OpenGL: Drawing 3D curves with varying width - opengl

I am trying to draw a curve in 3D in which the width may vary. I am doing something similar to what described in this tutorial.
Meaning, i create quads (and triangles) with the desired width instead of using OpenGL width. The problem is that the triangles are actually in 2D - they are drawn in a specific plane. The width will look different, of course, from different angles.
Am i tackling this problem in the correct way? Is there a good solution for my problem?

This is a tough question that i have recently come across while developing a game myself.
They way i handled it instead of drawing a line i would draw boxes as segments of the line. You could potential make cylinders but if your using lighting you could cheat boxes to look like cylinders.
You could also cross two quads to make an X of sorts along the length of the string.

Related

Render a vectorfield with Point Sprites in OpenGL

I'd like to render a vectorfield visualization with OpenGL. Right now, I have a 3D cube filled with points which I need to replace with arrows. I've read a lot about Point Sprites in OpenGL and they seem to fit my needs pretty good.
I haven't really worked with textures yet, so there are some questions regarding the use of them together with Point Sprites:
First of all, is it possible to easily replace my points with arrows by just using a texture? If so, is it possible to rotate or scale those point sprites by an arbitrary degree using shaders?
If there are other possibilites than point sprites for achieving this, it would also be great to hear about them. I'm using OpenGL 4.2.
Point sprites are always screen-aligned squares. And they have an implementation-dependent maximum size.
If you need to do something like this, you should use a Geometry Shader that takes points as inputs, and outputs a quad (as 4 vertices of a triangle strip). Then you can do whatever you want.
Note that you should try to pass as little information as you can get away with out of the GS. Ideally, for maximum performance, you should only output to gl_Position and to a vec2 indicating where in the quad a particular location is.
is it possible to ... scale those point sprites by an arbitrary degree using shaders?
No, point sprites have an implementation-defined upper limit on size.

Perfect filled triangle rendering algorithm?

Where can I get an algorithm to render filled triangles? Edit3: I cant use OpenGL for rendering it. I need the per-pixel algorithm for this.
My goal is to render a regular polygon from triangles, so if I use this triangle filling algorithm, the edges from each triangle wouldn't overlap (or make gaps between them), because then it would result into rendering errors if I use for example XOR to render the pixels.
Therefore, the render quality should match to OpenGL rendering, so I should be able to define - for example - a circle with N-vertices, and it would render like a circle with any size correctly; so it doesn't use only integer coordinates to render it like some triangle filling algorithms do.
I would need the ability to control the triangle filling myself: I could add my own logic on how each of the individual pixels would be rendered. So I need the bare code behind the rendering, to have full control on it. It should be efficient enough to draw tens of thousands of triangles without waiting more than a second perhaps. (I'm not sure how fast it can be at best, but I hope it wont take more than 10 seconds).
Preferred language would be C++, but I can convert other languages to my needs.
If there are no free algorithms for this, where can I learn to build one myself, and how hard would that actually be? (me=math noob).
I added OpenGL tag since this is somehow related to it.
Edit2: I tried the algo in here: http://joshbeam.com/articles/triangle_rasterization/ But it seems to be slightly broken, here is a circle with 64 triangles rendered with it:
But if you zoom in, you can see the errors:
Explanation: There is 2 pixels overlapping to the other triangle colors, which should not happen! (or transparency or XOR etc effects will produce bad rendering).
It seems like the errors are more visible on smaller circles. This is not acceptable if I want to have a XOR effect for the pixels.
What can I do to fix these, so it will fill it perfectly without overlapped pixels or gaps?
Edit4: I noticed that rendering very small circles isn't very good. I realised this was because the coordinates were indeed converted to integers. How can I treat the coordinates as floats and make it render the circle precisely and perfectly just like in OpenGL ? Here is example how bad the small circles look like:
Notice how perfect the OpenGL render is! THAT is what I want to achieve, without using OpenGL. NOTE: I dont just want to render perfect circle, but any polygon shape.
There's always the half-space method.
OpenGL uses the GPU to perform this job. This is accelerated in hardware and is called rasterization.
As far as i know the hardware implementation is based on the scan-line algorithm.
This used to be done by creating the outline and then filling in the horizontal lines. See this link for more details - http://joshbeam.com/articles/triangle_rasterization/
Edit: I don't think this will produce the lone pixels you are after, there should be a pixel on every line.
Your problem looks a lot like the problem one has when it comes to triangles sharing the very same edge. What is done by triangles sharing an edge is that one triangle is allowed to conquer the space while the other has to leave it blank.
When doing work with a graphic card usually one gets this behavior by applying a drawing order from left to right while also enabling a z-buffer test or testing if the pixel has ever been drawn. So if a pixel with the very same z-value is already set, changing the pixel is not allowed.
In your example with the circles the line of both neighboring circle segments are not exact. You have to check if the edges are calculated differently and why.
Whenever you draw two different shapes and you see something like that you can either fix your model (so they share all the edge vertexes), go for a z-buffer test or a color test.
You can also minimize the effect by drawing edges using a sub-buffer that has a higher resolution and down-sample it. Since this does not effect the whole area it is more cost effective in terms of space and time when compared to down-sampling the whole scene.

OpenGL lighting question?

Greetings all,
As seen in the image , I draw lots of contours using GL_LINE_STRIP.
But the contours look like a mess and I wondering how I can make this look good.(to see the depth..etc )
I must render contours so , i have to stick with GL_LINE_STRIP.I am wondering how I can enable lighting for this?
Thanks in advance
Original image
http://oi53.tinypic.com/287je40.jpg
Lighting contours isn't going to do much good, but you could use fog or manually set the line colors based on distance (or even altitude) to give a depth effect.
Updated:
umanga, at first I thought lighting wouldn't work because lighting is based on surface normal vectors - and you have no surfaces. However #roe pointed out that normal vectors are actually per vertex in OpenGL, and as such, any POLYLINE can have normals. So that would be an option.
It's not entirely clear what the normal should be for a 3D line, as #Julien said. The question is how to define normals for the contour lines such that the resulting lighting makes visual sense and helps clarify the depth?
If all the vertices in each contour are coplanar (e.g. in the XY plane), you could set the 3D normal to be the 2D normal, with 0 as the Z coordinate. The resulting lighting would give a visual sense of shape, though maybe not of depth.
If you know the slope of the surface (assuming there is a surface) at each point along the line, you could use the surface normal and do a better job of showing depth; this is essentially like a hill-shading applied only to the contour lines. The question then is why not display the whole surface?
End of update
+1 to Ben's suggestion of setting the line colors based on altitude (is it topographic contours?) or based on distance from viewer. You could also fill the polygon surrounded by each contour with a similar color, as in http://en.wikipedia.org/wiki/File:IsraelCVFRtopography.jpg
Another way to make the lines clearer would be to have fewer of them... can you adjust the density of the contours? E.g. one contour line per 5ft height difference instead of per 1ft, or whatever the units are. Depending on what it is you're drawing contours of.
Other techniques for elucidating depth include stereoscopy, and rotating the image in 3D while the viewer is watching.
If your looking for shading then you would normally convert the contours to a solid. The usual way to do that is to build a mesh by setting up 4 corner points at zero height at the bounds or beyond then dropping the contours into the mesh and getting the mesh to triangulate the coords in. Once done you then have a triangulated solid hull for which you can find the normals and smooth them over adjacent faces to create smooth terrain.
To triangulate the mesh one normally uses the Delaunay algorithm which is a bit of a beast but there does exist libraries for doing it. The best of which I know of is the ones based on Guibas as Stolfi papers since its pretty optimal.
To generate the normals you do a simple cross product and ensure the facing is correct and manually renormalize them before feeding into the glNormal.
The in the old days you used to make a glList out of the result but the newer way is to make a vertex array. If you want to be extra flash then you can look for coincident planar faces and optimize the mesh down for faster redraw but thats a bit of a black art - good for games, not so good for CAD.
(thx for bonus last time)

Why is there no circle or ellipse primitive in OpenGL?

Circles are one of the basics geometric entities. Yet there is no primitives defined in OpenGL for this, like lines or polygons. Why so? It's a little annoying to include custom headers for this all the time!
Any specific reason to omit it?
While circles may be basic shapes they aren't as basic as points, lines or triangles when it comes to rasterisation. The first graphic cards with 3D acceleration were designed to do one thing very well, rasterise triangles (and lines and points because they were trivial to add). Adding any more complex shapes would have made the card a lot more expensive while adding only little functionality.
But there's another reason for not including circles/ellipses. They don't connect. You can't build a 3D model out of them and you can't connect triangles to them without adding gaps or overlapping parts. So for circles to be useful you also need other shapes like curves and other more advanced surfaces (e.g. NURBS). Circles alone are only useful as "big points" which can also be done with a quad and a circle shaped texture, or triangles.
If you are using "custom headers" for circles you should be aware that those probably create a triangle model that form your "circles".
Because historically, video cards have rendered points, lines, and triangles.
You calculate curves using short enough lines so the video card doesn't have to.
Because graphic cards operate on 3-dimensional points, lines and triangles. A circle requires curves or splines. It cannot be perfectly represented by a "normal" 3D primitive, only approximated as an N-gon (so it will look like a circle at a certain distance). If you want a circle, write the routine yourself (it isn't hard to do). Either draw it as an N-gon, or make a square (2 triangles) and cut a circle out of it it using fragment shader (you can get a perfect circle this way).
You could always use gluSphere (if a three-dimensional shape is what you're looking for).
If you want to draw a two-dimensional circle you're stuck with custom methods. I'd go with a triangle fan.
The primitives are called primitives for a reason :)

OpenGL texturing via vertex alphas, how to avoid following diagonal lines?

http://img136.imageshack.us/img136/3508/texturefailz.png
This is my current program. I know it's terribly ugly, I found two random textures online ('lava' and 'paper') which don't even seem to tile. That's not the problem at the moment.
I'm trying to figure out the first steps of an RPG. This is a top-down screenshot of a 10x10 heightmap (currently set to all 0s, so it's just a plane), and I texture it by making one pass per texture per quad, and each vertex has alpha values for each texture so that they blend with OpenGL.
The problem is that, notice how the textures trend along diagonals, and even though I'm drawing with GL_QUAD, this is presumably because the quads are turned into sets of two triangles and then the alpha values at the corners have more weight along the hypotenuses... But I wasn't expecting that to matter at all. By drawing quads, I was hoping that even though they were split into triangles at some low level, the vertex alphas would cause the texture to radiate in a circular outward gradient from the vertices.
How can I fix this to make it look better? Do I need to scrap this and try a whole different approach? IS there a different approach for something like this? I'd love to hear alternatives as well.
Feel free to ask questions and I'll be here refreshing until I get a valid answer, so I'll comment as fast as I can.
Thanks!!
EDIT:
Here is the kind of thing I'd like to achieve. No I'm obviously not one of the billions of noobs out there "trying to make a MMORPG", I'm using it as an example because it's very much like what I want:
http://img300.imageshack.us/img300/5725/runescapehowdotheytile.png
How do you think this is done? Part of it must be vertex alphas like I'm doing because of the smooth gradients... But maybe they have a list of different triangle configurations within a tile, and each tile stores which configuration it uses? So for example, configuration 1 is a triangle in the topleft and one in the bottomright, 2 is the topright and bottomleft, 3 is a quad on the top and a quad on the bottom, etc? Can you think of any other way I'm missing, or if you've got it all figured out then please share how they do it!
The diagonal artefacts are caused by having all of your quads split into triangles along the same diagonal. You define points [0,1,2,3] for your quad. Each quad is split into triangles [0,1,2] and [1,2,3]. Try drawing with GL_TRIANGLES and alternating your choice of diagonal. There are probably more efficient ways of doing this using GL_TRIANGLE_STRIP or GL_QUAD_STRIP.
i think you are doing it right, but you should increase the resolution of your heightmap a lot to get finer tesselation!
for example look at this heightmap renderer:
mdterrain
it shows the same artifacts at low resolution but gets better if you increase the iterations
I've never done this myself, but I've read several guides (which I can't find right now) and it seems pretty straight-forward and can even be optimized by using shaders.
Create a master texture to control the mixing of 4 sub-textures. Use the r,g,b,a components of the master texture as a percentage mix of each subtextures ( lava, paper, etc, etc). You can easily paint a master texture using paint.net, photostop, gimp and just paint into each color channel. You can compute the resulting texture before hand using all 5 textures OR you can calculate the result on the fly with a fragment shader. I don't have a good example of either, but I think you can figure it out given how far you've come.
The end result will be "pixel" pefect blending (depends on the textures resolution and filtering) and will avoid the vertex blending issues.