My question is not how to filter an image using the laplacian of gaussian (basically using filter2D with the relevant kernel etc.).
What I want to know is how I generate the NxN kernel.
I'll give an example showing how I generated a [Winsize x WinSize] Gaussian kernel in openCV.
In Matlab:
gaussianKernel = fspecial('gaussian', WinSize, sigma);
In openCV:
cv::Mat gaussianKernel = cv::getGaussianKernel(WinSize, sigma, CV_64F);
cv::mulTransposed(gaussianKernel,gaussianKernel,false);
Where sigma and WinSize are predefined.
I want to do the same for a Laplacian of Gaussian.
In Matlab:
LoGKernel = fspecial('log', WinSize, sigma);
How do I get the exact kernel in openCV (exact up to negligible numerical differences)?
I'm working on a specific application where I need the actual kernel values and simply finding another way of implementing LoG filtering by approximating Difference of gaussians is not what I'm after.
Thanks!
You can generate it manually, using formula
LoG(x,y) = (1/(pi*sigma^4)) * (1 - (x^2+y^2)/(sigma^2))* (e ^ (- (x^2 + y^2) / 2sigma^2)
http://homepages.inf.ed.ac.uk/rbf/HIPR2/log.htm
cv::Mat kernel(WinSize,WinSize,CV_64F);
int rows = kernel.rows;
int cols = kernel.cols;
double halfSize = (double) WinSize / 2.0;
for (size_t i=0; i<rows;i++)
for (size_t j=0; j<cols;j++)
{
double x = (double)j - halfSize;
double y = (double)i - halfSize;
kernel.at<double>(j,i) = (1.0 /(M_PI*pow(sigma,4))) * (1 - (x*x+y*y)/(sigma*sigma))* (pow(2.718281828, - (x*x + y*y) / 2*sigma*sigma));
}
If function above is not OK, you can simply rewrite matlab version of fspecial:
case 'log' % Laplacian of Gaussian
% first calculate Gaussian
siz = (p2-1)/2;
std2 = p3^2;
[x,y] = meshgrid(-siz(2):siz(2),-siz(1):siz(1));
arg = -(x.*x + y.*y)/(2*std2);
h = exp(arg);
h(h<eps*max(h(:))) = 0;
sumh = sum(h(:));
if sumh ~= 0,
h = h/sumh;
end;
% now calculate Laplacian
h1 = h.*(x.*x + y.*y - 2*std2)/(std2^2);
h = h1 - sum(h1(:))/prod(p2); % make the filter sum to zero
I want to thank old-ufo for nudging me in the correct direction.
I was hoping I won't have to reinvent the wheel by doing a quick matlab-->openCV conversion but guess this is the best solution I have for a quick solution.
NOTE - I did this for square kernels only (easy to modify otherwise, but I have no need for that so...).
Maybe this can be written in a more elegant form but is a quick job I did so I can carry on with more pressing matters.
From main function:
int WinSize(7); int sigma(1); // can be changed to other odd-sized WinSize and different sigma values
cv::Mat h = fspecialLoG(WinSize,sigma);
And the actual function is:
// return NxN (square kernel) of Laplacian of Gaussian as is returned by Matlab's: fspecial(Winsize,sigma)
cv::Mat fspecialLoG(int WinSize, double sigma){
// I wrote this only for square kernels as I have no need for kernels that aren't square
cv::Mat xx (WinSize,WinSize,CV_64F);
for (int i=0;i<WinSize;i++){
for (int j=0;j<WinSize;j++){
xx.at<double>(j,i) = (i-(WinSize-1)/2)*(i-(WinSize-1)/2);
}
}
cv::Mat yy;
cv::transpose(xx,yy);
cv::Mat arg = -(xx+yy)/(2*pow(sigma,2));
cv::Mat h (WinSize,WinSize,CV_64F);
for (int i=0;i<WinSize;i++){
for (int j=0;j<WinSize;j++){
h.at<double>(j,i) = pow(exp(1),(arg.at<double>(j,i)));
}
}
double minimalVal, maximalVal;
minMaxLoc(h, &minimalVal, &maximalVal);
cv::Mat tempMask = (h>DBL_EPSILON*maximalVal)/255;
tempMask.convertTo(tempMask,h.type());
cv::multiply(tempMask,h,h);
if (cv::sum(h)[0]!=0){h=h/cv::sum(h)[0];}
cv::Mat h1 = (xx+yy-2*(pow(sigma,2))/(pow(sigma,4));
cv::multiply(h,h1,h1);
h = h1 - cv::sum(h1)[0]/(WinSize*WinSize);
return h;
}
There is some difference between your function and the matlab version:
http://br1.einfach.org/tmp/log-matlab-vs-opencv.png.
Above is matlab fspecial('log', 31, 6) and below is the result of your function with the same parameters. Somehow the hat is more 'bent' - is this intended and what is the effect of this in later processing?
I can create a kernel very similar to the matlab one with these functions, which just directly reflect the LoG formula:
float LoG(int x, int y, float sigma) {
float xy = (pow(x, 2) + pow(y, 2)) / (2 * pow(sigma, 2));
return -1.0 / (M_PI * pow(sigma, 4)) * (1.0 - xy) * exp(-xy);
}
static Mat LOGkernel(int size, float sigma) {
Mat kernel(size, size, CV_32F);
int halfsize = size / 2;
for (int x = -halfsize; x <= halfsize; ++x) {
for (int y = -halfsize; y <= halfsize; ++y) {
kernel.at<float>(x+halfsize,y+halfsize) = LoG(x, y, sigma);
}
}
return kernel;
}
Here's a NumPy version that is directly translated from the fspecial function in MATLAB.
import numpy as np
import sys
def get_log_kernel(siz, std):
x = y = np.linspace(-siz, siz, 2*siz+1)
x, y = np.meshgrid(x, y)
arg = -(x**2 + y**2) / (2*std**2)
h = np.exp(arg)
h[h < sys.float_info.epsilon * h.max()] = 0
h = h/h.sum() if h.sum() != 0 else h
h1 = h*(x**2 + y**2 - 2*std**2) / (std**4)
return h1 - h1.mean()
The code below is the exact equivalent to fspecial('log', p2, p3):
def fspecial_log(p2, std):
siz = int((p2-1)/2)
x = y = np.linspace(-siz, siz, 2*siz+1)
x, y = np.meshgrid(x, y)
arg = -(x**2 + y**2) / (2*std**2)
h = np.exp(arg)
h[h < sys.float_info.epsilon * h.max()] = 0
h = h/h.sum() if h.sum() != 0 else h
h1 = h*(x**2 + y**2 - 2*std**2) / (std**4)
return h1 - h1.mean()
I wrote exact Implementation of Matlab fspecial function in OpenCV
function:
Mat C_fspecial_LOG(double* kernel_size,double sigma)
{
double size[2]={ (kernel_size[0]-1)/2 , (kernel_size[1]-1)/2};
double std = sigma;
const double eps = 2.2204e-16;
cv::Mat kernel(kernel_size[0],kernel_size[1],CV_64FC1,0.0);
int row=0,col=0;
for (double y = -size[0]; y <= size[0]; ++y,++row)
{
col=0;
for (double x = -size[1]; x <= size[1]; ++x,++col)
{
kernel.at<double>(row,col)=exp( -( pow(x,2) + pow(y,2) ) /(2*pow(std,2)));
}
}
double MaxValue;
cv::minMaxLoc(kernel,nullptr,&MaxValue,nullptr,nullptr);
Mat condition=~(kernel < eps*MaxValue)/255;
condition.convertTo(condition,CV_64FC1);
kernel = kernel.mul(condition);
cv::Scalar SUM = cv::sum(kernel);
if(SUM[0]!=0)
{
kernel /= SUM[0];
}
return kernel;
}
usage of this function :
double kernel_size[2] = {4,4}; // kernel size set to 4x4
double sigma = 2.1;
Mat kernel = C_fspecial_LOG(kernel_size,sigma);
compare OpenCV result with Matlab:
opencv result:
[0.04918466596701741, 0.06170341496034986, 0.06170341496034986, 0.04918466596701741;
0.06170341496034986, 0.07740850411228289, 0.07740850411228289, 0.06170341496034986;
0.06170341496034986, 0.07740850411228289, 0.07740850411228289, 0.06170341496034986;
0.04918466596701741, 0.06170341496034986, 0.06170341496034986, 0.04918466596701741]
Matlab result for fspecial('gaussian', 4, 2.1) :
0.0492 0.0617 0.0617 0.0492
0.0617 0.0774 0.0774 0.0617
0.0617 0.0774 0.0774 0.0617
0.0492 0.0617 0.0617 0.0492
Just for the sake of reference, here is a Python implementation which creates the LoG filter kernel to detect blobs of a pre-defined radius in pixels.
def create_log_filter_kernel(r_in_px: float):
"""
Creates a LoG filter-kernel to detect blobs of a given radius r_in_px.
\[
LoG(x,y) = \frac{-1}{\pi\sigma^4}\left(1 - \frac{x^2 + y^2}{2\sigma^2}\right)e^{\frac{-(x^2+y^2)}{2\sigma^2}}
\]
Look for maxima if blob is black, minima if blob is white.
:param r_in_px:
:return: filter kernel
"""
# sigma from radius: LoG has zero-crossing at $1 - \frac{x^2 + y^2}{2\sigma^2} = 0$
# i.e. r^2 = 2\sigma^2$ and thus $sigma = r / \sqrt{2}$
sigma = r_in_px/np.sqrt(2)
# ksize such that filter covers $3\sigma$
ksize = int(np.round(sigma*3))*2 + 1
# setup filter
xgv = np.arange(0, ksize) - ksize / 2
ygv = np.arange(0, ksize) - ksize / 2
x, y = np.meshgrid(xgv, ygv)
kernel = -1 / (np.pi * sigma**4) * (1 - (x**2 + y**2) / (2*sigma**2)) * np.exp(-(x**2 + y**2) / (2 * sigma**2))
#normalize to sum zero (does not change zero crossing, I tried it out for r < 100)
kernel -= np.sum(kernel) / ksize**2
#this is important: normalize such that positive/negative parts are comparable over different scales
kernel /= np.sum(kernel[kernel>0])
return kernel
Related
I am trying to implement the Cubic Interpolation method using the next formula when a=-0.5 as usual.
My Linear Interpolation and Nearest Neighbor interpolation is working great but for some reason the Cubic interpolation fails with white pixels and turn them sometimes to turquoise color and sometimes messing around with another colors.
for example using rotation: (NOTE: please look carefully on the right image and you will notice the problems)
Another Example with much more black pixels. It almost seems to work perfectly but look on the dog's tongue. (strong white pixels turn to turquoise again)
you can see that my implementation of the Linear Interpolation is working great:
Since the actual rotation worked, I think I have a small mistake in the code that I did not notice, or maybe it's a numeric error or a double / float error.
It is important to note that I read the image normally and store the destination image as follows:
cv::Mat img = cv::imread("../dogfails.jpeg");
cv::Mat rotatedImageCubic(img.rows,img.cols,CV_8UC3);
Clarifications:
Inside my cubic interpolation function, srcPoint (newX and newY) is the "landing point" from the inverse transformation.
In my inverse transformations I am not using matrix multiplication with the pixels, right now I am just using the formulas for rotation. It might be important for the "numerical errors". For example:
rotatedX = x * cos(angle * toRadian) + y * sin(angle * toRadian);
rotatedY = x * (-sin(angle * toRadian)) + y * cos(angle * toRadian);
Here is my code for the Cubic Interpolation
double cubicEquationSolver(double d,double a) {
d = abs(d);
if( 0.0 <= d && d <= 1.0) {
double score = (a + 2.0) * pow(d, 3.0) - ((a + 3.0) * pow(d, 2.0)) + 1.0;
return score;
}
else if(1 < d && d <= 2) {
double score = a * pow(d, 3.0) - 5.0*a * pow(d, 2.0) + 8.0*a * d - 4.0*a;
return score;
}
else
return 0.0;
}
void Cubic_Interpolation_Helper(const cv::Mat& src, cv::Mat& dst, const cv::Point2d& srcPoint, cv::Point2i& dstPixel) {
double newX = srcPoint.x;
double newY = srcPoint.y;
double dx = abs(newX - round(newX));
double dy = abs(newY - round(newY));
double sumCubicBValue = 0;
double sumCubicGValue = 0;
double sumCubicRValue = 0;
double sumCubicGrayValue = 0;
double uX = 0;
double uY = 0;
if (floor(newX) - 1 < 0 || floor(newX) + 2 > src.cols - 1 || floor(newY) < 0 || floor(newY) > src.rows - 1) {
if (dst.channels() > 1)
dst.at<cv::Vec3b>(dstPixel) = cv::Vec3b(0, 0,0);
else
dst.at<uchar>(dstPixel) = 0;
}
else {
for (int cNeighbor = -1; cNeighbor <= 2; cNeighbor++) {
for (int rNeighbor = -1; rNeighbor <= 2; rNeighbor++) {
uX = cubicEquationSolver(rNeighbor + dx, -0.5);
uY = cubicEquationSolver(cNeighbor + dy, -0.5);
if (src.channels() > 1) {
sumCubicBValue = sumCubicBValue + (double) src.at<cv::Vec3b>(
cv::Point2i(round(newX) + rNeighbor, cNeighbor + round(newY)))[0] * uX * uY;
sumCubicGValue = sumCubicGValue + (double) src.at<cv::Vec3b>(
cv::Point2i(round(newX) + rNeighbor, cNeighbor + round(newY)))[1] * uX * uY;
sumCubicRValue = sumCubicRValue + (double) src.at<cv::Vec3b>(
cv::Point2i(round(newX) + rNeighbor, cNeighbor + round(newY)))[2] * uX * uY;
} else {
sumCubicGrayValue = sumCubicGrayValue + (double) src.at<uchar>(
cv::Point2i(round(newX) + rNeighbor, cNeighbor + round(newY))) * uX * uY;
}
}
}
if (dst.channels() > 1)
dst.at<cv::Vec3b>(dstPixel) = cv::Vec3b((int) round(sumCubicBValue), (int) round(sumCubicGValue),
(int) round(sumCubicRValue));
else
dst.at<uchar>(dstPixel) = sumCubicGrayValue;
}
I hope someone here will be able to help me, Thanks!
I need to implement in C++ algorithm for adjusting image levels that works similar to Levels function in Photoshop or GIMP. I.e. inputs are: color RGB image to be adjusted adjust, while point, black point, midtone point, output from/to values. But I didn't find yet any info on how to perform this adjustment. Probably someone recommend me algorithm description or materials to study.
To the moment I've came up with following code myself, but it doesn't give expected result, similar to what I can see, for example in the GIMP, image becomes too lightened. Below is my current fragment of the code:
const int normalBlackPoint = 0;
const int normalMidtonePoint = 127;
const int normalWhitePoint = 255;
const double normalLowRange = normalMidtonePoint - normalBlackPoint + 1;
const double normalHighRange = normalWhitePoint - normalMidtonePoint;
int blackPoint = 53;
int midtonePoint = 110;
int whitePoint = 168;
int outputFrom = 0;
int outputTo = 255;
double outputRange = outputTo - outputFrom + 1;
double lowRange = midtonePoint - blackPoint + 1;
double highRange = whitePoint - midtonePoint;
double fullRange = whitePoint - blackPoint + 1;
double lowPart = lowRange / fullRange;
double highPart = highRange / fullRange;
int dim(256);
cv::Mat lut(1, &dim, CV_8U);
for(int i = 0; i < 256; ++i)
{
double p = i > normalMidtonePoint
? (static_cast<double>(i - normalMidtonePoint) / normalHighRange) * highRange * highPart + lowPart
: (static_cast<double>(i + 1) / normalLowRange) * lowRange * lowPart;
int v = static_cast<int>(outputRange * p ) + outputFrom - 1;
if(v < 0) v = 0;
else if(v > 255) v = 255;
lut.at<uchar>(i) = v;
}
....
cv::Mat sourceImage = cv::imread(inputFileName, CV_LOAD_IMAGE_COLOR);
if(!sourceImage.data)
{
std::cerr << "Error: couldn't load image " << inputFileName << "." << std::endl;
continue;
}
#if 0
const int forwardConversion = CV_BGR2YUV;
const int reverseConversion = CV_YUV2BGR;
#else
const int forwardConversion = CV_BGR2Lab;
const int reverseConversion = CV_Lab2BGR;
#endif
cv::Mat convertedImage;
cv::cvtColor(sourceImage, convertedImage, forwardConversion);
// Extract the L channel
std::vector<cv::Mat> convertedPlanes(3);
cv::split(convertedImage, convertedPlanes);
cv::LUT(convertedPlanes[0], lut, convertedPlanes[0]);
//dst.copyTo(convertedPlanes[0]);
cv::merge(convertedPlanes, convertedImage);
cv::Mat resImage;
cv::cvtColor(convertedImage, resImage, reverseConversion);
cv::imwrite(outputFileName, resImage);
Pseudocode for Photoshop's Levels Adjustment
First, calculate the gamma correction value to use for the midtone adjustment (if desired). The following roughly simulates Photoshop's technique, which applies gamma 9.99-1.00 for midtone values 0-128, and 1.00-0.01 for 128-255.
Apply gamma correction:
Gamma = 1
MidtoneNormal = Midtones / 255
If Midtones < 128 Then
MidtoneNormal = MidtoneNormal * 2
Gamma = 1 + ( 9 * ( 1 - MidtoneNormal ) )
Gamma = Min( Gamma, 9.99 )
Else If Midtones > 128 Then
MidtoneNormal = ( MidtoneNormal * 2 ) - 1
Gamma = 1 - MidtoneNormal
Gamma = Max( Gamma, 0.01 )
End If
GammaCorrection = 1 / Gamma
Then, for each channel value R, G, B (0-255) for each pixel, do the following in order.
Apply the input levels:
ChannelValue = 255 * ( ( ChannelValue - ShadowValue ) /
( HighlightValue - ShadowValue ) )
Apply the midtones:
If Midtones <> 128 Then
ChannelValue = 255 * ( Pow( ( ChannelValue / 255 ), GammaCorrection ) )
End If
Apply the output levels:
ChannelValue = ( ChannelValue / 255 ) *
( OutHighlightValue - OutShadowValue ) + OutShadowValue
Where:
All channel and adjustment parameter values are integers, 0-255 inclusive
Shadow/Midtone/HighlightValue are the input adjustment values (defaults 0, 128, 255)
OutShadow/HighlightValue are the output adjustment values (defaults 0, 255)
You should optimize things and make sure values are kept in bounds (like 0-255 for each channel)
For a more accurate simulation of Photoshop, you can use a non-linear interpolation curve if Midtones < 128. Photoshop also chops off the darkest and lightest 0.1% of the values by default.
Ignoring the midtone/Gamma, the Levels function is a simple linear scaling.
All input values are first linearly scaled so that all values less or equal to the "black point" are set to 0, and all values greater than or equal white point are set to 255.
Then all values are linearly scaled from 0/255 to the output range.
For the mid-point—it depends what you actually mean by that.
In GIMP, there is a Gamma value. The Gamma value is a simple exponent of the input values (after restricting to the black/white points).
For Gamma == 1, the values are not changed.
For gamma < 1, the values are darkened.
Given a homography matrix H (3x3), how can I find the right coordinate (x,y) in the transformed image? I understand in openCV I can use
perspectiveTransform( obj_corners, scene_corners, H);
where obj_corners are the coordinates in the original image, scene_corners are the coordinates in the result image. And I thought the computation formula should be:
w = H_31 * obj_corners[i].x + H_32 * obj_corners[i].y + H_33 * 1;
scene_corners[i].x = (H_11 * obj_corners[i].x + H_12 * obj_corners[i].y + H_13 * 1) / w;
scene_corners[i].y = (H_21 * obj_corners[i].x + H_22 * obj_corners[i].y + H_23 * 1) / w;
Now I have a transform matrix H as H=[95, 41, 246; 51, 160, 8; 240, 63, 240]. If my obj_corner is (0,0), using the above equation, the scene_corner should be (246/240, 8/240). However, when I use openCV perspectiveTransform() function, the scene_corner is (17.56, -12.98). Why there is a mis-match here?
I got this transforma matrix H from cv::findHomography() function. And I know the answer of (0,0) --> (17.56, -12.98) is correct. I just don't know how to calculate this coordinate. Especially how to get a negative number here.
To be more clearly, here is how I my openCV code look like with a wrong output:
cv::Mat H = cv::findHomography(trackedPoints2, trackedPoints1, CV_RANSAC);
double H11 = H.data[0];
double H12 = H.data[1];
double H13 = H.data[2];
double H21 = H.data[3];
double H22 = H.data[4];
double H23 = H.data[5];
double H31 = H.data[6];
double H32 = H.data[7];
double H33 = H.data[8];
int x = 0, y = 0;
int w = H31 * x + H32 * y + H33;
double x_dst = ((H11 * x + H12 * y + H13) + w / 2) / w;
double y_dst = ((H21 * x + H22 * y + H23) + w / 2) / w;
And here is the openCV code gives correct answer (17.56, -12.98)
cv::Mat H = cv::findHomography(trackedPoints2, trackedPoints1, CV_RANSAC);
std::vector<Point2f> obj_corners(1);
obj_corners[0] = cvPoint(0, 0);
std::vector<Point2f> scene_corners(1);
perspectiveTransform(obj_corners, scene_corners, H);
printf("%f, %f\n", scene_corners[0].x, scene_corners[0].y);
Can someone give a hint on what is wrong here? Thank you.
I did use the findcontours() method to extract contour from the image, but I have no idea how to calculate the curvature from a set of contour points. Can somebody help me? Thank you very much!
While the theory behind Gombat's answer is correct, there are some errors in the code as well as in the formulae (the denominator t+n-x should be t+n-t). I have made several changes:
use symmetric derivatives to get more precise locations of curvature maxima
allow to use a step size for derivative calculation (can be used to reduce noise from noisy contours)
works with closed contours
Fixes:
* return infinity as curvature if denominator is 0 (not 0)
* added square calculation in denominator
* correct checking for 0 divisor
std::vector<double> getCurvature(std::vector<cv::Point> const& vecContourPoints, int step)
{
std::vector< double > vecCurvature( vecContourPoints.size() );
if (vecContourPoints.size() < step)
return vecCurvature;
auto frontToBack = vecContourPoints.front() - vecContourPoints.back();
std::cout << CONTENT_OF(frontToBack) << std::endl;
bool isClosed = ((int)std::max(std::abs(frontToBack.x), std::abs(frontToBack.y))) <= 1;
cv::Point2f pplus, pminus;
cv::Point2f f1stDerivative, f2ndDerivative;
for (int i = 0; i < vecContourPoints.size(); i++ )
{
const cv::Point2f& pos = vecContourPoints[i];
int maxStep = step;
if (!isClosed)
{
maxStep = std::min(std::min(step, i), (int)vecContourPoints.size()-1-i);
if (maxStep == 0)
{
vecCurvature[i] = std::numeric_limits<double>::infinity();
continue;
}
}
int iminus = i-maxStep;
int iplus = i+maxStep;
pminus = vecContourPoints[iminus < 0 ? iminus + vecContourPoints.size() : iminus];
pplus = vecContourPoints[iplus > vecContourPoints.size() ? iplus - vecContourPoints.size() : iplus];
f1stDerivative.x = (pplus.x - pminus.x) / (iplus-iminus);
f1stDerivative.y = (pplus.y - pminus.y) / (iplus-iminus);
f2ndDerivative.x = (pplus.x - 2*pos.x + pminus.x) / ((iplus-iminus)/2*(iplus-iminus)/2);
f2ndDerivative.y = (pplus.y - 2*pos.y + pminus.y) / ((iplus-iminus)/2*(iplus-iminus)/2);
double curvature2D;
double divisor = f1stDerivative.x*f1stDerivative.x + f1stDerivative.y*f1stDerivative.y;
if ( std::abs(divisor) > 10e-8 )
{
curvature2D = std::abs(f2ndDerivative.y*f1stDerivative.x - f2ndDerivative.x*f1stDerivative.y) /
pow(divisor, 3.0/2.0 ) ;
}
else
{
curvature2D = std::numeric_limits<double>::infinity();
}
vecCurvature[i] = curvature2D;
}
return vecCurvature;
}
For me curvature is:
where t is the position inside the contour and x(t) resp. y(t) return the related x resp. y value. See here.
So, according to my definition of curvature, one can implement it this way:
std::vector< float > vecCurvature( vecContourPoints.size() );
cv::Point2f posOld, posOlder;
cv::Point2f f1stDerivative, f2ndDerivative;
for (size_t i = 0; i < vecContourPoints.size(); i++ )
{
const cv::Point2f& pos = vecContourPoints[i];
if ( i == 0 ){ posOld = posOlder = pos; }
f1stDerivative.x = pos.x - posOld.x;
f1stDerivative.y = pos.y - posOld.y;
f2ndDerivative.x = - pos.x + 2.0f * posOld.x - posOlder.x;
f2ndDerivative.y = - pos.y + 2.0f * posOld.y - posOlder.y;
float curvature2D = 0.0f;
if ( std::abs(f2ndDerivative.x) > 10e-4 && std::abs(f2ndDerivative.y) > 10e-4 )
{
curvature2D = sqrt( std::abs(
pow( f2ndDerivative.y*f1stDerivative.x - f2ndDerivative.x*f1stDerivative.y, 2.0f ) /
pow( f2ndDerivative.x + f2ndDerivative.y, 3.0 ) ) );
}
vecCurvature[i] = curvature2D;
posOlder = posOld;
posOld = pos;
}
It works on non-closed pointlists as well. For closed contours, you may would like to change the boundary behavior (for the first iterations).
UPDATE:
Explanation for the derivatives:
A derivative for a continuous 1 dimensional function f(t) is:
But we are in a discrete space and have two discrete functions f_x(t) and f_y(t) where the smallest step for t is one.
The second derivative is the derivative of the first derivative:
Using the approximation of the first derivative, it yields to:
There are other approximations for the derivatives, if you google it, you will find a lot.
Here's a python implementation mainly based on Philipp's C++ code. For those interested, more details on the derivation can be found in Chapter 10.4.2 of:
Klette & Rosenfeld, 2004: Digital Geometry
def getCurvature(contour,stride=1):
curvature=[]
assert stride<len(contour),"stride must be shorther than length of contour"
for i in range(len(contour)):
before=i-stride+len(contour) if i-stride<0 else i-stride
after=i+stride-len(contour) if i+stride>=len(contour) else i+stride
f1x,f1y=(contour[after]-contour[before])/stride
f2x,f2y=(contour[after]-2*contour[i]+contour[before])/stride**2
denominator=(f1x**2+f1y**2)**3+1e-11
curvature_at_i=np.sqrt(4*(f2y*f1x-f2x*f1y)**2/denominator) if denominator > 1e-12 else -1
curvature.append(curvature_at_i)
return curvature
EDIT:
you can use convexityDefects from openCV, here's a link
a code example to find fingers based in their contour (variable res) source
def calculateFingers(res,drawing): # -> finished bool, cnt: finger count
# convexity defect
hull = cv2.convexHull(res, returnPoints=False)
if len(hull) > 3:
defects = cv2.convexityDefects(res, hull)
if type(defects) != type(None): # avoid crashing. (BUG not found)
cnt = 0
for i in range(defects.shape[0]): # calculate the angle
s, e, f, d = defects[i][0]
start = tuple(res[s][0])
end = tuple(res[e][0])
far = tuple(res[f][0])
a = math.sqrt((end[0] - start[0]) ** 2 + (end[1] - start[1]) ** 2)
b = math.sqrt((far[0] - start[0]) ** 2 + (far[1] - start[1]) ** 2)
c = math.sqrt((end[0] - far[0]) ** 2 + (end[1] - far[1]) ** 2)
angle = math.acos((b ** 2 + c ** 2 - a ** 2) / (2 * b * c)) # cosine theorem
if angle <= math.pi / 2: # angle less than 90 degree, treat as fingers
cnt += 1
cv2.circle(drawing, far, 8, [211, 84, 0], -1)
return True, cnt
return False, 0
in my case, i used about the same function to estimate the bending of board while extracting the contour
OLD COMMENT:
i am currently working in about the same, great information in this post, i'll come back with a solution when i'll have it ready
from Jonasson's answer, Shouldn't be here a tuple on the right side too?, i believe it won't unpack:
f1x,f1y=(contour[after]-contour[before])/stride
f2x,f2y=(contour[after]-2*contour[i]+contour[before])/stride**2
I'm trying to get fourier transforms to work, I have to do it for an assignment and I think I have it to where it should be working and i'm not sure why it's not. I think it has something to do with the complex numbers since 'i' is involved. I've looked at many references and I understand the formula but i'm having trouble programming it. this is what i have so far
void NaiveDFT::Apply( Image & img )
{
//make the fourier transform using the naive method and set that to the image.
Image dft(img);
Pixel ** dftData = dft.GetImageData();
Pixel ** imgData = img.GetImageData();
for(unsigned u = 0; u < img.GetWidth(); ++u)
{
for(unsigned v = 0; v < img.GetHeight(); ++v)
{
std::complex<double> sum = 0;
for(unsigned x = 0; x < img.GetWidth(); ++x)
{
for(unsigned y = 0; y < img.GetHeight(); ++y)
{
std::complex<double> i = sqrt(std::complex<double>(-1));
std::complex<double> theta = 2 * M_PI * (((u * x) / img.GetWidth()) + ((v * y) / img.GetHeight()));
sum += std::complex<double>(imgData[x][y]._red) * cos(theta) + (-i * sin(theta));
//sum += std::complex<double>(std::complex<double>(imgData[x][y]._red) * pow(EULER, -i * theta));
}
}
dftData[u][v] = (sum.imag() / (img.GetWidth() * img.GetHeight()));
}
}
img = dft;
}
I have a few test images i'm testing this with and i'm either getting like an all black image or like, an all gray image.
I've also tried the sum of e^(-i*2*PI*(x*u*width + y*v*height) * 1/width * height which gets the same result as expected although it's still not the desiered output.
I've also tried the sum.real() number and that doesn't look right either
if anyone has any tips or can point me in the right direction, that'd be great, at this point, i just keep trying different things and checking the output until I get what I should be getting.
thanks.
I think that there can be a problem during the multiplication with the complex term. The line:
sum += std::complex<double>(imgData[x][y]._red) * cos(theta) + (-i * sin(theta));
should be:
sum += std::complex<double>(imgData[x][y]._red) * ( cos(theta) + -i * sin(theta));
Moreover, while calculating theta you need to use double precision:
std::complex<double> theta = 2 * M_PI * ((((double)u * x) / (double)(img.GetWidth())) + (((double)v * y) / (double)(img.GetHeight())));