C++ pointer function causes empty parameter - c++

I'm making a virtual machine in C++. I have loaded in the contents of a file as a string. I pass this string to a function of type int*, but the problem is the string variable containing the contents of the file seems to be empty because when I try to use cout << file << endl; I get nothing.
Here is the file in question:
#include <iostream>
#include <string>
#include <fstream>
#include <sstream>
using namespace std;
class reedoovm {
private:
string filedata;
string instruction;
string file;
int instr;
int instructionCount;
int instructionPointer;
public:
int load_program(string filename) {
ifstream rdfile(filename);
while(rdfile >> instruction) { /* Get each instruction */
filedata += instruction; /* Append the instruction to filedata */
filedata += ","; /* Append a comma to separate each instruction */
instructionCount++;
}
rdfile.close(); /* Close the file */
return instructionCount; /* Return the filedata */
}
int *instrToArr(string file) {
//file = "02,0022,00E1,0022,00,04,73";
cout << file << endl;
stringstream hextoint;
unsigned int value;
string s = file; /* store fconv in a variable "s" */
string delimiter = ","; /* The delimiter */
size_t pos = 0;
string token;
int i = 0;
int inst;
static int* instarray;
instarray = (int*) calloc(instructionCount,sizeof(int));
while ((pos = s.find(delimiter)) != string::npos) { /* Convert hex instructions to decimal */
token = s.substr(0, pos);
stringstream hextoint(token);
hextoint >> hex >> value;
if (i < instructionCount) {
instarray[i] = value;
cout << instarray[i] << endl;
i++;
}
s.erase(0, pos + delimiter.length());
}
return instarray;
}
int getNextIntruction(string s) {
int *instruction = instrToArr(s);
cout << *instruction << endl;
return 0;
}
void run_program(string s) {
int loop = 1;
while (loop) {
instr = getNextIntruction(s);
loop = 0;
}
}
void execute_program(string s) {
file = load_program(s);
int * arr = instrToArr(file);
//cout << arr << endl;
//run_program(s);
}
};
int main(int argc, char* argv[]) {
reedoovm rd;
rd.execute_program(argv[1]);
return 0;
}
The function causing the problem is int *instrToArr(string file) {. I don't know why all of a sudden the file variable is empty.

Your code has many issues, but the one that is bugging you is probably
file = loadProgram(s);
because loadProgram has been defined as returning an integer (the number of instructions) and not a string, but you're assigning it to a string.
For what I'd call a design bug of C++ assigning an integer to a string is a perfectly legal instruction and means that the string will have one character with the value of the integer.
Officially the reason for accepting assignment from an integers is that it was thought that it could be useful to write
str += chr; // Adds the char at the end
where str is a string and chr a char. By extension if += was legal then it was thought that also assignment should be legal too (a logical jump I don't agree with in this specific case).
chars however in C++ are numbers and integers (or even doubles) can be converted implicitly to a char without any warning or any error. So it's for example also legal:
std::string s;
s = 3.141592654;
Other issues I can see in your code are:
1. instructionCount is not initialized
In C++ you must always initialize native type members (e.g. integers, doubles) in class instances in the constructor. The default constructor won't do it for you. The result is that when allocating the class instance those members will have random values and you don't want that. Official explanation for this rule is that initializing members that won't be access may penalize performance, if the programmer wants to pay for initialization then it has to write the initialization.
2. instrToArr returns a pointer to a local static variable
That variable that is however allocated each time the function is called thus leaking memory at each call if the caller doesn't take care of deallocation.
Note that in C++ writing:
static int * instarray = (int *)calloc(...);
is not the same as writing:
static int * instarray;
instarray = (int *)calloc(...);
because in the first case the allocation is done only once (the first time the code reaches that instruction) while in the second case the allocation is done every time.
3. You are using calloc
Your code is allocation a variable-sized array using calloc and this, while not a bad idea in absolute, requires very careful handling to avoid leaks or other errors (for example memory allocated with calloc must be freed with free and not with delete[] but the compiler cannot help the programmer remembering what was allocated with one or with the other method (new[]).
MUCH better unless there are very specific reasons to play with naked pointers and implicit sizes is to use std::vector for variable-sized arrays.
4. You seem to want hex -> int conversion
... but your code does nothing to do it. Unfortunately input parsing is a sad story in C++ and I, as one, prefer to use old c <stdio.h> functions for input and especially for output (where formatting in C++ is just too painful).
5. your getNextInstruction always returns 0
Nothing remains of the processing of instrToArr and also the array returned is just dropped on the floor after sending the address on output.
This means just leaking memory at every iteration.
6. your run_program just loops once
... thus at least the naming is confusing (there are no real loops).
7. your program doesn't do any kind of checking in main
If someone calls the program passing no arguments (a quite common case) then something bad is going to happen.

I think in load_program() instead of:
return instructionCount;
you meant:
return filedata;
And change the return type of load_program() to string

I suppose you have a typo
int * arr = instrToArr(file)
instead of
int * arr = instrToArr(filedata)

Related

How do I reverse a c string without the use of strlen?

I'm trying to implement a void function that takes a c string as its only parameter and reverses it and prints it. Below is my attempt at a solution however I'm not sure how to go about this problem.
void printBackwards(char forward[]) {
int i = 0;
char backwards[];
while (forward[i] != '\0') {
backwards[i] = forward[-i - 1];
i++;
}
cout << backwards;
}
Under such a condition, I guess you are expected to use recursion.
void printBackwards(char forward[]) {
if (!forward[0])
return;
printBackwards(forward + 1);
cout << forward[0];
}
Not being able to use strlen, we'll calculate it ourselves using a simple for loop. Then dynamically allocate a suitable buffer (add one character for the null terminating char, and I "cheated" by using calloc to zero the memory so I don't have to remember to set the null terminator. Then anoher simple loop to copy the original into the result in reverse.
#include <stdlib.h>
#include <stdio.h>
char *rev(char *s) {
size_t i;
char *s2 = s; // A pointer to the beginning as our first loop modifies s
for (i = 0; *s; s++, i++);
char *result = calloc(0, i + 1);
if (!result) return NULL; // In case calloc didn't allocate the requested memory.
for (size_t j = 0; j < i; j++)
result[j] = s2[i - j - 1];
return result;
}
Assuming you want to reverse the string rather than just printing it in reverse order, you first need to find the last character location (actually the position of the null terminator). Pseudo-code below (since this is an educational assignment):
define null_addr(pointer):
while character at pointer is not null terminator:
increment pointer
return pointer
Then you can use that inside a loop where you swap the two characters and move the pointers toward the center of the string. As soon as the pointers become equal or pass each other the string is reversed:
define reverse(left_pointer):
set right_pointer to null_addr(left_pointer)
while right_pointer > left_pointer plus one:
decrement right_pointer
swap character at left_pointer with character at right_pointer
increment left_pointer
Alternatively (and this appears to be the case since your attempt doesn't actually reverse the original string), if you need to print the string in reverse order without modifying it, you still find the last character. Then you run backwards through the string printing each character until you reach the first. That can be done with something like:
define print_reverse(pointer):
set right_pointer to null_addr(pointer)
while right_pointer > pointer:
decrement right_pointer
print character at right_pointer
That's probably better than creating a new string to hold the reverse of the original, and then printing that reverse.
One thing you should keep in mind. This very much appears to be a C-centric question, not a C++ one (it's using C strings rather than C++ strings, and uses C header files). If that's the case, you should probably avoid things like cout.
By using abstractions, like , your code will be much better at communication WHAT it is doing instead of HOW it is doing it.
#include <iostream>
#include <string>
#include <ranges>
int main()
{
std::string hello{ "!dlrow olleH" };
for (const char c : hello | std::views::reverse)
{
std::cout << c;
}
return 0;
}
Use a template
#include <iostream>
template<int N, int I=2>
void printBackwards(char (&forward)[N]) {
std::cout << forward[N-I];
if constexpr (I<N) printBackwards<N, I+1>(forward);
}
int main() {
char test[] = "elephant";
printBackwards(test);
}
While there seems to be several working answers, I thought I'd throw my hat in the stack (pun intended) since none of them take advantage of a FILO data structure (except #273K's answer, which uses a stack implicitly instead of explicitly).
What I would do is simply push everything onto a stack and then print the stack:
#include <stack>
#include <iostream>
void printBackwards(char forward[]) {
// Create a stack to hold our reversed string
std::stack<char> stk;
// Iterate through the string until we hit the null terminator
int i = 0;
while (forward[i] != '\0'){
stk.push(forward[i]);
++i;
}
// Iterate through the stack and print each character as we pop() it
while (stk.size() > 0){
std::cout << stk.top();
stk.pop();
}
// Don't forget the newline (assuming output lines should be separated)
std::cout << '\n';
}
int main(int argc, char* argv[]){
char s[] = "This is a string";
printBackwards(s);
return 0;
}
Hi guys as promised I have come back to add my own answer. This is my own way using array subscripts and using what I currently know.
#include <iostream>
using namespace std;
void printBackwards(char[]);
int main()
{
char word[] = "apples";
printBackwards(word);
return 0;
}
void printBackwards(char word[]) {
char* temp = word;
int count = 0;
while (*temp++ != '\0') {
count++;
}
for (int i = count - 1; i >= 0; i--) {
cout << word[i];
}
}
You can make a fixed-size buffer and create new ones if needed. Fill it reverse by moving the string offset back with every inserted character. Chars exceeding the buffer are returned to be processed later, so you can make a list of such buffers:
template<int SIZE>
struct ReversedCStr
{
static_assert(SIZE > 10); // just some minimal size treshold
// constexpr
ReversedCStr(char const* c_str, char const** tail = nullptr) noexcept
{
for(buffer[offset] = '\0'; *c_str != '\0';)
{
buffer[--offset] = *c_str++;
if(offset == 0) break;
}
if(tail) *tail = c_str;
}
//constexpr
char const* c_str() const noexcept { return buffer.data()+offset;};
private:
size_t offset = SIZE -1;
std::array<char,SIZE> buffer;
};
The tag is 'C++' so I assume you use C++ not C. The following code is C++11 so it should fit in every modern project. I posted the working example on godbolt.org.
It doesn't allocate memory, and is completely exception-free. The maximum memory wasted is {buffer_size + sizeof(char*)*number_of_chunks}, and can be easily turned into a list of reversed chunks like this:
char const* tail;
std::vector<ReversedCStr<11>> vec;
for(vec.emplace_back(str,&tail); *tail != '\0';)
vec.emplace_back(tail,&tail);

save struct into a binary file and read it

I have array of struct in class,and I want save that in file.
if I put the input ac.mem [i] .username except the username is stored in the file
And if I put the input ac.mem [i] nothing will be saved.
This is part of my code:
const int len=5;
class account {
public:
struct members {
string username;
string password;
int acsess;
}mem[len];
};
class account ac;
....
ac.mem[0] = { "admin","soran",5 };
ac.mem[1] = { "hamid","hamid",4 };
fstream acc1("account", ios::binary);
for (int i = 0; i <= 1; i++) {
acc1.write((char*)&ac.mem[i].username, sizeof(ac.mem[i].username));
}
acc1.close();
....
ifstream acc2("account", ios::binary);
for (int i = 0; i <= len; ++i) {
acc1.read((char*)&ac.mem[i].username, sizeof(ac.mem[i].username));
cout << i + 1 << "." << setw(10) << ac.mem[i].username << setw(20) << ac.mem[i].password << setw(20) << ac.mem[i].acsess << endl;
}
acc2.close();
std::string objects are pretty complex types – they internally maintain pointers to memory. When you just write the internal representation to a file (casting address of to char*) all you write out are these pointers plus possibly some additional management data.
The actual string contents, though, are stored at the locations these pointers point to. When reading back you cannot ever assume to find the same data at the address you've just restored from file (unless the original string object written to still exists – but then playing around with the internals will, if two different std::string objects involved, with 100% probability lead to undefined behaviour due to double deletion, if not reading and writing them from/to memory that way already is).
What you actually want to print to file are the contents of the string – which you get by either std::string::c_str or alternatively std::string::data. You might additionally want to include the terminating null character (hopefully there are no internal ones within the string...) to be able to read back multiple strings, stopping reading each one at exactly the null terminator, then writing to file might look like:
std::string s; // assign some content...
std::ofstream f; // open some path
if(f) // stream opened successfully?
{
f.write(s.c_str(), s.length() + 1);
}
Note that std::string::length returns the length without the terminating null character, so if you want/need to include it, you need to add one to as done above.
Alternatively you can write out the string's length first and then skip writing the null character – with the advantage that on reading back you already know in advance how many characters to read and thus to pre-allocate within your objects (std::string::reserve). For compatibilty reasons over different compilers and especially machines make sure to write out fixed-size data types from <cstdint> header, e.g.:
uint32_t length = s.length();
f.write(reinterpret_cast<char const*>(&length), sizeof(length));
f.write(s.c_str(), s.length());
This approach covers internally existing null characters as well (though if such data exists, std::vector<unsigned char> or preferably std::vector<uint8_t> might be better alternative, std::string is intended for texts).
If you want to use C language, you could refer to the following code.
#include <stdio.h>
#include <stdlib.h>
#pragma warning(disable : 4996)
typedef struct {
char* name;
int phone;
}address;
int main(void)
{
int i;
address a[3];
for (i = 0; i < 3; i++)
{
a[i].name = "jojo";
a[i].phone = "123456";
}
FILE* fp;
fp = fopen("list.txt", "ab");
for (i = 0; i < 3; i++)
{
printf(" % s, % d",a[i].name,a[i].phone);
fwrite(&a[i], sizeof(address), 1, fp);
}
fclose(fp);
return 0;
}

while loop inside for loop

I read this sample code in a book. I can't figure out why this part of the following sample code's function declaration is necessary:
while (i <= n)
p[i++] = '\0'; // set rest of string to '\0'
Here is the whole code:
#include <iostream>
const int ArSize = 80;
char * left(const char * str, int n = 1);
int main()
{
using namespace std;
char sample[ArSize];
cout << "Enter a string:\n";
cin.get(sample,ArSize);
char *ps = left(sample, 4);
cout << ps << endl;
delete [] ps; // free old string
ps = left(sample);
cout << ps << endl;
delete [] ps; // free new string
return 0;
}
// This function returns a pointer to a new string
// consisting of the first n characters in the str string.
char * left(const char * str, int n)
{
if(n < 0)
n = 0;
char * p = new char[n+1];
int i;
for (i = 0; i < n && str[i]; i++)
p[i] = str[i]; // copy characters
while (i <= n)
p[i++] = '\0'; // set rest of string to '\0'
return p;
}
I ran the code after I erased it and there was no problem.
The loop is unnecessary. Null-terminated strings end at the first null byte. If more memory was allocated than the actual string needs, it does not matter what’s in those extra bytes. All non-broken C-string handling code stops at the first null terminator. All that’s required is a single
p[i] = '\0';
after the for loop. However, that one null byte is mandatory. C-string functions depend on it and will happily overrun the allocated memory if it’s missing. Essentially they’ll (try to) keep going until they stumble upon the next null byte in memory. If that is past the allocated memory it causes undefined behaviour, resulting in a crash if you’re lucky; or corrupted data if you’re less lucky.
That said: Throw away that book yesterday. The code is a catastrophe from the first to the last line. It barely qualifies as C++. Most of it is plain C. And even as C code it’s highly questionable.
Why to avoid using namespace std. #vol7ron pointed out in the comments that the major complaint is against using namespace std in headers. Here it’s used inside a function in a .cpp file, which lessens the impact significantly. Although in my opinion it is still worth avoiding. If you don’t know the implementation of your standard library in depth, you don’t really have an idea about all the symbols you pull into your scope. If you need it for readability, pulling in specific symbols (e.g. using std::cout;) is a better choice. Also, I’m confident I’m not alone in kind of expecting the std:: prefix. For example, std::string is what I expect to see. string looks slightly off. There’s always a lingering doubt that it might not be the std library string, but a custom string type. So, including the prefix can benefit readability as well.
Why all the C-string pain? We’ve had std::string for a while now …
Copying characters in a loop? Seriously? That’s what std::strcpy() is for.
Raw new and delete everywhere: error prone because you have to keep track of the new/delete pairs manually to avoid memory leaks.
Even worse: asymmetric owning raw pointers. left() allocates and returns a pointer; and it’s the caller’s responsibility to delete it. It doesn’t get more error prone than that.
… And these are only the problems that stick out on first glance.
What that piece of code should look like:
#include <iostream>
#include <string>
std::string left(const std::string& str, std::size_t len = 1);
int main()
{
// getline can fail. If that happens we get an empty string.
std::string sample;
std::getline(std::cin, sample);
auto ps = left(sample, 4);
std::cout << ps << '\n';
ps = left(sample);
std::cout << ps << '\n';
return 0;
}
// `len` may be longer than the string. In that case a copy
// of the complete input string is returned.
std::string left(const std::string& str, std::size_t len)
{
return str.substr(0, len);
}

argument list for class template "std::vector" is missing

I am in need of some help with this program. I am in my first ever programming class and have run into wall trying to getting my program to work. I have included what I have written so far but still it doesn't compile. It is giving the error: argument list for class template "std::vector" is missing.
Here is the question:
When you read a long document, there is a good chance that many words occur multiple times. Instead of storing each word, it may be beneficial to only store unique words, and to represent the document as a vector of pointers to the unique words. Write a program that implements this strategy. Read a word at a time from cin. Keep a vector <char *> of words. If the new word is not present in this vector, allocate memory, copy the word into it, and append a pointer to the new memory. If the word is already present, then append a pointer to the existing word.
Below is code snippet:
#include "stdafx.h"
#include <string>
#include <iostream>
using namespace std;
/* Create a vector of char pointers to hold the individual words.
Create a string input to hold the next input through cin. */
int main() {
vector words;
string input;
/* Keep the while loop running using cin as the condition to read an entire document.
This will end when a document has reached its end. */
while (cin >> input) {
/* For every word read as a string, convert the word into a c-string by allocating
a new character array with the proper size and using c_str and strcpy to copy
an identical c-string into the memory heap. */
char* temp = new char[input.length() + 1];
strcpy(temp, input.c_str());
/* Next, check if the word is already in the words array. Use a boolean variable
that updates if the word is found. Compare words by using the strcmp function;
when they are equal, strcmp equals 0. */
bool already_present = false;
for (int i = 0; i < words.size(); i++) {
if (strcmp(temp, words[i]) == 0) {
already_present = true;
}
}
/* If the word is already present, delete the allocated memory.
Otherwise, push the pointer into the words vector. */
if (already_present) {
delete temp;
} else {
words.push_back(temp);
}
}
}
I hope below code snippet could be helpful:
#include <string>
#include <iostream>
#include <string.h> // String.h for strcmp()
#include <vector> // Vector Header file is added
using namespace std;
int main() {
vector <char *> words; // vector of char *
string input;
while (cin >> input) {
char *temp = new char[input.length() + 1];
strcpy(temp, input.c_str());
bool already_present = false;
for (unsigned int i = 0; i < words.size(); i++) {
if (strcmp(temp, words[i]) == 0) {
already_present = true;
}
}
if (already_present) {
delete temp;
} else {
words.push_back(temp);
}
}
/* Print the desired output */
for(unsigned int i=0; i<words.size(); i++) {
cout << words[i] << endl;
}
return 0;
}
Any doubt, comments most welcome.
EDIT: After reading your comments, I came to the conclusion that you use Microsoft Visual Stdio. See, the reason you were getting warning is that strcpy() is potentially unsafe because it can lead to buffer overflow if you try to copy a string to a buffer that is not large enough to contain it.
Consider a code snippet for a moment:
char foo[10]; /* a buffer able to hold 9 chars (plus the null) */
char bar[] = "A string longer than 9 chars";
strcpy( foo, bar ); /* compiles ok, but VERY BAD because you have a buffer overflow
and are corrupting memory. */
strcpy_s() is safer because you have to explicitly specify the size of the target buffer, so the function will not overflow:
strcpy_s( foo, 10, bar ); /* strcpy_s will not write more than 10 characters */
The limitations of this strcpy_s() is that, it is non-standard and MS specific. Therefore if you write code to use it, your code will not be portable any more.

Passing structure by reference and assign string

Here is a simple program where I am trying to pass a structure to a function by reference and a string. The function is supposed to detect the length of the string and assign it a member of the structure. Here is the program:
#include <iostream>
#include <string.h>
struct stringy // structure definition
{
char *str;
int ct;
};
void set(stringy &beany, const char *testing); // function definition
int main()
{
stringy beany;
char testing[] = "Reality isn't what it used to be.";
set(beany, testing); // function call
return 0;
}
void set(stringy &beany, const char *testing) // function prototype
{
int i=0;
while (*(testing+i) != '\0') // this loop counts the number of characters
{
i++;
std::cout << i << "\n";
}
beany.str = new char[i]; // dynamic storage allocation
std::cout << strlen(beany.str); // printing the length of the string
}
For some reason the output of the last line in the function set() is 47 while the value of "i" is 33. The last 15 bytes are filled with garbage value. I want that the length of beany.str should be equal to the length of *testing.
You allocate memory for beany.str but you don't initialize that memory. The contents of the allocated memory, without any initialization, is indeterminate (and in practice will be seemingly random).
Also don't forget that old C-style strings needs to be terminated by the special '\0' character (or functions like strlen will not work).
Both of these problems, using uninitialized memory and forgetting the terminator, will lead to undefined behavior.
beany.str = new char[i]; // dynamic storage allocation
std::cout << strlen(beany.str); // printing the length of the string
strlen looks for the terminating null character '\0'. There is no guaranteed one in beany.str, because you assign it the result of new char[i], which does not zero-initialize the elements. It allocates space for i characters that are not initialized to zero.
Even if they were, strlen would return 0, because it would immediately find '\0' at the first position. If you don't somehow remember i yourself, the size information will be lost.
Look at the output of the following program:
#include <iostream>
int main()
{
char *str = new char[100];
for (int i = 0; i < 100; ++i)
{
std::cout << str[i] << "\n";
}
}
The behaviour is undefined. What you will probably see are some seemingly random characters.
If you want zero-initialization, use new char[i]().
But still, strlen will be 0:
#include <iostream>
#include <string.h>
int main()
{
char *str = new char[100]();
for (int i = 0; i < 100; ++i)
{
std::cout << str[i] << "\n";
}
std::cout << strlen(str) << "\n";
}
You should just get rid of array-new and array-delete. Use std::string.