Problems with ostream - c++

I'm working in a Big Integer implementation in C++ and I'm trying to use cout with my BigInt class. I already overloaded the << operator but it doesn't work in some cases.
Here is my code:
inline std::ostream& operator << (ostream &stream, BigInt &B){
if (!B.getSign()){
stream << '-';
}
stream << B.getNumber();
return stream;
}
The code above works with:
c = a + b;
cout << c << endl;
But fails with:
cout << a + b << endl;
In the first case the program runs fine, but in the second the compiler gave an error:
main.cc: error: cannot bind ‘std::ostream {aka std::basic_ostream<char>}’ lvalue to ‘std::basic_ostream<char>&&’
It's possible to overload the << operator for function in both cases?
Methods:
string getNumber ();
bool getSign ();
string BigInt::getNumber (){
return this->number;
}
bool BigInt::getSign (){
return this->sign;
}

As chris already pointed out in comments very quickly (as usual), you have a temporary created in here:
cout << a + b << endl;
You cannot bind that to a non-const reference. You will need to change the signature of your operator overloading by adding the const keyword to the reference.
This code works for me with a dummy BigInt implementation (as you have not shared yours):
#include <iostream>
using namespace std;
class BigInt
{
public:
bool getSign() const { return true; }
int getNumber() const { return 0; }
const BigInt operator+(const BigInt &other) const {}
};
inline std::ostream& operator << (ostream &stream, const BigInt &B){
// ^^^^^
if (!B.getSign()){
stream << '-';
}
stream << B.getNumber();
return stream;
}
int main()
{
BigInt a, b, c;
c = a + b;
cout << c << endl;
cout << a + b << endl;
return 0;
}
But yeah, I agree that the error message is not self-explanatory in this particular case.

Change
inline std::ostream& operator << (ostream &stream, BigInt &B){
to
inline std::ostream& operator << (ostream &stream, BigInt const& B){
c can be a used where BiInt& is expected but a+b cannot be because a+b is a temporary. But it can be used where BigInt const& is expected.

Related

Call to deleted constructor of std::__1::ostream error on operator<< overload

I am trying to get a function to be recognized as a friend but I can not figure out what I am doing wrong. I tried changing things to references and moving things in and out of the namespace and header cpp. There is nothing that I notice as the culprit for why this does not work.
The error I am getting is
error: call to deleted constructor of 'std::__1::ostream' (aka 'basic_ostream<char>')
return output;
^~~~~~
I'm thinking it might be a reference issue, or maybe something I forgot to import when I started. But I can't think of anything.
namespace N
{
class Complex
{
public:
// Contructors
Complex(double n, double i)
{
this->number = n;
this->imaginary = i;
}
Complex()
{
this->number = 0;
this->number = 0;
}
// Accessors
friend ostream operator<< (ostream& os, const Complex& a);
// Operator Overloads
Complex operator + (Complex b)
{
Complex c;
c.number = this->number + b.number;
c.imaginary = this->imaginary + b.imaginary;
return c;
}
private:
double number;
double imaginary;
};
ostream operator<<(ostream& output, const Complex& a)
{
output << fixed << setprecision(1) << a.number << " + " << a.imaginary << "i";
return output;
}
}
You need to return the std::ostream by reference. That means you need
namespace N
{
class Complex
{
public:
friend std::ostream& operator<< (std::ostream& os, const Complex& a);
// ^^^^^^^^^^^^^^
private:
// ...
};
std::ostream& operator<<(std::ostream& output, const Complex& a)
//^^^^^^^^^^^^
{
return output << std::fixed << std::setprecision(1)
<< a.number << " + " << a.imaginary << "i";
}
}
This is because, the std::ostream is non-copyable:
protected:
basic_ostream( const basic_ostream& rhs ) = delete; (2) (since C++11)
When you return by non-reference, it will be return by copy in operator<<, which required the copy constructor call. Since it is deleted, you get the error.

How to rectify private error while using Friend Function in C++?

Getting this error while using friend function in C++ : error: ‘int complex::a’ is private within this context. How will I rectify this error? I have created one complex class and while learning a friend function, i get to know that friend function can access private member functions too. But in this code, this error pops out. Thanks in advance.
#include <iostream>
using namespace std;
class complex{
private:
int a, b;
public:
void setNumber(int x,int y){a=x;b=y;}
void getNumber(){cout << "\n a="<< a << "b=" << b; }
friend ostream& operator <<(ostream&, complex);
friend istream& operator >>(istream&, complex&);
};
ostream& operator <<(ostream &dout, complex c){
cout << "a=" << c.a;
cout << "b=" << c.b;
return (dout);
}
istream& operator <<(istream &din, complex &c){
cin>>c.a>>c.b;
return (din);
}
int main(){
complex c1;
cin >> c1;
cout << c1;
return 0;
}
change this
ostream& operator <<(ostream &dout, complex c)
{
cout << "a=" << c.a;
cout << "b=" << c.b;
return (dout);
}
istream& operator <<(istream &din, complex &c)
{
cin>>c.a>>c.b;
return (din);
}
to
ostream& operator <<(ostream &dout, const complex& c)
{
dout << "a=" << c.a;
dout << "b=" << c.b;
return (dout);
}
istream& operator >>(istream &din, complex &c)
{
din>>c.a>>c.b;
return (din);
}

no operator "<<" matches these operands when using operator overloading

Error ocurred with the following try to operator overloading:
#include<iostream>
#include<string>
#include<ostream>
using namespace std;
class Dollar
{
private:
float currency, mktrate, offrate;
public:
Dollar(float);
float getDollar() const;
float getMarketSoums() const;
float getofficialSoums() const;
void getRates();
// In the following function I was trying to overload "<<" in order to print all the data members:
friend void operator<<(Dollar &dol, ostream &out)
{
out << dol.getDollar() << endl;
out << dol.getMarketSoums() << endl;
out << dol.getofficialSoums() << endl;
}
};
Dollar::Dollar(float d)
{
currency = d;
}
float Dollar::getDollar() const
{
return currency;
}
float Dollar::getMarketSoums() const
{
return mktrate;
}
float Dollar::getofficialSoums() const
{
return offrate;
}
void Dollar::getRates()
{
cin >> mktrate;
cin >> offrate;
}
int main()
{
Dollar dollar(100);
dollar.getRates();
// In this line I am getting the error. Could you please help to modify it correctly?
cout << dollar;
system("pause");
return 0;
}
You have to pass std::ostream object as the first parameter to the insertion operator << not as the second one as long as you are calling it that way:
friend void operator << (ostream &out, Dollar &dol);
You should make the object passed in to the insertion operator constant reference as long as this function is only prints and not intending to modify the object's members:
friend void operator << (ostream &out, const Dollar& dol);
So pass by reference to avoid multiple copies and const to avoid unintentional modification.
If you want to invoke to get it work the way you wanted you can do this:
friend void operator<<(const Dollar &dol, ostream &out){
out << dol.getDollar() << endl;
out << dol.getMarketSoums() << endl;
out << dol.getofficialSoums() << endl;
}
And in main for example:
operator << (dollar, cout); // this is ok
dollar << cout; // or this. also ok.
As you can see I reversed the order of calling the insertion operator to match the signature above. But I don't recommend this, it is just to understand more how it should work.

How to overload << operator without friend function

I am trying to overload << operator to print Currency (user defined type)
#include <iostream>
using namespace std;
struct Currency
{
int Dollar;
int Cents;
ostream& operator<< (ostream &out)
{
out << "(" << Dollar << ", " << Cents << ")";
return out;
}
};
template<typename T>
void DisplayValue(T tValue)
{
cout << tValue << endl;
}
int main() {
Currency c;
c.Dollar = 10;
c.Cents = 54;
DisplayValue(20); // <int>
DisplayValue("This is text"); // <const char*>
DisplayValue(20.4 * 3.14); // <double>
DisplayValue(c); // Works. compiler will be happy now.
return 0;
}
But getting the following error.
prog.cpp: In instantiation of ‘void DisplayValue(T) [with T = Currency]’:
prog.cpp:34:16: required from here
prog.cpp:22:9: error: cannot bind ‘std::ostream {aka std::basic_ostream<char>}’ lvalue to ‘std::basic_ostream<char>&&’
cout << tValue << endl;
^
In file included from /usr/include/c++/4.8/iostream:39:0,
from prog.cpp:1:
/usr/include/c++/4.8/ostream:602:5: error: initializing argument 1 of ‘std::basic_ostream<_CharT, _Traits>& std::operator<<(std::basic_ostream<_CharT, _Traits>&&, const _Tp&) [with _CharT = char; _Traits = std::char_traits<char>; _Tp = Currency]’
operator<<(basic_ostream<_CharT, _Traits>&& __os, const _Tp& __x)
^
Can anyone help me if i am missing any thing or doing anything wrong here?
First you need to fix the operator by adding Currency const& c as the second parameter (as it come s on the right hand side).
Then you have two options:
1: Add Friend
struct Currency
{
int Dollar;
int Cents;
friend ostream& operator<< (ostream &out, Currency const& c)
{
return out << "(" << c.Dollar << ", " << c.Cents << ")";
}
};
2: Move the definition outside the class
struct Currency
{
int Dollar;
int Cents;
};
ostream& operator<< (ostream &out, Currency const& c)
{
return out << "(" << C.Dollar << ", " << c.Cents << ")";
}
Either works and is fine.
Personally I like option-1 as it documents the tight coupling of the output operator to the class that it is outputting. But this is such a simple case that either works just fine.
The reason that it can not be a member is that the first parameter is a stream (the left hand side value of the operator is the first parameter). This does not work for members as the first parameter is the hidden this parameter. So technically you could add this method to std::ostream. Unfortunately you don't have accesses (and not allowed to) modify std::ostream. As a result you must make it a free standing function.
Example showing it can be a member:
struct X
{
std::ostream operator<<(int y)
{
return std::cout << y << " -- An int\n";
}
};
int main()
{
X x;
x << 5;
}
That works fine here.
This is because the compiler translates
x << 5;
into
// not real code (pseudo thought experiment code).
operator<<(x, 5)
// Equivalent to:
X::operator<<(int y)
// or
operator<<(X& x, int y)
Because x has a member function operator<< this works fine. If x did not have a member function called operator<< then the compiler would look for a free standing function that takes two parameters with X as the first and int as the second.
You don't put it into your class, you put if afterwards. Since your members are public there is no need to declare it a friend:
struct Currency
{
int Dollar;
int Cents;
};
ostream& operator<< (ostream &out, const Currency& c)
{
out << "(" << c.Dollar << ", " << c.Cents << ")";
return out;
}
Overload it like below, and put it outside of class declaration (you don't need friendship!):
ostream& operator<< (ostream &out, const Currency &c)
{ //^^^^^^^^^^^^^^^^
out << "(" << c.Dollar << ", " << c.Cents << ")";
return out;
}
Funny thing with your code is, you have to use the operator like this:
c << cout; // !!
The way you've written your inserter method, the only way to get it to work would be to do:
c << std::cout;
But instead, if you know your inserters won't need to access any private variables, simply do as the other answers say and create a global function that takes both arguments:
std::ostream& operator <<(std::ostream& os, const Currency& c);
#include<iostream>
using namespace std;
class myclass
{
int x;
public:
myclass() //constructor
{
x=5;
}
friend ostream& operator<<(ostream &outStreamObject,myclass &object); //standard way
void operator<<(ostream &outStreamObject) //Another way.
{
outStreamObject<<this->x;
}
};
ostream& operator<<(ostream &outStreamObject,myclass &object)
{
cout<<object.x;
return outStreamObject;
}
int main()
{
//standard way of overload the extraction operator
myclass object1,object2;
cout<<object1<<" "<<object2;
cout<<endl;
//overloading the extraction operator with using friend function
object1.operator<<(cout);
return 0;
}
It is not at all necessary that the insertion and the extraction operators can be overloaded only by using the friend function.
The above code overloads the extraction operator with and without the friend function. The friend function implementation is favoured because cout can be used the way it is used for other datatypes.
Similary you can overload the insertion operator.
You need to make it friend :
Also you need to give it the right arguments. an ostream and the currency.
friend ostream& operator<< (ostream& stream, const Currency& c )
{
stream << "(" << c.Dollar << ", " << c.Cents << ")";
return stream;
}
Edit:
As you can see in the comments, you don't have to make it friend. You can put it outside the structure.
Currency c;
c.Dollar = 10;
c.Cents = 54;
DisplayValue(c); // Works. compiler will be happy now.

Overloading the << operator. Where/to whom is the reference returned?

comp c;
...
cout<< c;
the overloaded operator<< function returns a reference. In this case where is it returned or who collects it. What is the purpose of returning a reference ?
class comp
{
int re,im;
public: comp(){re=0;im=0;}
comp(int a,int b){re=a;im=b;}
void show(){cout<<"\n"<<im<<"+i"<<re<<"\n\n";}
comp operator *(comp a)
{
comp temp;
temp.re=(re+a.re) - (im*a.im);
temp.im=(im*a.re) + (re*a.im);
return temp;
}
friend ostream & operator<<(ostream& dout,complex & )
};
ostream& operator << (ostream &dout, comp &a)
{
dout<< a.re;
dout<< "+i";
dout<<a.im;
return dout;
}
int main()
{
comp a(1,2),b(2,3),c;
c=a*b;
c.show();
cout<< c;
return 0;
}
A chain of << operators, like a << b << c << d, is parsed by C/C++ into (((a << b) << c) << d), which is the same as
a.operator<<(b).operator<<(c).operator<<(d)
The "result" of each << is the LHS of the next <<; thus, to make this chaining work, the ostream must be returned from each operator<<.