category(), "::CloseHandle call failed"));
// throwing in destructor is kinda wrong
// but if CloseHandle returned false then our program is in inconsistent state
// and must be terminated anyway
(void) error_code; // not used
abort();
}
}
private: auto
underflow(void) -> int_type override
{
::DWORD bytes_count_to_read{1};
::DWORD read_bytes_count{};
{
auto const succeeded{::ReadFile(m_file_handle, addressof(m_buffer), bytes_count_to_read, addressof(read_bytes_count), nullptr)};
if(FALSE == succeeded)
{
auto const error_code{::GetLastError()};
setg(nullptr, nullptr, nullptr);
throw(system_error(static_cast< int >(error_code), system_category(), "::ReadFile call failed"));
}
}
if(0 == read_bytes_count)
{
setg(nullptr, nullptr, nullptr);
return(EOF);
}
setg(addressof(m_buffer), addressof(m_buffer), addressof(m_buffer) + 1);
return(m_buffer);
}
};
string
MyReadFile(wchar_t const * psz_file_path)
{
istream in(new MyStreamBuf(psz_file_path)); // note that we create normal stream
string new_line;
string file_content;
while(in.good())
{
getline(in, new_line);
file_content += new_line;
}
return(::std::move(file_content));
}
int
main(void)
{
string content = MyReadFile(L"C:\\test\\документ.txt"); // note that path is a wide string
cout << content << endl;
return 0;
}
Change your code to use wstring and save your file using Unicode encoding (non UTF8 one, use USC-2, UTF16 or something like that). MSVC has non-standard overload specifically for this reason to be able to handle non-ascii chars in filenames:
std::string ReadFile(const std::wstring &path)
{
std::string newLine, fileContent;
std::ifstream in(path.c_str(), std::ios::in);
if (!in)
return std::string("isn't opened");
while (getline(in, newLine))
fileContent += newLine;
return fileContent;
}
int main()
{
std::wstring path = L"C:\\test\\документ.txt";
std::string content = ReadFile(path);
std::cout << content << std::endl;
}
Also, note corrected ReadFile code.
I want to convert wstring to u16string in C++.
I can convert wstring to string, or reverse. But I don't know how convert to u16string.
u16string CTextConverter::convertWstring2U16(wstring str)
{
int iSize;
u16string szDest[256] = {};
memset(szDest, 0, 256);
iSize = WideCharToMultiByte(CP_UTF8, NULL, str.c_str(), -1, NULL, 0,0,0);
WideCharToMultiByte(CP_UTF8, NULL, str.c_str(), -1, szDest, iSize,0,0);
u16string s16 = szDest;
return s16;
}
Error in WideCharToMultiByte(CP_UTF8, NULL, str.c_str(), -1, szDest, iSize,0,0);'s szDest. Cause of u16string can't use with LPSTR.
How can I fix this code?
For a platform-independent solution see this answer.
If you need a solution only for the Windows platform, the following code will be sufficient:
std::wstring wstr( L"foo" );
std::u16string u16str( wstr.begin(), wstr.end() );
On the Windows platform, a std::wstring is interchangeable with std::u16string because sizeof(wstring::value_type) == sizeof(u16string::value_type) and both are UTF-16 (little endian) encoded.
wstring::value_type = wchar_t
u16string::value_type = char16_t
The only difference is that wchar_t is signed, whereas char16_t is unsigned. So you only have to do sign conversion, which can be performed by using the u16string constructor that takes an iterator pair as arguments. This constructor will implicitly convert wchar_t to char16_t.
Full example console application:
#include <windows.h>
#include <string>
int main()
{
static_assert( sizeof(std::wstring::value_type) == sizeof(std::u16string::value_type),
"std::wstring and std::u16string are expected to have the same character size" );
std::wstring wstr( L"foo" );
std::u16string u16str( wstr.begin(), wstr.end() );
// The u16string constructor performs an implicit conversion like:
wchar_t wch = L'A';
char16_t ch16 = wch;
// Need to reinterpret_cast because char16_t const* is not implicitly convertible
// to LPCWSTR (aka wchar_t const*).
::MessageBoxW( 0, reinterpret_cast<LPCWSTR>( u16str.c_str() ), L"test", 0 );
return 0;
}
Update
I had thought the standard version did not work, but in fact this was simply due to bugs in the Visual C++ and libstdc++ 3.4.21 runtime libraries. It does work with clang++ -std=c++14 -stdlib=libc++. Here is a version that tests whether the standard method works on your compiler:
#include <codecvt>
#include <cstdlib>
#include <cstring>
#include <cwctype>
#include <iostream>
#include <locale>
#include <clocale>
#include <vector>
using std::cout;
using std::endl;
using std::exit;
using std::memcmp;
using std::size_t;
using std::wcout;
#if _WIN32 || _WIN64
// Windows needs a little non-standard magic for this to work.
#include <io.h>
#include <fcntl.h>
#include <locale.h>
#endif
using std::size_t;
void init_locale(void)
// Does magic so that wcout can work.
{
#if _WIN32 || _WIN64
// Windows needs a little non-standard magic.
constexpr char cp_utf16le[] = ".1200";
setlocale( LC_ALL, cp_utf16le );
_setmode( _fileno(stdout), _O_U16TEXT );
#else
// The correct locale name may vary by OS, e.g., "en_US.utf8".
constexpr char locale_name[] = "";
std::locale::global(std::locale(locale_name));
std::wcout.imbue(std::locale());
#endif
}
int main(void)
{
constexpr char16_t msg_utf16[] = u"¡Hola, mundo! \U0001F600"; // Shouldn't assume endianness.
constexpr wchar_t msg_w[] = L"¡Hola, mundo! \U0001F600";
constexpr char32_t msg_utf32[] = U"¡Hola, mundo! \U0001F600";
constexpr char msg_utf8[] = u8"¡Hola, mundo! \U0001F600";
init_locale();
const std::codecvt_utf16<wchar_t, 0x1FFFF, std::little_endian> converter_w;
const size_t max_len = sizeof(msg_utf16);
std::vector<char> out(max_len);
std::mbstate_t state;
const wchar_t* from_w = nullptr;
char* to_next = nullptr;
converter_w.out( state, msg_w, msg_w+sizeof(msg_w)/sizeof(wchar_t), from_w, out.data(), out.data() + out.size(), to_next );
if (memcmp( msg_utf8, out.data(), sizeof(msg_utf8) ) == 0 ) {
wcout << L"std::codecvt_utf16<wchar_t> converts to UTF-8, not UTF-16!" << endl;
} else if ( memcmp( msg_utf16, out.data(), max_len ) != 0 ) {
wcout << L"std::codecvt_utf16<wchar_t> conversion not equal!" << endl;
} else {
wcout << L"std::codecvt_utf16<wchar_t> conversion is correct." << endl;
}
out.clear();
out.resize(max_len);
const std::codecvt_utf16<char32_t, 0x1FFFF, std::little_endian> converter_u32;
const char32_t* from_u32 = nullptr;
converter_u32.out( state, msg_utf32, msg_utf32+sizeof(msg_utf32)/sizeof(char32_t), from_u32, out.data(), out.data() + out.size(), to_next );
if ( memcmp( msg_utf16, out.data(), max_len ) != 0 ) {
wcout << L"std::codecvt_utf16<char32_t> conversion not equal!" << endl;
} else {
wcout << L"std::codecvt_utf16<char32_t> conversion is correct." << endl;
}
wcout << msg_w << endl;
return EXIT_SUCCESS;
}
Previous
A bit late to the game, but here’s a version that additionally checks whether wchar_t is 32-bits (as it is on Linux), and if so, performs surrogate-pair conversion. I recommend saving this source as UTF-8 with a BOM. Here is a link to it on ideone.
#include <cassert>
#include <cwctype>
#include <cstdlib>
#include <iomanip>
#include <iostream>
#include <locale>
#include <string>
#if _WIN32 || _WIN64
// Windows needs a little non-standard magic for this to work.
#include <io.h>
#include <fcntl.h>
#include <locale.h>
#endif
using std::size_t;
void init_locale(void)
// Does magic so that wcout can work.
{
#if _WIN32 || _WIN64
// Windows needs a little non-standard magic.
constexpr char cp_utf16le[] = ".1200";
setlocale( LC_ALL, cp_utf16le );
_setmode( _fileno(stdout), _O_U16TEXT );
#else
// The correct locale name may vary by OS, e.g., "en_US.utf8".
constexpr char locale_name[] = "";
std::locale::global(std::locale(locale_name));
std::wcout.imbue(std::locale());
#endif
}
std::u16string make_u16string( const std::wstring& ws )
/* Creates a UTF-16 string from a wide-character string. Any wide characters
* outside the allowed range of UTF-16 are mapped to the sentinel value U+FFFD,
* per the Unicode documentation. (http://www.unicode.org/faq/private_use.html
* retrieved 12 March 2017.) Unpaired surrogates in ws are also converted to
* sentinel values. Noncharacters, however, are left intact. As a fallback,
* if wide characters are the same size as char16_t, this does a more trivial
* construction using that implicit conversion.
*/
{
/* We assume that, if this test passes, a wide-character string is already
* UTF-16, or at least converts to it implicitly without needing surrogate
* pairs.
*/
if ( sizeof(wchar_t) == sizeof(char16_t) ) {
return std::u16string( ws.begin(), ws.end() );
} else {
/* The conversion from UTF-32 to UTF-16 might possibly require surrogates.
* A surrogate pair suffices to represent all wide characters, because all
* characters outside the range will be mapped to the sentinel value
* U+FFFD. Add one character for the terminating NUL.
*/
const size_t max_len = 2 * ws.length() + 1;
// Our temporary UTF-16 string.
std::u16string result;
result.reserve(max_len);
for ( const wchar_t& wc : ws ) {
const std::wint_t chr = wc;
if ( chr < 0 || chr > 0x10FFFF || (chr >= 0xD800 && chr <= 0xDFFF) ) {
// Invalid code point. Replace with sentinel, per Unicode standard:
constexpr char16_t sentinel = u'\uFFFD';
result.push_back(sentinel);
} else if ( chr < 0x10000UL ) { // In the BMP.
result.push_back(static_cast<char16_t>(wc));
} else {
const char16_t leading = static_cast<char16_t>(
((chr-0x10000UL) / 0x400U) + 0xD800U );
const char16_t trailing = static_cast<char16_t>(
((chr-0x10000UL) % 0x400U) + 0xDC00U );
result.append({leading, trailing});
} // end if
} // end for
/* The returned string is shrunken to fit, which might not be the Right
* Thing if there is more to be added to the string.
*/
result.shrink_to_fit();
// We depend here on the compiler to optimize the move constructor.
return result;
} // end if
// Not reached.
}
int main(void)
{
static const std::wstring wtest(L"☪☮∈✡℩☯✝ \U0001F644");
static const std::u16string u16test(u"☪☮∈✡℩☯✝ \U0001F644");
const std::u16string converted = make_u16string(wtest);
init_locale();
std::wcout << L"sizeof(wchar_t) == " << sizeof(wchar_t) << L".\n";
for( size_t i = 0; i <= u16test.length(); ++i ) {
if ( u16test[i] != converted[i] ) {
std::wcout << std::hex << std::showbase
<< std::right << std::setfill(L'0')
<< std::setw(4) << (unsigned)converted[i] << L" ≠ "
<< std::setw(4) << (unsigned)u16test[i] << L" at "
<< i << L'.' << std::endl;
return EXIT_FAILURE;
} // end if
} // end for
std::wcout << wtest << std::endl;
return EXIT_SUCCESS;
}
Footnote
Since someone asked: The reason I suggest UTF-8 with BOM is that some compilers, including MSVC 2015, will assume a source file is encoded according to the current code page unless there is a BOM or you specify an encoding on the command line. No encoding works on all toolchains, unfortunately, but every tool I’ve used that’s modern enough to support C++14 also understands the BOM.
- To convert CString to std:wstring and string
string CString2string(CString str)
{
int bufLen = WideCharToMultiByte(CP_UTF8, 0, (LPCTSTR)str, -1, NULL, 0, NULL,NULL);
char *buf = new char[bufLen];
WideCharToMultiByte(CP_UTF8, 0, (LPCTSTR)str, -1, buf, bufLen, NULL, NULL);
string sRet(buf);
delete[] buf;
return sRet;
}
CString strFileName = "test.txt";
wstring wFileName(strFileName.GetBuffer());
strFileName.ReleaseBuffer();
string sFileName = CString2string(strFileName);
- To convert string to CString
CString string2CString(string s)
{
int bufLen = MultiByteToWideChar(CP_ACP, 0, s.c_str(), -1, NULL, 0);
WCHAR *buf = new WCHAR[bufLen];
MultiByteToWideChar(CP_ACP, 0, s.c_str(), -1, buf, bufLen);
CString strRet(buf);
delete[] buf;
return strRet;
}
string sFileName = "test.txt";
CString strFileName = string2CString(sFileName);
I have problems to make this little piece of code work:
#include <iostream>
#include <Windows.h>
#include <string>
using namespace std;
string Filepath;
string Temp;
int WINAPI WinMain(HINSTANCE instanceHandle, HINSTANCE, char*, int)
{
const char* env_p = std::getenv("TEMP");
std::getenv("TEMP");
Temp = env_p;
Filepath = Temp + "\\File.txt";
Editfile id(Filepath.c_str());
std::cin.get();
return 0;
}
Error C2664 Converting from "const char *" to "const wchar_t *" is not possible
I see the problem, but its not easy for me to fix it.
char based functions like std::getenv can return unusable data in Windows, because the standard narrow encoding in Windows is very limited.
Instead use wide character functions, and for environment stuff, preferably the Windows API itself.
Then there's no need to translate between encodings, because it's all UTF-16, represented as wchar_t based strings in C++:
#include <string>
#include <stdexcept> // runtime error
using namespace std;
#undef UNICODE
#define UNICODE
#undef NOMINMAX
#define NOMINMAX
#undef STRICT
#define STRICT
#include <windows.h>
auto hopefully( bool const e ) -> bool { return e; }
[[noreturn]] auto fail( string const& s ) -> bool { throw runtime_error( s ); }
auto path_to_tempdir()
-> wstring
{
wstring result( MAX_PATH, L'#' );
DWORD const n = GetTempPath( result.size(), &result[0] );
hopefully( 0 < n && n < result.size() )
|| fail( "GetTempPath failed" );
result.resize( n );
return result;
}
auto main()
-> int
{
// Just crash if there's no temp directory.
DWORD const as_infobox = MB_ICONINFORMATION | MB_SETFOREGROUND;
MessageBox( 0, path_to_tempdir().c_str(), L"Temp directory:", as_infobox );
}
I know this question has been asked before but I still haven't seen a satisfactory answer, or a definitive "no, this cannot be done", so I'll ask again!
All I want to do is get the path to the currently running executable, either as an absolute path or relative to where the executable is invoked from, in a platform-independent fashion. I though boost::filesystem::initial_path was the answer to my troubles but that seems to only handle the 'platform-independent' part of the question - it still returns the path from which the application was invoked.
For a bit of background, this is a game using Ogre, which I'm trying to profile using Very Sleepy, which runs the target executable from its own directory, so of course on load the game finds no configuration files etc. and promptly crashes. I want to be able to pass it an absolute path to the configuration files, which I know will always live alongside the executable. The same goes for debugging in Visual Studio - I'd like to be able to run $(TargetPath) without having to set the working directory.
There is no cross platform way that I know.
For Linux: pass "/proc/self/exe" to std::filesystem::canonical or readlink.
Windows: pass NULL as the module handle to GetModuleFileName.
The boost::dll::program_location function is one of the best cross platform methods of getting the path of the running executable that I know of. The DLL library was added to Boost in version 1.61.0.
The following is my solution. I have tested it on Windows, Mac OS X, Solaris, Free BSD, and GNU/Linux.
It requires Boost 1.55.0 or greater. It uses the Boost.Filesystem library directly and the Boost.Locale library and Boost.System library indirectly.
src/executable_path.cpp
#include <cstdio>
#include <cstdlib>
#include <algorithm>
#include <iterator>
#include <string>
#include <vector>
#include <boost/filesystem/operations.hpp>
#include <boost/filesystem/path.hpp>
#include <boost/predef.h>
#include <boost/version.hpp>
#include <boost/tokenizer.hpp>
#if (BOOST_VERSION > BOOST_VERSION_NUMBER(1,64,0))
# include <boost/process.hpp>
#endif
#if (BOOST_OS_CYGWIN || BOOST_OS_WINDOWS)
# include <Windows.h>
#endif
#include <boost/executable_path.hpp>
#include <boost/detail/executable_path_internals.hpp>
namespace boost {
#if (BOOST_OS_CYGWIN || BOOST_OS_WINDOWS)
std::string executable_path(const char* argv0)
{
typedef std::vector<char> char_vector;
typedef std::vector<char>::size_type size_type;
char_vector buf(1024, 0);
size_type size = buf.size();
bool havePath = false;
bool shouldContinue = true;
do
{
DWORD result = GetModuleFileNameA(nullptr, &buf[0], size);
DWORD lastError = GetLastError();
if (result == 0)
{
shouldContinue = false;
}
else if (result < size)
{
havePath = true;
shouldContinue = false;
}
else if (
result == size
&& (lastError == ERROR_INSUFFICIENT_BUFFER || lastError == ERROR_SUCCESS)
)
{
size *= 2;
buf.resize(size);
}
else
{
shouldContinue = false;
}
} while (shouldContinue);
if (!havePath)
{
return detail::executable_path_fallback(argv0);
}
// On Microsoft Windows, there is no need to call boost::filesystem::canonical or
// boost::filesystem::path::make_preferred. The path returned by GetModuleFileNameA
// is the one we want.
std::string ret = &buf[0];
return ret;
}
#elif (BOOST_OS_MACOS)
# include <mach-o/dyld.h>
std::string executable_path(const char* argv0)
{
typedef std::vector<char> char_vector;
char_vector buf(1024, 0);
uint32_t size = static_cast<uint32_t>(buf.size());
bool havePath = false;
bool shouldContinue = true;
do
{
int result = _NSGetExecutablePath(&buf[0], &size);
if (result == -1)
{
buf.resize(size + 1);
std::fill(std::begin(buf), std::end(buf), 0);
}
else
{
shouldContinue = false;
if (buf.at(0) != 0)
{
havePath = true;
}
}
} while (shouldContinue);
if (!havePath)
{
return detail::executable_path_fallback(argv0);
}
std::string path(&buf[0], size);
boost::system::error_code ec;
boost::filesystem::path p(
boost::filesystem::canonical(path, boost::filesystem::current_path(), ec));
if (ec.value() == boost::system::errc::success)
{
return p.make_preferred().string();
}
return detail::executable_path_fallback(argv0);
}
#elif (BOOST_OS_SOLARIS)
# include <stdlib.h>
std::string executable_path(const char* argv0)
{
std::string ret = getexecname();
if (ret.empty())
{
return detail::executable_path_fallback(argv0);
}
boost::filesystem::path p(ret);
if (!p.has_root_directory())
{
boost::system::error_code ec;
p = boost::filesystem::canonical(
p, boost::filesystem::current_path(), ec);
if (ec.value() != boost::system::errc::success)
{
return detail::executable_path_fallback(argv0);
}
ret = p.make_preferred().string();
}
return ret;
}
#elif (BOOST_OS_BSD)
# include <sys/sysctl.h>
std::string executable_path(const char* argv0)
{
typedef std::vector<char> char_vector;
int mib[4]{0};
size_t size;
mib[0] = CTL_KERN;
mib[1] = KERN_PROC;
mib[2] = KERN_PROC_PATHNAME;
mib[3] = -1;
int result = sysctl(mib, 4, nullptr, &size, nullptr, 0);
if (-1 == result)
{
return detail::executable_path_fallback(argv0);
}
char_vector buf(size + 1, 0);
result = sysctl(mib, 4, &buf[0], &size, nullptr, 0);
if (-1 == result)
{
return detail::executable_path_fallback(argv0);
}
std::string path(&buf[0], size);
boost::system::error_code ec;
boost::filesystem::path p(
boost::filesystem::canonical(
path, boost::filesystem::current_path(), ec));
if (ec.value() == boost::system::errc::success)
{
return p.make_preferred().string();
}
return detail::executable_path_fallback(argv0);
}
#elif (BOOST_OS_LINUX)
# include <unistd.h>
std::string executable_path(const char *argv0)
{
typedef std::vector<char> char_vector;
typedef std::vector<char>::size_type size_type;
char_vector buf(1024, 0);
size_type size = buf.size();
bool havePath = false;
bool shouldContinue = true;
do
{
ssize_t result = readlink("/proc/self/exe", &buf[0], size);
if (result < 0)
{
shouldContinue = false;
}
else if (static_cast<size_type>(result) < size)
{
havePath = true;
shouldContinue = false;
size = result;
}
else
{
size *= 2;
buf.resize(size);
std::fill(std::begin(buf), std::end(buf), 0);
}
} while (shouldContinue);
if (!havePath)
{
return detail::executable_path_fallback(argv0);
}
std::string path(&buf[0], size);
boost::system::error_code ec;
boost::filesystem::path p(
boost::filesystem::canonical(
path, boost::filesystem::current_path(), ec));
if (ec.value() == boost::system::errc::success)
{
return p.make_preferred().string();
}
return detail::executable_path_fallback(argv0);
}
#else
std::string executable_path(const char *argv0)
{
return detail::executable_path_fallback(argv0);
}
#endif
}
src/detail/executable_path_internals.cpp
#include <cstdio>
#include <cstdlib>
#include <algorithm>
#include <iterator>
#include <string>
#include <vector>
#include <boost/filesystem/operations.hpp>
#include <boost/filesystem/path.hpp>
#include <boost/predef.h>
#include <boost/version.hpp>
#include <boost/tokenizer.hpp>
#if (BOOST_VERSION > BOOST_VERSION_NUMBER(1,64,0))
# include <boost/process.hpp>
#endif
#if (BOOST_OS_CYGWIN || BOOST_OS_WINDOWS)
# include <Windows.h>
#endif
#include <boost/executable_path.hpp>
#include <boost/detail/executable_path_internals.hpp>
namespace boost {
namespace detail {
std::string GetEnv(const std::string& varName)
{
if (varName.empty()) return "";
#if (BOOST_OS_BSD || BOOST_OS_CYGWIN || BOOST_OS_LINUX || BOOST_OS_MACOS || BOOST_OS_SOLARIS)
char* value = std::getenv(varName.c_str());
if (!value) return "";
return value;
#elif (BOOST_OS_WINDOWS)
typedef std::vector<char> char_vector;
typedef std::vector<char>::size_type size_type;
char_vector value(8192, 0);
size_type size = value.size();
bool haveValue = false;
bool shouldContinue = true;
do
{
DWORD result = GetEnvironmentVariableA(varName.c_str(), &value[0], size);
if (result == 0)
{
shouldContinue = false;
}
else if (result < size)
{
haveValue = true;
shouldContinue = false;
}
else
{
size *= 2;
value.resize(size);
}
} while (shouldContinue);
std::string ret;
if (haveValue)
{
ret = &value[0];
}
return ret;
#else
return "";
#endif
}
bool GetDirectoryListFromDelimitedString(
const std::string& str,
std::vector<std::string>& dirs)
{
typedef boost::char_separator<char> char_separator_type;
typedef boost::tokenizer<
boost::char_separator<char>, std::string::const_iterator,
std::string> tokenizer_type;
dirs.clear();
if (str.empty())
{
return false;
}
#if (BOOST_OS_WINDOWS)
const std::string os_pathsep(";");
#else
const std::string os_pathsep(":");
#endif
char_separator_type pathSep(os_pathsep.c_str());
tokenizer_type strTok(str, pathSep);
typename tokenizer_type::iterator strIt;
typename tokenizer_type::iterator strEndIt = strTok.end();
for (strIt = strTok.begin(); strIt != strEndIt; ++strIt)
{
dirs.push_back(*strIt);
}
if (dirs.empty())
{
return false;
}
return true;
}
std::string search_path(const std::string& file)
{
if (file.empty()) return "";
std::string ret;
#if (BOOST_VERSION > BOOST_VERSION_NUMBER(1,64,0))
{
namespace bp = boost::process;
boost::filesystem::path p = bp::search_path(file);
ret = p.make_preferred().string();
}
#endif
if (!ret.empty()) return ret;
// Drat! I have to do it the hard way.
std::string pathEnvVar = GetEnv("PATH");
if (pathEnvVar.empty()) return "";
std::vector<std::string> pathDirs;
bool getDirList = GetDirectoryListFromDelimitedString(pathEnvVar, pathDirs);
if (!getDirList) return "";
std::vector<std::string>::const_iterator it = pathDirs.cbegin();
std::vector<std::string>::const_iterator itEnd = pathDirs.cend();
for ( ; it != itEnd; ++it)
{
boost::filesystem::path p(*it);
p /= file;
if (boost::filesystem::exists(p) && boost::filesystem::is_regular_file(p))
{
return p.make_preferred().string();
}
}
return "";
}
std::string executable_path_fallback(const char *argv0)
{
if (argv0 == nullptr) return "";
if (argv0[0] == 0) return "";
#if (BOOST_OS_WINDOWS)
const std::string os_sep("\\");
#else
const std::string os_sep("/");
#endif
if (strstr(argv0, os_sep.c_str()) != nullptr)
{
boost::system::error_code ec;
boost::filesystem::path p(
boost::filesystem::canonical(
argv0, boost::filesystem::current_path(), ec));
if (ec.value() == boost::system::errc::success)
{
return p.make_preferred().string();
}
}
std::string ret = search_path(argv0);
if (!ret.empty())
{
return ret;
}
boost::system::error_code ec;
boost::filesystem::path p(
boost::filesystem::canonical(
argv0, boost::filesystem::current_path(), ec));
if (ec.value() == boost::system::errc::success)
{
ret = p.make_preferred().string();
}
return ret;
}
}
}
include/boost/executable_path.hpp
#ifndef BOOST_EXECUTABLE_PATH_HPP_
#define BOOST_EXECUTABLE_PATH_HPP_
#pragma once
#include <string>
namespace boost {
std::string executable_path(const char * argv0);
}
#endif // BOOST_EXECUTABLE_PATH_HPP_
include/boost/detail/executable_path_internals.hpp
#ifndef BOOST_DETAIL_EXECUTABLE_PATH_INTERNALS_HPP_
#define BOOST_DETAIL_EXECUTABLE_PATH_INTERNALS_HPP_
#pragma once
#include <string>
#include <vector>
namespace boost {
namespace detail {
std::string GetEnv(const std::string& varName);
bool GetDirectoryListFromDelimitedString(
const std::string& str,
std::vector<std::string>& dirs);
std::string search_path(const std::string& file);
std::string executable_path_fallback(const char * argv0);
}
}
#endif // BOOST_DETAIL_EXECUTABLE_PATH_INTERNALS_HPP_
I have a complete project, including a test application and CMake build files available at SnKOpen - /cpp/executable_path/trunk. This version is more complete than the version I provided here. It is also supports more platforms.
I have tested the application on all supported operating systems in the following four scenarios.
Relative path, executable in current directory: i.e. ./executable_path_test
Relative path, executable in another directory: i.e. ./build/executable_path_test
Full path: i.e. /some/dir/executable_path_test
Executable in path, file name only: i.e. executable_path_test
In all four scenarios, both the executable_path and executable_path_fallback functions work and return the same results.
Notes
This is an updated answer to this question. I updated the answer to take into consideration user comments and suggestions. I also added a link to a project in my SVN Repository.
This way uses boost + argv. You mentioned this may not be cross platform because it may or may not include the executable name. Well the following code should work around that.
#include <boost/filesystem/operations.hpp>
#include <boost/filesystem/path.hpp>
#include <iostream>
namespace fs = boost::filesystem;
int main(int argc,char** argv)
{
fs::path full_path( fs::initial_path<fs::path>() );
full_path = fs::system_complete( fs::path( argv[0] ) );
std::cout << full_path << std::endl;
//Without file name
std::cout << full_path.stem() << std::endl;
//std::cout << fs::basename(full_path) << std::endl;
return 0;
}
The following code gets the current working directory which may do what you need
#include <boost/filesystem/operations.hpp>
#include <boost/filesystem/path.hpp>
#include <iostream>
namespace fs = boost::filesystem;
int main(int argc,char** argv)
{
//current working directory
fs::path full_path( fs::current_path<fs::path>() );
std::cout << full_path << std::endl;
std::cout << full_path.stem() << std::endl;
//std::cout << fs::basepath(full_path) << std::endl;
return 0;
}
Note
Just realized that basename() was deprecated so had to switch to .stem()
C++17, windows, unicode, using filesystem new api:
#include "..\Project.h"
#include <filesystem>
using namespace std;
using namespace filesystem;
int wmain(int argc, wchar_t** argv)
{
auto dir = weakly_canonical(path(argv[0])).parent_path();
printf("%S", dir.c_str());
return 0;
}
(Important: Use wmain with wchar_t** - don't mix main with wchar_t**. For cmake projects enable unicode using add_definitions(-DUNICODE -D_UNICODE)).
Suspect this solution should be portable, but don't know how unicode is implemented on other OS's.
weakly_canonical is needed only if you use as Output Directory upper folder references ('..') to simplify path. If you don't use it - remove it.
If you're operating from dynamic link library (.dll /.so), then you might not have argv, then you can consider following solution:
application.h:
#pragma once
//
// https://en.cppreference.com/w/User:D41D8CD98F/feature_testing_macros
//
#ifdef __cpp_lib_filesystem
#include <filesystem>
#else
#include <experimental/filesystem>
namespace std {
namespace filesystem = experimental::filesystem;
}
#endif
std::filesystem::path getexepath();
application.cpp:
#include "application.h"
#ifdef _WIN32
#include <windows.h> //GetModuleFileNameW
#else
#include <limits.h>
#include <unistd.h> //readlink
#endif
std::filesystem::path getexepath()
{
#ifdef _WIN32
wchar_t path[MAX_PATH] = { 0 };
GetModuleFileNameW(NULL, path, MAX_PATH);
return path;
#else
char result[PATH_MAX];
ssize_t count = readlink("/proc/self/exe", result, PATH_MAX);
return std::string(result, (count > 0) ? count : 0);
#endif
}
I'm not sure about Linux, but try this for Windows:
#include <windows.h>
#include <iostream>
using namespace std ;
int main()
{
char ownPth[MAX_PATH];
// When NULL is passed to GetModuleHandle, the handle of the exe itself is returned
HMODULE hModule = GetModuleHandle(NULL);
if (hModule != NULL)
{
// Use GetModuleFileName() with module handle to get the path
GetModuleFileName(hModule, ownPth, (sizeof(ownPth)));
cout << ownPth << endl ;
system("PAUSE");
return 0;
}
else
{
cout << "Module handle is NULL" << endl ;
system("PAUSE");
return 0;
}
}
This is what I ended up with
The header file looks like this:
#pragma once
#include <string>
namespace MyPaths {
std::string getExecutablePath();
std::string getExecutableDir();
std::string mergePaths(std::string pathA, std::string pathB);
bool checkIfFileExists (const std::string& filePath);
}
Implementation
#if defined(_WIN32)
#include <windows.h>
#include <Shlwapi.h>
#include <io.h>
#define access _access_s
#endif
#ifdef __APPLE__
#include <libgen.h>
#include <limits.h>
#include <mach-o/dyld.h>
#include <unistd.h>
#endif
#ifdef __linux__
#include <limits.h>
#include <libgen.h>
#include <unistd.h>
#if defined(__sun)
#define PROC_SELF_EXE "/proc/self/path/a.out"
#else
#define PROC_SELF_EXE "/proc/self/exe"
#endif
#endif
namespace MyPaths {
#if defined(_WIN32)
std::string getExecutablePath() {
char rawPathName[MAX_PATH];
GetModuleFileNameA(NULL, rawPathName, MAX_PATH);
return std::string(rawPathName);
}
std::string getExecutableDir() {
std::string executablePath = getExecutablePath();
char* exePath = new char[executablePath.length()];
strcpy(exePath, executablePath.c_str());
PathRemoveFileSpecA(exePath);
std::string directory = std::string(exePath);
delete[] exePath;
return directory;
}
std::string mergePaths(std::string pathA, std::string pathB) {
char combined[MAX_PATH];
PathCombineA(combined, pathA.c_str(), pathB.c_str());
std::string mergedPath(combined);
return mergedPath;
}
#endif
#ifdef __linux__
std::string getExecutablePath() {
char rawPathName[PATH_MAX];
realpath(PROC_SELF_EXE, rawPathName);
return std::string(rawPathName);
}
std::string getExecutableDir() {
std::string executablePath = getExecutablePath();
char *executablePathStr = new char[executablePath.length() + 1];
strcpy(executablePathStr, executablePath.c_str());
char* executableDir = dirname(executablePathStr);
delete [] executablePathStr;
return std::string(executableDir);
}
std::string mergePaths(std::string pathA, std::string pathB) {
return pathA+"/"+pathB;
}
#endif
#ifdef __APPLE__
std::string getExecutablePath() {
char rawPathName[PATH_MAX];
char realPathName[PATH_MAX];
uint32_t rawPathSize = (uint32_t)sizeof(rawPathName);
if(!_NSGetExecutablePath(rawPathName, &rawPathSize)) {
realpath(rawPathName, realPathName);
}
return std::string(realPathName);
}
std::string getExecutableDir() {
std::string executablePath = getExecutablePath();
char *executablePathStr = new char[executablePath.length() + 1];
strcpy(executablePathStr, executablePath.c_str());
char* executableDir = dirname(executablePathStr);
delete [] executablePathStr;
return std::string(executableDir);
}
std::string mergePaths(std::string pathA, std::string pathB) {
return pathA+"/"+pathB;
}
#endif
bool checkIfFileExists (const std::string& filePath) {
return access( filePath.c_str(), 0 ) == 0;
}
}
For windows:
GetModuleFileName - returns the exe path + exe filename
To remove filename
PathRemoveFileSpec
QT provides this with OS abstraction as QCoreApplication::applicationDirPath()
If using C++17 one can do the following to get the path to the executable.
#include <filesystem>
std::filesystem::path getExecutablePath()
{
return std::filesystem::canonical("/proc/self/exe");
}
The above answer has been tested on Debian 10 using G++ 9.3.0
This is a Windows specific way, but it is at least half of your answer.
GetThisPath.h
/// dest is expected to be MAX_PATH in length.
/// returns dest
/// TCHAR dest[MAX_PATH];
/// GetThisPath(dest, MAX_PATH);
TCHAR* GetThisPath(TCHAR* dest, size_t destSize);
GetThisPath.cpp
#include <Shlwapi.h>
#pragma comment(lib, "shlwapi.lib")
TCHAR* GetThisPath(TCHAR* dest, size_t destSize)
{
if (!dest) return NULL;
if (MAX_PATH > destSize) return NULL;
DWORD length = GetModuleFileName( NULL, dest, destSize );
PathRemoveFileSpec(dest);
return dest;
}
mainProgram.cpp
TCHAR dest[MAX_PATH];
GetThisPath(dest, MAX_PATH);
I would suggest using platform detection as preprocessor directives to change the implementation of a wrapper function that calls GetThisPath for each platform.
Using args[0] and looking for '/' (or '\\'):
#include <string>
#include <iostream> // to show the result
int main( int numArgs, char *args[])
{
// Get the last position of '/'
std::string aux(args[0]);
// get '/' or '\\' depending on unix/mac or windows.
#if defined(_WIN32) || defined(WIN32)
int pos = aux.rfind('\\');
#else
int pos = aux.rfind('/');
#endif
// Get the path and the name
std::string path = aux.substr(0,pos+1);
std::string name = aux.substr(pos+1);
// show results
std::cout << "Path: " << path << std::endl;
std::cout << "Name: " << name << std::endl;
}
EDITED:
If '/' does not exist, pos==-1 so the result is correct.
For Windows you can use GetModuleFilename().
For Linux see BinReloc (old, defunct URL) mirror of BinReloc in datenwolf's GitHub repositories.
This is probably the most natural way to do it, while covering most major desktop platforms. I am not certain, but I believe this should work with all the BSD's, not just FreeBSD, if you change the platform macro check to cover all of them. If I ever get around to installing Solaris, I'll be sure to add that platform to the supported list.
Features full UTF-8 support on Windows, which not everyone cares enough to go that far.
procinfo/win32/procinfo.cpp
#ifdef _WIN32
#include "../procinfo.h"
#include <windows.h>
#include <tlhelp32.h>
#include <cstddef>
#include <vector>
#include <cwchar>
using std::string;
using std::wstring;
using std::vector;
using std::size_t;
static inline string narrow(wstring wstr) {
int nbytes = WideCharToMultiByte(CP_UTF8, 0, wstr.c_str(), (int)wstr.length(), NULL, 0, NULL, NULL);
vector<char> buf(nbytes);
return string{ buf.data(), (size_t)WideCharToMultiByte(CP_UTF8, 0, wstr.c_str(), (int)wstr.length(), buf.data(), nbytes, NULL, NULL) };
}
process_t ppid_from_pid(process_t pid) {
process_t ppid;
HANDLE hp = CreateToolhelp32Snapshot(TH32CS_SNAPPROCESS, 0);
PROCESSENTRY32 pe = { 0 };
pe.dwSize = sizeof(PROCESSENTRY32);
if (Process32First(hp, &pe)) {
do {
if (pe.th32ProcessID == pid) {
ppid = pe.th32ParentProcessID;
break;
}
} while (Process32Next(hp, &pe));
}
CloseHandle(hp);
return ppid;
}
string path_from_pid(process_t pid) {
string path;
HANDLE hm = CreateToolhelp32Snapshot(TH32CS_SNAPMODULE, pid);
MODULEENTRY32W me = { 0 };
me.dwSize = sizeof(MODULEENTRY32W);
if (Module32FirstW(hm, &me)) {
do {
if (me.th32ProcessID == pid) {
path = narrow(me.szExePath);
break;
}
} while (Module32NextW(hm, &me));
}
CloseHandle(hm);
return path;
}
#endif
procinfo/macosx/procinfo.cpp
#if defined(__APPLE__) && defined(__MACH__)
#include "../procinfo.h"
#include <libproc.h>
using std::string;
string path_from_pid(process_t pid) {
string path;
char buffer[PROC_PIDPATHINFO_MAXSIZE];
if (proc_pidpath(pid, buffer, sizeof(buffer)) > 0) {
path = string(buffer) + "\0";
}
return path;
}
#endif
procinfo/linux/procinfo.cpp
#ifdef __linux__
#include "../procinfo.h"
#include <cstdlib>
using std::string;
using std::to_string;
string path_from_pid(process_t pid) {
string path;
string link = string("/proc/") + to_string(pid) + string("/exe");
char *buffer = realpath(link.c_str(), NULL);
path = buffer ? : "";
free(buffer);
return path;
}
#endif
procinfo/freebsd/procinfo.cpp
#ifdef __FreeBSD__
#include "../procinfo.h"
#include <sys/sysctl.h>
#include <cstddef>
using std::string;
using std::size_t;
string path_from_pid(process_t pid) {
string path;
size_t length;
// CTL_KERN::KERN_PROC::KERN_PROC_PATHNAME(pid)
int mib[4] = { CTL_KERN, KERN_PROC, KERN_PROC_PATHNAME, pid };
if (sysctl(mib, 4, NULL, &length, NULL, 0) == 0) {
path.resize(length, '\0');
char *buffer = path.data();
if (sysctl(mib, 4, buffer, &length, NULL, 0) == 0) {
path = string(buffer) + "\0";
}
}
return path;
}
#endif
procinfo/procinfo.cpp
#include "procinfo.h"
#ifdef _WiN32
#include <process.h>
#endif
#include <unistd.h>
#include <cstddef>
using std::string;
using std::size_t;
process_t pid_from_self() {
#ifdef _WIN32
return _getpid();
#else
return getpid();
#endif
}
process_t ppid_from_self() {
#ifdef _WIN32
return ppid_from_pid(pid_from_self());
#else
return getppid();
#endif
}
string dir_from_pid(process_t pid) {
string fname = path_from_pid(pid);
size_t fp = fname.find_last_of("/\\");
return fname.substr(0, fp + 1);
}
string name_from_pid(process_t pid) {
string fname = path_from_pid(pid);
size_t fp = fname.find_last_of("/\\");
return fname.substr(fp + 1);
}
procinfo/procinfo.h
#ifdef _WiN32
#include <windows.h>
typedef DWORD process_t;
#else
#include <sys/types.h>
typedef pid_t process_t;
#endif
#include <string>
/* windows-only helper function */
process_t ppid_from_pid(process_t pid);
/* get current process process id */
process_t pid_from_self();
/* get parent process process id */
process_t ppid_from_self();
/* std::string possible_result = "C:\\path\\to\\file.exe"; */
std::string path_from_pid(process_t pid);
/* std::string possible_result = "C:\\path\\to\\"; */
std::string dir_from_pid(process_t pid);
/* std::string possible_result = "file.exe"; */
std::string name_from_pid(process_t pid);
This allows getting the full path to the executable of pretty much any process id, except on Windows there are some process's with security attributes which simply will not allow it, so wysiwyg, this solution is not perfect.
To address what the question was asking more precisely, you may do this:
procinfo.cpp
#include "procinfo/procinfo.h"
#include <iostream>
using std::string;
using std::cout;
using std::endl;
int main() {
cout << dir_from_pid(pid_from_self()) << endl;
return 0;
}
Build the above file structure with this command:
procinfo.sh
cd "${0%/*}"
g++ procinfo.cpp procinfo/procinfo.cpp procinfo/win32/procinfo.cpp procinfo/macosx/procinfo.cpp procinfo/linux/procinfo.cpp procinfo/freebsd/procinfo.cpp -o procinfo.exe
For downloading a copy of the files listed above:
git clone git://github.com/time-killer-games/procinfo.git
For more cross-platform process-related goodness:
https://github.com/time-killer-games/enigma-dev
See the readme for a list of most of the functions included.
As others mentioned, argv[0] is quite a nice solution, provided that the platform actually passes the executable path, which is surely not less probable than the OS being Windows (where WinAPI can help find the executable path). If you want to strip the string to only include the path to the directory where the executable resides, then using that path to find other application files (like game assets if your program is a game) is perfectly fine, since opening files is relative to the working directory, or, if provided, the root.
The following works as a quick and dirty solution, but note that it is far from being foolproof:
#include <iostream>
using namespace std ;
int main( int argc, char** argv)
{
cout << argv[0] << endl ;
return 0;
}
In case you need to handle unicode paths for Windows:
#include <Windows.h>
#include <iostream>
int wmain(int argc, wchar_t * argv[])
{
HMODULE this_process_handle = GetModuleHandle(NULL);
wchar_t this_process_path[MAX_PATH];
GetModuleFileNameW(NULL, this_process_path, sizeof(this_process_path));
std::wcout << "Unicode path of this app: " << this_process_path << std::endl;
return 0;
}
There are several answers recommending using GetModuleFileName on Windows. These answers have some shortcomings like:
The code should work for both UNICODE and ANSI versions
The path can be longer than MAX_PATH
GetModuleFileName function can fail and return 0
GetModuleFileName can return a relative executable name instead of a full name
GetModuleFileName can return a short path like C:\GIT-RE~1\TEST_G~1\test.exe
Let me provide an improved version, which takes into account the abovementioned points:
#include <Windows.h>
#include <string>
#include <memory>
#include <iostream>
// Converts relative name like "..\test.exe" to its full form like "C:\project\test.exe".
std::basic_string<TCHAR> get_full_name(const TCHAR const* name)
{
// First we need to get a length of the full name string
const DWORD full_name_length{GetFullPathName(name, 0, NULL, NULL)};
if (full_name_length == 0) {
// GetFullPathName call failed. Maybe you want to throw an exception.
return std::basic_string<TCHAR>{};
}
// Now, when we know the length, we create a buffer with correct size and write the full name into it
std::unique_ptr<TCHAR[]> full_name_buffer{new TCHAR[full_name_length]};
const DWORD res = GetFullPathName(name, full_name_length, full_name_buffer.get(), NULL);
if (res == 0) {
// GetFullPathName call failed. Maybe you want to throw an exception.
return std::basic_string<TCHAR>{};
}
// The full name has been successfully written to the buffer.
return std::basic_string<TCHAR>(full_name_buffer.get());
}
// Resolves short path like "C:\GIT-RE~1\TEST_G~1\test.exe" into its long form like "C:\git-repository\test_project\test.exe"
std::basic_string<TCHAR> get_long_name(const TCHAR const* name)
{
// First we need to get a length of the long name string
const DWORD long_name_length{GetLongPathName(name, 0, NULL)};
if (long_name_length == 0) {
// GetLongPathName call failed. Maybe you want to throw an exception.
return std::basic_string<TCHAR>{};
}
// Now, when we know the length, we create a buffer with correct size and write the full name into it
std::unique_ptr<TCHAR[]> long_name_buffer{new TCHAR[long_name_length]};
const DWORD res = GetLongPathName(name, long_name_buffer.get(), long_name_length);
if (res == 0) {
// GetLongPathName call failed. Maybe you want to throw an exception.
return std::basic_string<TCHAR>{};
}
// The long name has been successfully written to the buffer.
return std::basic_string<TCHAR>(long_name_buffer.get());
}
std::basic_string<TCHAR> get_current_executable_full_name()
{
DWORD path_buffer_size = MAX_PATH; // we start with MAX_PATH because it is most likely that
// the path doesn't exceeds 260 characters
std::unique_ptr<TCHAR[]> path_buffer{new TCHAR[path_buffer_size]};
while (true) {
const auto bytes_written = GetModuleFileName(
NULL, path_buffer.get(), path_buffer_size);
const auto last_error = GetLastError();
if (bytes_written == 0) {
// GetModuleFileName call failed. Maybe you want to throw an exception.
return std::basic_string<TCHAR>{};
}
if (last_error == ERROR_INSUFFICIENT_BUFFER) {
// There is not enough space in our buffer to fit the path.
// We need to increase the buffer and try again.
path_buffer_size *= 2;
path_buffer.reset(new TCHAR[path_buffer_size]);
continue;
}
// GetModuleFileName has successfully written the executable name to the buffer.
// Now we need to convert it to a full long name
std::basic_string<TCHAR> full_name = get_full_name(path_buffer.get());
return get_long_name(full_name.c_str());
}
}
// Example of how this function can be used
int main()
{
#ifdef UNICODE
// If you use UNICODE version of WinApi
std::wstring exe_file_full_name = get_current_executable_full_name();
std::wstring exe_folder_full_name = exe_file_full_name.substr(0, exe_file_full_name.find_last_of(L"\\"));
std::wcout << exe_file_full_name << "\n"; // prints: C:\test_project\x64\Debug\test_program.exe
std::wcout << exe_folder_full_name << "\n"; // prints: C:\test_project\x64\Debug
#else
// If you use ANSI version of WinApi
std::string exe_file_full_name = get_current_executable_full_name();
std::string exe_folder_full_name = exe_file_full_name.substr(0, exe_file_full_name.find_last_of("\\"));
std::cout << exe_file_full_name << "\n"; // prints: C:\test_project\x64\Debug\test_program.exe
std::cout << exe_folder_full_name << "\n"; // prints: C:\test_project\x64\Debug
#endif
}
For Windows, you have the problem of how to strip the executable from the result of GetModuleFileName(). The Windows API call PathRemoveFileSpec() that Nate used for that purpose in his answer changed between Windows 8 and its predecessors. So how to remain compatible with both and safe? Luckily, there's C++17 (or Boost, if you're using an older compiler). I do this:
#include <windows.h>
#include <string>
#include <filesystem>
namespace fs = std::experimental::filesystem;
// We could use fs::path as return type, but if you're not aware of
// std::experimental::filesystem, you probably handle filenames
// as strings anyway in the remainder of your code. I'm on Japanese
// Windows, so wide chars are a must.
std::wstring getDirectoryWithCurrentExecutable()
{
int size = 256;
std::vector<wchar_t> charBuffer;
// Let's be safe, and find the right buffer size programmatically.
do {
size *= 2;
charBuffer.resize(size);
// Resize until filename fits. GetModuleFileNameW returns the
// number of characters written to the buffer, so if the
// return value is smaller than the size of the buffer, it was
// large enough.
} while (GetModuleFileNameW(NULL, charBuffer.data(), size) == size);
// Typically: c:/program files (x86)/something/foo/bar/exe/files/win64/baz.exe
// (Note that windows supports forward and backward slashes as path
// separators, so you have to be careful when searching through a path
// manually.)
// Let's extract the interesting part:
fs::path path(charBuffer.data()); // Contains the full path including .exe
return path.remove_filename() // Extract the directory ...
.w_str(); // ... and convert to a string.
}
SDL2 (https://www.libsdl.org/) library has two functions implemented across a wide spectrum of platforms:
SDL_GetBasePath
SDL_GetPrefPath
So if you don't want to reinvent the wheel... sadly, it means including the entire library, although it's got a quite permissive license and one could also just copy the code. Besides, it provides a lot of other cross-platform functionality.
I didn't read if my solution is already posted but on linux and osx you can read the 0 argument in your main function like this:
int main(int argument_count, char **argument_list) {
std::string currentWorkingDirectoryPath(argument_list[currentWorkingDirectory]);
std::size_t pos = currentWorkingDirectoryPath.rfind("/"); // position of "live" in str
currentWorkingDirectoryPath = currentWorkingDirectoryPath.substr (0, pos);
In the first item of argument_list the name of the executable is integrated but removed by the code above.
Here my simple solution that works in both Windows and Linux, based on this solution and modified with this answer:
#include <string>
using namespace std;
#if defined(_WIN32)
#include <algorithm> // for transform() in get_exe_path()
#define WIN32_LEAN_AND_MEAN
#define VC_EXTRALEAN
#include <Windows.h>
#elif defined(__linux__)
#include <unistd.h> // for getting path of executable
#endif // Windows/Linux
string replace(const string& s, const string& from, const string& to) {
string r = s;
int p = 0;
while((p=(int)r.find(from, p))!=string::npos) {
r.replace(p, from.length(), to);
p += (int)to.length();
}
return r;
}
string get_exe_path() { // returns path where executable is located
string path = "";
#if defined(_WIN32)
wchar_t wc[260] = {0};
GetModuleFileNameW(NULL, wc, 260);
wstring ws(wc);
transform(ws.begin(), ws.end(), back_inserter(path), [](wchar_t c) { return (char)c; });
path = replace(path, "\\", "/");
#elif defined(__linux__)
char c[260];
int length = (int)readlink("/proc/self/exe", c, 260);
path = string(c, length>0 ? length : 0);
#endif // Windows/Linux
return path.substr(0, path.rfind('/')+1);
}
This was my solution in Windows. It is called like this:
std::wstring sResult = GetPathOfEXE(64);
Where 64 is the minimum size you think the path will be. GetPathOfEXE calls itself recursively, doubling the size of the buffer each time until it gets a big enough buffer to get the whole path without truncation.
std::wstring GetPathOfEXE(DWORD dwSize)
{
WCHAR* pwcharFileNamePath;
DWORD dwLastError;
HRESULT hrError;
std::wstring wsResult;
DWORD dwCount;
pwcharFileNamePath = new WCHAR[dwSize];
dwCount = GetModuleFileNameW(
NULL,
pwcharFileNamePath,
dwSize
);
dwLastError = GetLastError();
if (ERROR_SUCCESS == dwLastError)
{
hrError = PathCchRemoveFileSpec(
pwcharFileNamePath,
dwCount
);
if (S_OK == hrError)
{
wsResult = pwcharFileNamePath;
if (pwcharFileNamePath)
{
delete pwcharFileNamePath;
}
return wsResult;
}
else if(S_FALSE == hrError)
{
wsResult = pwcharFileNamePath;
if (pwcharFileNamePath)
{
delete pwcharFileNamePath;
}
//there was nothing to truncate off the end of the path
//returning something better than nothing in this case for the user
return wsResult;
}
else
{
if (pwcharFileNamePath)
{
delete pwcharFileNamePath;
}
std::ostringstream oss;
oss << "could not get file name and path of executing process. error truncating file name off path. last error : " << hrError;
throw std::runtime_error(oss.str().c_str());
}
}
else if (ERROR_INSUFFICIENT_BUFFER == dwLastError)
{
if (pwcharFileNamePath)
{
delete pwcharFileNamePath;
}
return GetPathOfEXE(
dwSize * 2
);
}
else
{
if (pwcharFileNamePath)
{
delete pwcharFileNamePath;
}
std::ostringstream oss;
oss << "could not get file name and path of executing process. last error : " << dwLastError;
throw std::runtime_error(oss.str().c_str());
}
}
char exePath[512];
CString strexePath;
GetModuleFileName(NULL,exePath,512);
strexePath.Format("%s",exePath);
strexePath = strexePath.Mid(0,strexePath.ReverseFind('\\'));
in Unix(including Linux) try 'which', in Windows try 'where'.
#include <stdio.h>
#define _UNIX
int main(int argc, char** argv)
{
char cmd[128];
char buf[128];
FILE* fp = NULL;
#if defined(_UNIX)
sprintf(cmd, "which %s > my.path", argv[0]);
#else
sprintf(cmd, "where %s > my.path", argv[0]);
#endif
system(cmd);
fp = fopen("my.path", "r");
fgets(buf, sizeof(buf), fp);
fclose(fp);
printf("full path: %s\n", buf);
unlink("my.path");
return 0;
}
As of C++17:
Make sure you include std filesystem.
#include <filesystem>
and now you can do this.
std::filesystem::current_path().string()
boost filesystem became part of the standard lib.
if you can't find it try to look under:
std::experimental::filesystem
I know this question has been asked before but I still haven't seen a satisfactory answer, or a definitive "no, this cannot be done", so I'll ask again!
All I want to do is get the path to the currently running executable, either as an absolute path or relative to where the executable is invoked from, in a platform-independent fashion. I though boost::filesystem::initial_path was the answer to my troubles but that seems to only handle the 'platform-independent' part of the question - it still returns the path from which the application was invoked.
For a bit of background, this is a game using Ogre, which I'm trying to profile using Very Sleepy, which runs the target executable from its own directory, so of course on load the game finds no configuration files etc. and promptly crashes. I want to be able to pass it an absolute path to the configuration files, which I know will always live alongside the executable. The same goes for debugging in Visual Studio - I'd like to be able to run $(TargetPath) without having to set the working directory.
There is no cross platform way that I know.
For Linux: pass "/proc/self/exe" to std::filesystem::canonical or readlink.
Windows: pass NULL as the module handle to GetModuleFileName.
The boost::dll::program_location function is one of the best cross platform methods of getting the path of the running executable that I know of. The DLL library was added to Boost in version 1.61.0.
The following is my solution. I have tested it on Windows, Mac OS X, Solaris, Free BSD, and GNU/Linux.
It requires Boost 1.55.0 or greater. It uses the Boost.Filesystem library directly and the Boost.Locale library and Boost.System library indirectly.
src/executable_path.cpp
#include <cstdio>
#include <cstdlib>
#include <algorithm>
#include <iterator>
#include <string>
#include <vector>
#include <boost/filesystem/operations.hpp>
#include <boost/filesystem/path.hpp>
#include <boost/predef.h>
#include <boost/version.hpp>
#include <boost/tokenizer.hpp>
#if (BOOST_VERSION > BOOST_VERSION_NUMBER(1,64,0))
# include <boost/process.hpp>
#endif
#if (BOOST_OS_CYGWIN || BOOST_OS_WINDOWS)
# include <Windows.h>
#endif
#include <boost/executable_path.hpp>
#include <boost/detail/executable_path_internals.hpp>
namespace boost {
#if (BOOST_OS_CYGWIN || BOOST_OS_WINDOWS)
std::string executable_path(const char* argv0)
{
typedef std::vector<char> char_vector;
typedef std::vector<char>::size_type size_type;
char_vector buf(1024, 0);
size_type size = buf.size();
bool havePath = false;
bool shouldContinue = true;
do
{
DWORD result = GetModuleFileNameA(nullptr, &buf[0], size);
DWORD lastError = GetLastError();
if (result == 0)
{
shouldContinue = false;
}
else if (result < size)
{
havePath = true;
shouldContinue = false;
}
else if (
result == size
&& (lastError == ERROR_INSUFFICIENT_BUFFER || lastError == ERROR_SUCCESS)
)
{
size *= 2;
buf.resize(size);
}
else
{
shouldContinue = false;
}
} while (shouldContinue);
if (!havePath)
{
return detail::executable_path_fallback(argv0);
}
// On Microsoft Windows, there is no need to call boost::filesystem::canonical or
// boost::filesystem::path::make_preferred. The path returned by GetModuleFileNameA
// is the one we want.
std::string ret = &buf[0];
return ret;
}
#elif (BOOST_OS_MACOS)
# include <mach-o/dyld.h>
std::string executable_path(const char* argv0)
{
typedef std::vector<char> char_vector;
char_vector buf(1024, 0);
uint32_t size = static_cast<uint32_t>(buf.size());
bool havePath = false;
bool shouldContinue = true;
do
{
int result = _NSGetExecutablePath(&buf[0], &size);
if (result == -1)
{
buf.resize(size + 1);
std::fill(std::begin(buf), std::end(buf), 0);
}
else
{
shouldContinue = false;
if (buf.at(0) != 0)
{
havePath = true;
}
}
} while (shouldContinue);
if (!havePath)
{
return detail::executable_path_fallback(argv0);
}
std::string path(&buf[0], size);
boost::system::error_code ec;
boost::filesystem::path p(
boost::filesystem::canonical(path, boost::filesystem::current_path(), ec));
if (ec.value() == boost::system::errc::success)
{
return p.make_preferred().string();
}
return detail::executable_path_fallback(argv0);
}
#elif (BOOST_OS_SOLARIS)
# include <stdlib.h>
std::string executable_path(const char* argv0)
{
std::string ret = getexecname();
if (ret.empty())
{
return detail::executable_path_fallback(argv0);
}
boost::filesystem::path p(ret);
if (!p.has_root_directory())
{
boost::system::error_code ec;
p = boost::filesystem::canonical(
p, boost::filesystem::current_path(), ec);
if (ec.value() != boost::system::errc::success)
{
return detail::executable_path_fallback(argv0);
}
ret = p.make_preferred().string();
}
return ret;
}
#elif (BOOST_OS_BSD)
# include <sys/sysctl.h>
std::string executable_path(const char* argv0)
{
typedef std::vector<char> char_vector;
int mib[4]{0};
size_t size;
mib[0] = CTL_KERN;
mib[1] = KERN_PROC;
mib[2] = KERN_PROC_PATHNAME;
mib[3] = -1;
int result = sysctl(mib, 4, nullptr, &size, nullptr, 0);
if (-1 == result)
{
return detail::executable_path_fallback(argv0);
}
char_vector buf(size + 1, 0);
result = sysctl(mib, 4, &buf[0], &size, nullptr, 0);
if (-1 == result)
{
return detail::executable_path_fallback(argv0);
}
std::string path(&buf[0], size);
boost::system::error_code ec;
boost::filesystem::path p(
boost::filesystem::canonical(
path, boost::filesystem::current_path(), ec));
if (ec.value() == boost::system::errc::success)
{
return p.make_preferred().string();
}
return detail::executable_path_fallback(argv0);
}
#elif (BOOST_OS_LINUX)
# include <unistd.h>
std::string executable_path(const char *argv0)
{
typedef std::vector<char> char_vector;
typedef std::vector<char>::size_type size_type;
char_vector buf(1024, 0);
size_type size = buf.size();
bool havePath = false;
bool shouldContinue = true;
do
{
ssize_t result = readlink("/proc/self/exe", &buf[0], size);
if (result < 0)
{
shouldContinue = false;
}
else if (static_cast<size_type>(result) < size)
{
havePath = true;
shouldContinue = false;
size = result;
}
else
{
size *= 2;
buf.resize(size);
std::fill(std::begin(buf), std::end(buf), 0);
}
} while (shouldContinue);
if (!havePath)
{
return detail::executable_path_fallback(argv0);
}
std::string path(&buf[0], size);
boost::system::error_code ec;
boost::filesystem::path p(
boost::filesystem::canonical(
path, boost::filesystem::current_path(), ec));
if (ec.value() == boost::system::errc::success)
{
return p.make_preferred().string();
}
return detail::executable_path_fallback(argv0);
}
#else
std::string executable_path(const char *argv0)
{
return detail::executable_path_fallback(argv0);
}
#endif
}
src/detail/executable_path_internals.cpp
#include <cstdio>
#include <cstdlib>
#include <algorithm>
#include <iterator>
#include <string>
#include <vector>
#include <boost/filesystem/operations.hpp>
#include <boost/filesystem/path.hpp>
#include <boost/predef.h>
#include <boost/version.hpp>
#include <boost/tokenizer.hpp>
#if (BOOST_VERSION > BOOST_VERSION_NUMBER(1,64,0))
# include <boost/process.hpp>
#endif
#if (BOOST_OS_CYGWIN || BOOST_OS_WINDOWS)
# include <Windows.h>
#endif
#include <boost/executable_path.hpp>
#include <boost/detail/executable_path_internals.hpp>
namespace boost {
namespace detail {
std::string GetEnv(const std::string& varName)
{
if (varName.empty()) return "";
#if (BOOST_OS_BSD || BOOST_OS_CYGWIN || BOOST_OS_LINUX || BOOST_OS_MACOS || BOOST_OS_SOLARIS)
char* value = std::getenv(varName.c_str());
if (!value) return "";
return value;
#elif (BOOST_OS_WINDOWS)
typedef std::vector<char> char_vector;
typedef std::vector<char>::size_type size_type;
char_vector value(8192, 0);
size_type size = value.size();
bool haveValue = false;
bool shouldContinue = true;
do
{
DWORD result = GetEnvironmentVariableA(varName.c_str(), &value[0], size);
if (result == 0)
{
shouldContinue = false;
}
else if (result < size)
{
haveValue = true;
shouldContinue = false;
}
else
{
size *= 2;
value.resize(size);
}
} while (shouldContinue);
std::string ret;
if (haveValue)
{
ret = &value[0];
}
return ret;
#else
return "";
#endif
}
bool GetDirectoryListFromDelimitedString(
const std::string& str,
std::vector<std::string>& dirs)
{
typedef boost::char_separator<char> char_separator_type;
typedef boost::tokenizer<
boost::char_separator<char>, std::string::const_iterator,
std::string> tokenizer_type;
dirs.clear();
if (str.empty())
{
return false;
}
#if (BOOST_OS_WINDOWS)
const std::string os_pathsep(";");
#else
const std::string os_pathsep(":");
#endif
char_separator_type pathSep(os_pathsep.c_str());
tokenizer_type strTok(str, pathSep);
typename tokenizer_type::iterator strIt;
typename tokenizer_type::iterator strEndIt = strTok.end();
for (strIt = strTok.begin(); strIt != strEndIt; ++strIt)
{
dirs.push_back(*strIt);
}
if (dirs.empty())
{
return false;
}
return true;
}
std::string search_path(const std::string& file)
{
if (file.empty()) return "";
std::string ret;
#if (BOOST_VERSION > BOOST_VERSION_NUMBER(1,64,0))
{
namespace bp = boost::process;
boost::filesystem::path p = bp::search_path(file);
ret = p.make_preferred().string();
}
#endif
if (!ret.empty()) return ret;
// Drat! I have to do it the hard way.
std::string pathEnvVar = GetEnv("PATH");
if (pathEnvVar.empty()) return "";
std::vector<std::string> pathDirs;
bool getDirList = GetDirectoryListFromDelimitedString(pathEnvVar, pathDirs);
if (!getDirList) return "";
std::vector<std::string>::const_iterator it = pathDirs.cbegin();
std::vector<std::string>::const_iterator itEnd = pathDirs.cend();
for ( ; it != itEnd; ++it)
{
boost::filesystem::path p(*it);
p /= file;
if (boost::filesystem::exists(p) && boost::filesystem::is_regular_file(p))
{
return p.make_preferred().string();
}
}
return "";
}
std::string executable_path_fallback(const char *argv0)
{
if (argv0 == nullptr) return "";
if (argv0[0] == 0) return "";
#if (BOOST_OS_WINDOWS)
const std::string os_sep("\\");
#else
const std::string os_sep("/");
#endif
if (strstr(argv0, os_sep.c_str()) != nullptr)
{
boost::system::error_code ec;
boost::filesystem::path p(
boost::filesystem::canonical(
argv0, boost::filesystem::current_path(), ec));
if (ec.value() == boost::system::errc::success)
{
return p.make_preferred().string();
}
}
std::string ret = search_path(argv0);
if (!ret.empty())
{
return ret;
}
boost::system::error_code ec;
boost::filesystem::path p(
boost::filesystem::canonical(
argv0, boost::filesystem::current_path(), ec));
if (ec.value() == boost::system::errc::success)
{
ret = p.make_preferred().string();
}
return ret;
}
}
}
include/boost/executable_path.hpp
#ifndef BOOST_EXECUTABLE_PATH_HPP_
#define BOOST_EXECUTABLE_PATH_HPP_
#pragma once
#include <string>
namespace boost {
std::string executable_path(const char * argv0);
}
#endif // BOOST_EXECUTABLE_PATH_HPP_
include/boost/detail/executable_path_internals.hpp
#ifndef BOOST_DETAIL_EXECUTABLE_PATH_INTERNALS_HPP_
#define BOOST_DETAIL_EXECUTABLE_PATH_INTERNALS_HPP_
#pragma once
#include <string>
#include <vector>
namespace boost {
namespace detail {
std::string GetEnv(const std::string& varName);
bool GetDirectoryListFromDelimitedString(
const std::string& str,
std::vector<std::string>& dirs);
std::string search_path(const std::string& file);
std::string executable_path_fallback(const char * argv0);
}
}
#endif // BOOST_DETAIL_EXECUTABLE_PATH_INTERNALS_HPP_
I have a complete project, including a test application and CMake build files available at SnKOpen - /cpp/executable_path/trunk. This version is more complete than the version I provided here. It is also supports more platforms.
I have tested the application on all supported operating systems in the following four scenarios.
Relative path, executable in current directory: i.e. ./executable_path_test
Relative path, executable in another directory: i.e. ./build/executable_path_test
Full path: i.e. /some/dir/executable_path_test
Executable in path, file name only: i.e. executable_path_test
In all four scenarios, both the executable_path and executable_path_fallback functions work and return the same results.
Notes
This is an updated answer to this question. I updated the answer to take into consideration user comments and suggestions. I also added a link to a project in my SVN Repository.
This way uses boost + argv. You mentioned this may not be cross platform because it may or may not include the executable name. Well the following code should work around that.
#include <boost/filesystem/operations.hpp>
#include <boost/filesystem/path.hpp>
#include <iostream>
namespace fs = boost::filesystem;
int main(int argc,char** argv)
{
fs::path full_path( fs::initial_path<fs::path>() );
full_path = fs::system_complete( fs::path( argv[0] ) );
std::cout << full_path << std::endl;
//Without file name
std::cout << full_path.stem() << std::endl;
//std::cout << fs::basename(full_path) << std::endl;
return 0;
}
The following code gets the current working directory which may do what you need
#include <boost/filesystem/operations.hpp>
#include <boost/filesystem/path.hpp>
#include <iostream>
namespace fs = boost::filesystem;
int main(int argc,char** argv)
{
//current working directory
fs::path full_path( fs::current_path<fs::path>() );
std::cout << full_path << std::endl;
std::cout << full_path.stem() << std::endl;
//std::cout << fs::basepath(full_path) << std::endl;
return 0;
}
Note
Just realized that basename() was deprecated so had to switch to .stem()
C++17, windows, unicode, using filesystem new api:
#include "..\Project.h"
#include <filesystem>
using namespace std;
using namespace filesystem;
int wmain(int argc, wchar_t** argv)
{
auto dir = weakly_canonical(path(argv[0])).parent_path();
printf("%S", dir.c_str());
return 0;
}
(Important: Use wmain with wchar_t** - don't mix main with wchar_t**. For cmake projects enable unicode using add_definitions(-DUNICODE -D_UNICODE)).
Suspect this solution should be portable, but don't know how unicode is implemented on other OS's.
weakly_canonical is needed only if you use as Output Directory upper folder references ('..') to simplify path. If you don't use it - remove it.
If you're operating from dynamic link library (.dll /.so), then you might not have argv, then you can consider following solution:
application.h:
#pragma once
//
// https://en.cppreference.com/w/User:D41D8CD98F/feature_testing_macros
//
#ifdef __cpp_lib_filesystem
#include <filesystem>
#else
#include <experimental/filesystem>
namespace std {
namespace filesystem = experimental::filesystem;
}
#endif
std::filesystem::path getexepath();
application.cpp:
#include "application.h"
#ifdef _WIN32
#include <windows.h> //GetModuleFileNameW
#else
#include <limits.h>
#include <unistd.h> //readlink
#endif
std::filesystem::path getexepath()
{
#ifdef _WIN32
wchar_t path[MAX_PATH] = { 0 };
GetModuleFileNameW(NULL, path, MAX_PATH);
return path;
#else
char result[PATH_MAX];
ssize_t count = readlink("/proc/self/exe", result, PATH_MAX);
return std::string(result, (count > 0) ? count : 0);
#endif
}
I'm not sure about Linux, but try this for Windows:
#include <windows.h>
#include <iostream>
using namespace std ;
int main()
{
char ownPth[MAX_PATH];
// When NULL is passed to GetModuleHandle, the handle of the exe itself is returned
HMODULE hModule = GetModuleHandle(NULL);
if (hModule != NULL)
{
// Use GetModuleFileName() with module handle to get the path
GetModuleFileName(hModule, ownPth, (sizeof(ownPth)));
cout << ownPth << endl ;
system("PAUSE");
return 0;
}
else
{
cout << "Module handle is NULL" << endl ;
system("PAUSE");
return 0;
}
}
This is what I ended up with
The header file looks like this:
#pragma once
#include <string>
namespace MyPaths {
std::string getExecutablePath();
std::string getExecutableDir();
std::string mergePaths(std::string pathA, std::string pathB);
bool checkIfFileExists (const std::string& filePath);
}
Implementation
#if defined(_WIN32)
#include <windows.h>
#include <Shlwapi.h>
#include <io.h>
#define access _access_s
#endif
#ifdef __APPLE__
#include <libgen.h>
#include <limits.h>
#include <mach-o/dyld.h>
#include <unistd.h>
#endif
#ifdef __linux__
#include <limits.h>
#include <libgen.h>
#include <unistd.h>
#if defined(__sun)
#define PROC_SELF_EXE "/proc/self/path/a.out"
#else
#define PROC_SELF_EXE "/proc/self/exe"
#endif
#endif
namespace MyPaths {
#if defined(_WIN32)
std::string getExecutablePath() {
char rawPathName[MAX_PATH];
GetModuleFileNameA(NULL, rawPathName, MAX_PATH);
return std::string(rawPathName);
}
std::string getExecutableDir() {
std::string executablePath = getExecutablePath();
char* exePath = new char[executablePath.length()];
strcpy(exePath, executablePath.c_str());
PathRemoveFileSpecA(exePath);
std::string directory = std::string(exePath);
delete[] exePath;
return directory;
}
std::string mergePaths(std::string pathA, std::string pathB) {
char combined[MAX_PATH];
PathCombineA(combined, pathA.c_str(), pathB.c_str());
std::string mergedPath(combined);
return mergedPath;
}
#endif
#ifdef __linux__
std::string getExecutablePath() {
char rawPathName[PATH_MAX];
realpath(PROC_SELF_EXE, rawPathName);
return std::string(rawPathName);
}
std::string getExecutableDir() {
std::string executablePath = getExecutablePath();
char *executablePathStr = new char[executablePath.length() + 1];
strcpy(executablePathStr, executablePath.c_str());
char* executableDir = dirname(executablePathStr);
delete [] executablePathStr;
return std::string(executableDir);
}
std::string mergePaths(std::string pathA, std::string pathB) {
return pathA+"/"+pathB;
}
#endif
#ifdef __APPLE__
std::string getExecutablePath() {
char rawPathName[PATH_MAX];
char realPathName[PATH_MAX];
uint32_t rawPathSize = (uint32_t)sizeof(rawPathName);
if(!_NSGetExecutablePath(rawPathName, &rawPathSize)) {
realpath(rawPathName, realPathName);
}
return std::string(realPathName);
}
std::string getExecutableDir() {
std::string executablePath = getExecutablePath();
char *executablePathStr = new char[executablePath.length() + 1];
strcpy(executablePathStr, executablePath.c_str());
char* executableDir = dirname(executablePathStr);
delete [] executablePathStr;
return std::string(executableDir);
}
std::string mergePaths(std::string pathA, std::string pathB) {
return pathA+"/"+pathB;
}
#endif
bool checkIfFileExists (const std::string& filePath) {
return access( filePath.c_str(), 0 ) == 0;
}
}
For windows:
GetModuleFileName - returns the exe path + exe filename
To remove filename
PathRemoveFileSpec
QT provides this with OS abstraction as QCoreApplication::applicationDirPath()
If using C++17 one can do the following to get the path to the executable.
#include <filesystem>
std::filesystem::path getExecutablePath()
{
return std::filesystem::canonical("/proc/self/exe");
}
The above answer has been tested on Debian 10 using G++ 9.3.0
This is a Windows specific way, but it is at least half of your answer.
GetThisPath.h
/// dest is expected to be MAX_PATH in length.
/// returns dest
/// TCHAR dest[MAX_PATH];
/// GetThisPath(dest, MAX_PATH);
TCHAR* GetThisPath(TCHAR* dest, size_t destSize);
GetThisPath.cpp
#include <Shlwapi.h>
#pragma comment(lib, "shlwapi.lib")
TCHAR* GetThisPath(TCHAR* dest, size_t destSize)
{
if (!dest) return NULL;
if (MAX_PATH > destSize) return NULL;
DWORD length = GetModuleFileName( NULL, dest, destSize );
PathRemoveFileSpec(dest);
return dest;
}
mainProgram.cpp
TCHAR dest[MAX_PATH];
GetThisPath(dest, MAX_PATH);
I would suggest using platform detection as preprocessor directives to change the implementation of a wrapper function that calls GetThisPath for each platform.
Using args[0] and looking for '/' (or '\\'):
#include <string>
#include <iostream> // to show the result
int main( int numArgs, char *args[])
{
// Get the last position of '/'
std::string aux(args[0]);
// get '/' or '\\' depending on unix/mac or windows.
#if defined(_WIN32) || defined(WIN32)
int pos = aux.rfind('\\');
#else
int pos = aux.rfind('/');
#endif
// Get the path and the name
std::string path = aux.substr(0,pos+1);
std::string name = aux.substr(pos+1);
// show results
std::cout << "Path: " << path << std::endl;
std::cout << "Name: " << name << std::endl;
}
EDITED:
If '/' does not exist, pos==-1 so the result is correct.
For Windows you can use GetModuleFilename().
For Linux see BinReloc (old, defunct URL) mirror of BinReloc in datenwolf's GitHub repositories.
This is probably the most natural way to do it, while covering most major desktop platforms. I am not certain, but I believe this should work with all the BSD's, not just FreeBSD, if you change the platform macro check to cover all of them. If I ever get around to installing Solaris, I'll be sure to add that platform to the supported list.
Features full UTF-8 support on Windows, which not everyone cares enough to go that far.
procinfo/win32/procinfo.cpp
#ifdef _WIN32
#include "../procinfo.h"
#include <windows.h>
#include <tlhelp32.h>
#include <cstddef>
#include <vector>
#include <cwchar>
using std::string;
using std::wstring;
using std::vector;
using std::size_t;
static inline string narrow(wstring wstr) {
int nbytes = WideCharToMultiByte(CP_UTF8, 0, wstr.c_str(), (int)wstr.length(), NULL, 0, NULL, NULL);
vector<char> buf(nbytes);
return string{ buf.data(), (size_t)WideCharToMultiByte(CP_UTF8, 0, wstr.c_str(), (int)wstr.length(), buf.data(), nbytes, NULL, NULL) };
}
process_t ppid_from_pid(process_t pid) {
process_t ppid;
HANDLE hp = CreateToolhelp32Snapshot(TH32CS_SNAPPROCESS, 0);
PROCESSENTRY32 pe = { 0 };
pe.dwSize = sizeof(PROCESSENTRY32);
if (Process32First(hp, &pe)) {
do {
if (pe.th32ProcessID == pid) {
ppid = pe.th32ParentProcessID;
break;
}
} while (Process32Next(hp, &pe));
}
CloseHandle(hp);
return ppid;
}
string path_from_pid(process_t pid) {
string path;
HANDLE hm = CreateToolhelp32Snapshot(TH32CS_SNAPMODULE, pid);
MODULEENTRY32W me = { 0 };
me.dwSize = sizeof(MODULEENTRY32W);
if (Module32FirstW(hm, &me)) {
do {
if (me.th32ProcessID == pid) {
path = narrow(me.szExePath);
break;
}
} while (Module32NextW(hm, &me));
}
CloseHandle(hm);
return path;
}
#endif
procinfo/macosx/procinfo.cpp
#if defined(__APPLE__) && defined(__MACH__)
#include "../procinfo.h"
#include <libproc.h>
using std::string;
string path_from_pid(process_t pid) {
string path;
char buffer[PROC_PIDPATHINFO_MAXSIZE];
if (proc_pidpath(pid, buffer, sizeof(buffer)) > 0) {
path = string(buffer) + "\0";
}
return path;
}
#endif
procinfo/linux/procinfo.cpp
#ifdef __linux__
#include "../procinfo.h"
#include <cstdlib>
using std::string;
using std::to_string;
string path_from_pid(process_t pid) {
string path;
string link = string("/proc/") + to_string(pid) + string("/exe");
char *buffer = realpath(link.c_str(), NULL);
path = buffer ? : "";
free(buffer);
return path;
}
#endif
procinfo/freebsd/procinfo.cpp
#ifdef __FreeBSD__
#include "../procinfo.h"
#include <sys/sysctl.h>
#include <cstddef>
using std::string;
using std::size_t;
string path_from_pid(process_t pid) {
string path;
size_t length;
// CTL_KERN::KERN_PROC::KERN_PROC_PATHNAME(pid)
int mib[4] = { CTL_KERN, KERN_PROC, KERN_PROC_PATHNAME, pid };
if (sysctl(mib, 4, NULL, &length, NULL, 0) == 0) {
path.resize(length, '\0');
char *buffer = path.data();
if (sysctl(mib, 4, buffer, &length, NULL, 0) == 0) {
path = string(buffer) + "\0";
}
}
return path;
}
#endif
procinfo/procinfo.cpp
#include "procinfo.h"
#ifdef _WiN32
#include <process.h>
#endif
#include <unistd.h>
#include <cstddef>
using std::string;
using std::size_t;
process_t pid_from_self() {
#ifdef _WIN32
return _getpid();
#else
return getpid();
#endif
}
process_t ppid_from_self() {
#ifdef _WIN32
return ppid_from_pid(pid_from_self());
#else
return getppid();
#endif
}
string dir_from_pid(process_t pid) {
string fname = path_from_pid(pid);
size_t fp = fname.find_last_of("/\\");
return fname.substr(0, fp + 1);
}
string name_from_pid(process_t pid) {
string fname = path_from_pid(pid);
size_t fp = fname.find_last_of("/\\");
return fname.substr(fp + 1);
}
procinfo/procinfo.h
#ifdef _WiN32
#include <windows.h>
typedef DWORD process_t;
#else
#include <sys/types.h>
typedef pid_t process_t;
#endif
#include <string>
/* windows-only helper function */
process_t ppid_from_pid(process_t pid);
/* get current process process id */
process_t pid_from_self();
/* get parent process process id */
process_t ppid_from_self();
/* std::string possible_result = "C:\\path\\to\\file.exe"; */
std::string path_from_pid(process_t pid);
/* std::string possible_result = "C:\\path\\to\\"; */
std::string dir_from_pid(process_t pid);
/* std::string possible_result = "file.exe"; */
std::string name_from_pid(process_t pid);
This allows getting the full path to the executable of pretty much any process id, except on Windows there are some process's with security attributes which simply will not allow it, so wysiwyg, this solution is not perfect.
To address what the question was asking more precisely, you may do this:
procinfo.cpp
#include "procinfo/procinfo.h"
#include <iostream>
using std::string;
using std::cout;
using std::endl;
int main() {
cout << dir_from_pid(pid_from_self()) << endl;
return 0;
}
Build the above file structure with this command:
procinfo.sh
cd "${0%/*}"
g++ procinfo.cpp procinfo/procinfo.cpp procinfo/win32/procinfo.cpp procinfo/macosx/procinfo.cpp procinfo/linux/procinfo.cpp procinfo/freebsd/procinfo.cpp -o procinfo.exe
For downloading a copy of the files listed above:
git clone git://github.com/time-killer-games/procinfo.git
For more cross-platform process-related goodness:
https://github.com/time-killer-games/enigma-dev
See the readme for a list of most of the functions included.
As others mentioned, argv[0] is quite a nice solution, provided that the platform actually passes the executable path, which is surely not less probable than the OS being Windows (where WinAPI can help find the executable path). If you want to strip the string to only include the path to the directory where the executable resides, then using that path to find other application files (like game assets if your program is a game) is perfectly fine, since opening files is relative to the working directory, or, if provided, the root.
The following works as a quick and dirty solution, but note that it is far from being foolproof:
#include <iostream>
using namespace std ;
int main( int argc, char** argv)
{
cout << argv[0] << endl ;
return 0;
}
In case you need to handle unicode paths for Windows:
#include <Windows.h>
#include <iostream>
int wmain(int argc, wchar_t * argv[])
{
HMODULE this_process_handle = GetModuleHandle(NULL);
wchar_t this_process_path[MAX_PATH];
GetModuleFileNameW(NULL, this_process_path, sizeof(this_process_path));
std::wcout << "Unicode path of this app: " << this_process_path << std::endl;
return 0;
}
There are several answers recommending using GetModuleFileName on Windows. These answers have some shortcomings like:
The code should work for both UNICODE and ANSI versions
The path can be longer than MAX_PATH
GetModuleFileName function can fail and return 0
GetModuleFileName can return a relative executable name instead of a full name
GetModuleFileName can return a short path like C:\GIT-RE~1\TEST_G~1\test.exe
Let me provide an improved version, which takes into account the abovementioned points:
#include <Windows.h>
#include <string>
#include <memory>
#include <iostream>
// Converts relative name like "..\test.exe" to its full form like "C:\project\test.exe".
std::basic_string<TCHAR> get_full_name(const TCHAR const* name)
{
// First we need to get a length of the full name string
const DWORD full_name_length{GetFullPathName(name, 0, NULL, NULL)};
if (full_name_length == 0) {
// GetFullPathName call failed. Maybe you want to throw an exception.
return std::basic_string<TCHAR>{};
}
// Now, when we know the length, we create a buffer with correct size and write the full name into it
std::unique_ptr<TCHAR[]> full_name_buffer{new TCHAR[full_name_length]};
const DWORD res = GetFullPathName(name, full_name_length, full_name_buffer.get(), NULL);
if (res == 0) {
// GetFullPathName call failed. Maybe you want to throw an exception.
return std::basic_string<TCHAR>{};
}
// The full name has been successfully written to the buffer.
return std::basic_string<TCHAR>(full_name_buffer.get());
}
// Resolves short path like "C:\GIT-RE~1\TEST_G~1\test.exe" into its long form like "C:\git-repository\test_project\test.exe"
std::basic_string<TCHAR> get_long_name(const TCHAR const* name)
{
// First we need to get a length of the long name string
const DWORD long_name_length{GetLongPathName(name, 0, NULL)};
if (long_name_length == 0) {
// GetLongPathName call failed. Maybe you want to throw an exception.
return std::basic_string<TCHAR>{};
}
// Now, when we know the length, we create a buffer with correct size and write the full name into it
std::unique_ptr<TCHAR[]> long_name_buffer{new TCHAR[long_name_length]};
const DWORD res = GetLongPathName(name, long_name_buffer.get(), long_name_length);
if (res == 0) {
// GetLongPathName call failed. Maybe you want to throw an exception.
return std::basic_string<TCHAR>{};
}
// The long name has been successfully written to the buffer.
return std::basic_string<TCHAR>(long_name_buffer.get());
}
std::basic_string<TCHAR> get_current_executable_full_name()
{
DWORD path_buffer_size = MAX_PATH; // we start with MAX_PATH because it is most likely that
// the path doesn't exceeds 260 characters
std::unique_ptr<TCHAR[]> path_buffer{new TCHAR[path_buffer_size]};
while (true) {
const auto bytes_written = GetModuleFileName(
NULL, path_buffer.get(), path_buffer_size);
const auto last_error = GetLastError();
if (bytes_written == 0) {
// GetModuleFileName call failed. Maybe you want to throw an exception.
return std::basic_string<TCHAR>{};
}
if (last_error == ERROR_INSUFFICIENT_BUFFER) {
// There is not enough space in our buffer to fit the path.
// We need to increase the buffer and try again.
path_buffer_size *= 2;
path_buffer.reset(new TCHAR[path_buffer_size]);
continue;
}
// GetModuleFileName has successfully written the executable name to the buffer.
// Now we need to convert it to a full long name
std::basic_string<TCHAR> full_name = get_full_name(path_buffer.get());
return get_long_name(full_name.c_str());
}
}
// Example of how this function can be used
int main()
{
#ifdef UNICODE
// If you use UNICODE version of WinApi
std::wstring exe_file_full_name = get_current_executable_full_name();
std::wstring exe_folder_full_name = exe_file_full_name.substr(0, exe_file_full_name.find_last_of(L"\\"));
std::wcout << exe_file_full_name << "\n"; // prints: C:\test_project\x64\Debug\test_program.exe
std::wcout << exe_folder_full_name << "\n"; // prints: C:\test_project\x64\Debug
#else
// If you use ANSI version of WinApi
std::string exe_file_full_name = get_current_executable_full_name();
std::string exe_folder_full_name = exe_file_full_name.substr(0, exe_file_full_name.find_last_of("\\"));
std::cout << exe_file_full_name << "\n"; // prints: C:\test_project\x64\Debug\test_program.exe
std::cout << exe_folder_full_name << "\n"; // prints: C:\test_project\x64\Debug
#endif
}
For Windows, you have the problem of how to strip the executable from the result of GetModuleFileName(). The Windows API call PathRemoveFileSpec() that Nate used for that purpose in his answer changed between Windows 8 and its predecessors. So how to remain compatible with both and safe? Luckily, there's C++17 (or Boost, if you're using an older compiler). I do this:
#include <windows.h>
#include <string>
#include <filesystem>
namespace fs = std::experimental::filesystem;
// We could use fs::path as return type, but if you're not aware of
// std::experimental::filesystem, you probably handle filenames
// as strings anyway in the remainder of your code. I'm on Japanese
// Windows, so wide chars are a must.
std::wstring getDirectoryWithCurrentExecutable()
{
int size = 256;
std::vector<wchar_t> charBuffer;
// Let's be safe, and find the right buffer size programmatically.
do {
size *= 2;
charBuffer.resize(size);
// Resize until filename fits. GetModuleFileNameW returns the
// number of characters written to the buffer, so if the
// return value is smaller than the size of the buffer, it was
// large enough.
} while (GetModuleFileNameW(NULL, charBuffer.data(), size) == size);
// Typically: c:/program files (x86)/something/foo/bar/exe/files/win64/baz.exe
// (Note that windows supports forward and backward slashes as path
// separators, so you have to be careful when searching through a path
// manually.)
// Let's extract the interesting part:
fs::path path(charBuffer.data()); // Contains the full path including .exe
return path.remove_filename() // Extract the directory ...
.w_str(); // ... and convert to a string.
}
SDL2 (https://www.libsdl.org/) library has two functions implemented across a wide spectrum of platforms:
SDL_GetBasePath
SDL_GetPrefPath
So if you don't want to reinvent the wheel... sadly, it means including the entire library, although it's got a quite permissive license and one could also just copy the code. Besides, it provides a lot of other cross-platform functionality.
I didn't read if my solution is already posted but on linux and osx you can read the 0 argument in your main function like this:
int main(int argument_count, char **argument_list) {
std::string currentWorkingDirectoryPath(argument_list[currentWorkingDirectory]);
std::size_t pos = currentWorkingDirectoryPath.rfind("/"); // position of "live" in str
currentWorkingDirectoryPath = currentWorkingDirectoryPath.substr (0, pos);
In the first item of argument_list the name of the executable is integrated but removed by the code above.
Here my simple solution that works in both Windows and Linux, based on this solution and modified with this answer:
#include <string>
using namespace std;
#if defined(_WIN32)
#include <algorithm> // for transform() in get_exe_path()
#define WIN32_LEAN_AND_MEAN
#define VC_EXTRALEAN
#include <Windows.h>
#elif defined(__linux__)
#include <unistd.h> // for getting path of executable
#endif // Windows/Linux
string replace(const string& s, const string& from, const string& to) {
string r = s;
int p = 0;
while((p=(int)r.find(from, p))!=string::npos) {
r.replace(p, from.length(), to);
p += (int)to.length();
}
return r;
}
string get_exe_path() { // returns path where executable is located
string path = "";
#if defined(_WIN32)
wchar_t wc[260] = {0};
GetModuleFileNameW(NULL, wc, 260);
wstring ws(wc);
transform(ws.begin(), ws.end(), back_inserter(path), [](wchar_t c) { return (char)c; });
path = replace(path, "\\", "/");
#elif defined(__linux__)
char c[260];
int length = (int)readlink("/proc/self/exe", c, 260);
path = string(c, length>0 ? length : 0);
#endif // Windows/Linux
return path.substr(0, path.rfind('/')+1);
}
This was my solution in Windows. It is called like this:
std::wstring sResult = GetPathOfEXE(64);
Where 64 is the minimum size you think the path will be. GetPathOfEXE calls itself recursively, doubling the size of the buffer each time until it gets a big enough buffer to get the whole path without truncation.
std::wstring GetPathOfEXE(DWORD dwSize)
{
WCHAR* pwcharFileNamePath;
DWORD dwLastError;
HRESULT hrError;
std::wstring wsResult;
DWORD dwCount;
pwcharFileNamePath = new WCHAR[dwSize];
dwCount = GetModuleFileNameW(
NULL,
pwcharFileNamePath,
dwSize
);
dwLastError = GetLastError();
if (ERROR_SUCCESS == dwLastError)
{
hrError = PathCchRemoveFileSpec(
pwcharFileNamePath,
dwCount
);
if (S_OK == hrError)
{
wsResult = pwcharFileNamePath;
if (pwcharFileNamePath)
{
delete pwcharFileNamePath;
}
return wsResult;
}
else if(S_FALSE == hrError)
{
wsResult = pwcharFileNamePath;
if (pwcharFileNamePath)
{
delete pwcharFileNamePath;
}
//there was nothing to truncate off the end of the path
//returning something better than nothing in this case for the user
return wsResult;
}
else
{
if (pwcharFileNamePath)
{
delete pwcharFileNamePath;
}
std::ostringstream oss;
oss << "could not get file name and path of executing process. error truncating file name off path. last error : " << hrError;
throw std::runtime_error(oss.str().c_str());
}
}
else if (ERROR_INSUFFICIENT_BUFFER == dwLastError)
{
if (pwcharFileNamePath)
{
delete pwcharFileNamePath;
}
return GetPathOfEXE(
dwSize * 2
);
}
else
{
if (pwcharFileNamePath)
{
delete pwcharFileNamePath;
}
std::ostringstream oss;
oss << "could not get file name and path of executing process. last error : " << dwLastError;
throw std::runtime_error(oss.str().c_str());
}
}
char exePath[512];
CString strexePath;
GetModuleFileName(NULL,exePath,512);
strexePath.Format("%s",exePath);
strexePath = strexePath.Mid(0,strexePath.ReverseFind('\\'));
in Unix(including Linux) try 'which', in Windows try 'where'.
#include <stdio.h>
#define _UNIX
int main(int argc, char** argv)
{
char cmd[128];
char buf[128];
FILE* fp = NULL;
#if defined(_UNIX)
sprintf(cmd, "which %s > my.path", argv[0]);
#else
sprintf(cmd, "where %s > my.path", argv[0]);
#endif
system(cmd);
fp = fopen("my.path", "r");
fgets(buf, sizeof(buf), fp);
fclose(fp);
printf("full path: %s\n", buf);
unlink("my.path");
return 0;
}
As of C++17:
Make sure you include std filesystem.
#include <filesystem>
and now you can do this.
std::filesystem::current_path().string()
boost filesystem became part of the standard lib.
if you can't find it try to look under:
std::experimental::filesystem