I've read the section 13.5 of the working draft N3797 and I've one question. Let complex be a class type which represents complex numbers. We can define the following operator function:
complex operator+(double d, complex c)
{
return *new complex(d+c.get_real(),c.get_imagine());
}
But how this operator function can be implements as a complex member function? Or must I to declare this operator function in every module which I've intend to use them?
There are two ways to define a binary operator overload, such as the binary + operator, between two types.
As a member function.
When you define it as member function, the LHS of the operator is an instance of the class. The RHS of the operator is the argument to the function. That's why when you define it as member function, it can only have one argument.
As a free function.
These functions must have two arguments. The first argument is the LHS of the operator and the second argument is the RHS of the operator.
Since double is not a class, you have to define operator+ overload between double as LHS and complex as RHS as a free function, with double const& or double as the first argument type and complex const& or complex as the second argument type.
What you're looking for is this:
inline complex operator +(double d, const complex& c)
{
return complex(d+c.get_real(), c.get_imagine());
}
This cannot be a member function if you want the operator to handle a left-side of the operator as a double. It must be a free function, possibly friended if access to anything besides the public interface of complex is needed.
If you want the right side of the add-op to be a double, a member function can be crafted:
complex operator +(double d) const
{
return complex(d+get_real(), get_imagine());
}
Note this is assuming this definition is within the body of the complex class definition. But in the interest of clarity I would recommend both be inline free functions.
Implicit Construction
Lined up with the usual suspects, what you're at-least-appearing to try to do is generally done with an implicit conversion constructor and a general free-function. By providing this:
complex(double d) : real(d), imagine()
{
}
in the class definition a double can implicitly construct a temporary complex where needed. This allows this:
inline complex operator +(const complex& lhs, const complex& rhs)
{
return complex(lhs.get_real() + rhs.get_real(),
lhs.get_imagine() + rhs.get_imagine());
}
to be used as a general solution to all sensible manifestations of what you appear to want.
In C++, operator overloading requires class types. You cannot overload the + operator for the basic type double.
Also, except in certain circumstances (short-lived programs or throwaway code), the pointer resulting from a call to the new operator should be captured, so that it can be later released with delete, preventing a situation known as a memory leak.
For it to be a member, the first parameter must be of the class type(though it is not explicitly specified). But you are sending a double as first argument. If you need this to work either make it friend function or just non-member function which can work only using public interface of the Complex class. And as others pointed out, you are leaking memory.
Related
Why is it giving the error.
class Complex{
int real,imaginary;
public:
Complex():real(0),imaginary(0){};
Complex(int real, int imaginary):real(real),imaginary(imaginary){};
int getreal()const{return real;}
int getimaginary()const{return imaginary;};
Complex &operator=(const Complex& );
Complex operator*(){
return Complex(real,-imaginary);
}
Complex operator+(const Complex &a, const Complex &d){
return Complex (d.getreal()+a.getreal(),a.getimaginary()+d.getimaginary());
}
};
When trying to overload the assingment operator.
Eroor says: too many parameter
What operators can we overload as member function and what not
When overriding operators that have left and right parameters, you should just pass the right parameter and declare it like this:
Complex operator+(const Complex &d){
return Complex(d.getreal() + getreal(), getimaginary() + d.getimaginary());
}
When doing that, when you call getreal() or directly access that variable without specifing the parameter, it will use the left parameter of the operator.
Some of the operators that cannot be overloaded are scope (::), ternary (:), sizeof, member access (.) and some others.
When defining an overloaded operator as a member function, the object pointed at by the this pointer is implicitly the first argument. So your operator overload needs to look like:
class Complex {
// ...
Complex operator+(const Complex &d) const {
return Complex (real + d.real, imaginary + d.imaginary);
}
};
Note that you don't need the getter functions, since you already have access to the data members inside the class.
Outside the class, i.e. as a non-member function, your overloaded operator is perfectly fine.
This is an overloaded operator contained in a class:
inline operator const FOO() const { return _obj_of_type_FOO; }
I cannot for the life of me understand:
How I would invoke this operator?
What would be its return value?
[Secondary] Whether making it inline affects anything apart from efficiency?
That expression looks like a declaration of a conversion operator if Foo is a type and it is inside a class. The second const (the one closer to the opening curly bracket) means that the conversion can be called on const instances. Let us say the class is C. You can think of a conversion operator as a constructor outside a class. For example, you can't add constructors to the class std::string, but you can add a conversion operator to std::string to your classes. The result is that you can construct std::string from your class instance.
1) How to invoke the conversion operator: by constructing a value of type Foo from a C, for example:
Foo foo = c (where c is an instance of C, the class that declares the conversion operator). Mind you that the invocation of the conversion can happen implicitly. If you have, for example, void funOnFoo(Foo v); and an instace c of C, this might implicitly call operator const Foo: funOnFoo(c). Whether this actually does, depends on the usual things: Whether there are other overloads of funOnFoo, other conversions for C, etc.
2) The return value is const Foo
3) inline means the same thing as for any function, in particular, does not affect overload resolution
This question gives a good answer why to define operator overloads as non-members: Operator overloading : member function vs. non-member function?
If you define your operator overloaded function as member function,
then compiler translates expressions like s1 + s2 into
s1.operator+(s2). That means, the operator overloaded member function
gets invoked on the first operand. That is how member functions work!
But what if the first operand is not a class? There's a major problem
if we want to overload an operator where the first operand is not a
class type, rather say double. So you cannot write like this 10.0 +
s2. However, you can write operator overloaded member function for
expressions like s1 + 10.0.
Now I have a situation where I need to overload operator==. In my case, only (a) objects of (b) the same type will be compared.
Is there a reason to still define operator== as a non-member or should I implement it as a member in that case?
Because operator== has symmetric semantics for its LHS and RHS argument, the recommended approach is to always implement it as a non-member in terms of the public interface of its operands (or if private data is required, to declare it as a friend inside the class).
So
class Bla
{
public:
// complete interface to data required for comparison
auto first();
auto second();
// ... more
private:
// data goes here
};
bool operator==(Bla const& L, Bla const& R)
{
return
std::forward_as_tuple(L.first(), L.second() /*, ... */) ==
std::forward_as_tuple(R.first(), R.second() /*, ... */)
;
}
This way, implicit conversion to Bla are considered for both the L and R arguments (I'm not saying implicit conversions are a good idea, but if you have those, it's better to avoid surprises where they are only considered for the RHS argument).
I am currently creating a utility class that will have overloaded operators in it. What are the pros and cons of either making them member or non-member (friend) functions? Or does it matter at all? Maybe there is a best practice for this?
I'd go with "C++ Coding Standards: 101 Rules, Guidelines, and Best Practices": if you can do it as non-member function, do it as non-member function (in the same namespace).
One of the reasons: it works better with implicit type conversion. An Example: You have a complex class with an overloaded operator*. If you want to write 2.0 * aComplexNumber, you need the operator* to be a non-member function.
Another reason: less coupling. Non-member-functions a less closely coupled than member functions. This is almost always a good thing.
Each operator has its own considerations. For example, the << operator (when used for stream output, not bit shifting) gets an ostream as its first parameter, so it can't be a member of your class. If you're implementing the addition operator, you'll probably want to benefit from automatic type conversions on both sides, therefore you'll go with a non-member as well, etc...
As for allowing specialization through inheritance, a common pattern is to implement a non-member operator in terms of a virtual member function (e.g. operator<< calls a virtual function print() on the object being passed).
If you plan on implementing streaming operators (<< and >>) then they will be non-members methods because your object is on the left of the operator.
If you plan on implementing ->, () or [] they are naturally member methods.
For the others (comparison and mathematical) you should check out Boost.Operators, it really helps.
For example, if you want to implement the following operators:
MyClass& MyClass::operator+=(int);
MyClass operator+(const MyClass&, int);
MyClass operator+(int, const MyClass&);
You only have to write:
class MyClass: boost::operator::addable<MyClass,int> // no need for public there
{
public:
MyClass& operator+=(int);
private:
};
The 2 operator+ will be automatically generated as non-members which will let you benefit from automatic conversions. And they will be implemented efficiently in term of operator+= so you write code only once.
For binary operators, one limitation of member functions is that the left object must be of your class type. This can limit using the operator symmetrically.
Consider a simple string class:
class str
{
public:
str(const char *);
str(const str &other);
};
If you implement operator+ as a member function, while str("1") + "2" will compile, "1" + str("2") will not compile.
But if you implement operator+ as a non-member function, then both of those statements will be legal.
If you are implementing op, then most probably you need to implement op=. i.e. if you are overloading + operator, then you should implement +=.
Make sure that you are returning const to an object if you are doing post-increment or overloading + operator.
So, if you overload operator + , then implement it as a non-member operator and use += operator inside it. For eg.
const A operator+(const A& lhs, const A& rhs)
{
A ret(lhs);
ret += rhs;
return ret;
}
There is nothing like best practices but it depends on the operator you are overloading ..
For e.g .
>> and << can't be overloaded as member functions .
Suppose you want to do like this : obj1 = 2 * obj2 then go for non-member function.
For binary operator overloading member function takes only 1 parameter (invoking object is impcliitly passed ) whereas non-member function takes 2 parameters .
I wrote an abstraction class for a math object, and defined all of the operators. While using it, I came across:
Fixed f1 = 5.0f - f3;
I have only two subtraction operators defined:
inline const Fixed operator - () const;
inline const Fixed operator - (float f) const;
I get what is wrong here - addition is swappable (1 + 2 == 2 + 1) while subtraction is not (same goes for multiplication and division).
I immediately wrote a function outside my class like this:
static inline const Fixed operator - (float f, const Fixed &fp);
But then I realized this cannot be done, because to do that I would have to touch the class's privates, which results to using the keyword friend which I loath, as well as polluting the namespace with a 'static' unnecessary function.
Moving the function inside the class definition yields this error in gcc-4.3:
error: ‘static const Fixed Fixed::operator-(float, const Fixed&)’ must be either a non-static member function or a non-member function
Doing as GCC suggested, and making it a non-static function results the following error:
error: ‘const Fixed Fixed::operator-(float, const Fixed&)’ must take either zero or one argument
Why can't I define the same operator inside the class definition? if there's no way to do it, is there anyway else not using the friend keyword?
Same question goes for division, as it suffers from the same problem.
If you need reassuring that friend functions can be OK:
http://www.gotw.ca/gotw/084.htm
Which operations need access to
internal data we would otherwise have
to grant via friendship? These should
normally be members. (There are some
rare exceptions such as operations
needing conversions on their left-hand
arguments and some like operator<<()
whose signatures don't allow the *this
reference to be their first
parameters; even these can normally be
nonfriends implemented in terms of
(possibly virtual) members, but
sometimes doing that is merely an
exercise in contortionism and they're
best and naturally expressed as
friends.)
You are in the "operations needing conversions on the left-hand arguments" camp. If you don't want a friend, and assuming you have a non-explicit float constructor for Fixed, you can implement it as:
static inline Fixed operator-(const Fixed &lhs, const Fixed &rhs) {
return lhs.minus(rhs);
}
then implement minus as a public member function, that most users won't bother with because they prefer the operator.
I assume if you have operator-(float) then you have operator+(float), so if you don't have the conversion operator, you could go with:
static inline Fixed operator-(float lhs, const Fixed &rhs) {
return (-rhs) + lhs;
// return (-rhs) -(-lhs); if no operator+...
}
Or just Fixed(lhs) - rhs if you have an explicit float constructor. Those may or may not be as efficient as your friend implementation.
Unfortunately the language is not going to bend over backwards to accommodate those who happen to loathe one of its keywords, so operators can't be static member functions and get the effects of friendship that way ;-p
"That's what friends are for..."
You could add an implicit conversion between float and your type (e.g. with a constructor accepting float)... but I do think using a friend is better.
When you define something like this,
inline const Fixed operator - (float f) const;
you are saying that I want this operator(you are inside the class) to operate on a specific type, float here for example.
Whereas a friend binary operator, means an operation between two types.
class Fixed
{
inline friend const Fixed operator-(const Fixed& first, const float& second);
};
inline const Fixed operator-(const Fixed& first, const float& second)
{
// Your definition here.
}
with friend operators you can have your class on either side of the operator it self.
In general, free function operators for arithmetic operations are better than implementing member functions. The main reason is the problem you are facing now. The compiler will treat the left and right sides differently. Note that while strict OO followers will consider only those methods inside the class curly braces part of its interface, but it has been argued by experts that not to be the case in C++.
If the free function operator requires access to private members, make the operator friend. After all if it is provided in the same header file (following Sutter's rationale above) then it is part of the class.
If you really want to avoid it and don't mind making your code less idiomatic (and thus less maintainable) you can provide a public method that does the real work and dispatch to that method from the operator.
class Fixed {
private:
Fixed();
Fixed( double d ); // implicit conversion to Fixed from double
Fixed substract( Fixed const & rhs ) const;
// ...
};
Fixed operator-( Fixed const & lhs, Fixed const & rhs )
{
return lhs.substract( rhs );
}
In the code above, you can substract Fixed - Fixed, Fixed - double, double - Fixed. The compiler will find the free function and implicitly convert (in the example through the double constructor) the doubles into Fixed objects.
While this is unidiomatic for arithmetic operators, it is close to the idiomatic way of proving a polymorphic dump operator. So while not being the most natural solution it won't be the most surprising code around either
// idiomatic polymorphic dump operator
class Base {
public:
virtual std::ostream& dump( std::ostream & ) const;
};
std::ostream& operator<<( std::ostream& o, Base const & d )
{
return d.dump( o );
}