C++ implicit data sharing [duplicate] - c++

I am building a game engine library in C++. A little while back I was using Qt to build an application and was rather fascinated with its use of Implicit Sharing. I am wondering if anybody could explain this technique in greater detail or could offer a simple example of this in action.

The key idea behind implicit sharing seems to go around using the more common term copy-on-write. The idea behind copy-on-write is to have each object serve as a wrapper around a pointer to the actual implementation. Each implementation object keeps track of the number of pointers into it. Whenever an operation is performed on the wrapper object, it's just forwarded to the implementation object, which does the actual work.
The advantage of this approach is that copying and destruction of these objects are cheap. To make a copy of the object, we just make a new instance of a wrapper, set its pointer to point at the implementation object, and then increment the count of the number of pointers to the object (this is sometimes called the reference count, by the way). Destruction is similar - we drop the reference count by one, then see if anyone else is pointing at the implementation. If not, we free its resources. Otherwise, we do nothing and just assume someone else will do the cleanup later.
The challenge in this approach is that it means that multiple different objects will all be pointing at the same implementation. This means that if someone ends up making a change to the implementation, every object referencing that implementation will see the changes - a very serious problem. To fix this, every time an operation is performed that might potentially change the implementation, the operation checks to see if any other objects also reference the implementation by seeing if the reference count is identically 1. If no other objects reference the object, then the operation can just go ahead - there's no possibility of the changes propagating. If there is at least one other object referencing the data, then the wrapper first makes a deep-copy of the implementation for itself and changes its pointer to point to the new object. Now we know there can't be any sharing, and the changes can be made without a hassle.
If you'd like to see some examples of this in action, take a look at lecture examples 15.0 and 16.0 from Stanford's introductory C++ programming course. It shows how to design an object to hold a list of words using this technique.
Hope this helps!

Related

Smart pointer, why need to check if I am the only user before changing the underlying object?

I am reading C++ Primer and find these kinda confusing:
The reset member is often used together with unique to control changes
to the object shared among several shared_ptrs. Before changing the
underlying object, we check whether we’re the only user. If not, we
make a new copy before making the change:
if (!p.unique())
p.reset(new string(*p)); // we aren't alone; allocate a new copy
*p += newVal; // now that we know we're the only pointer, okay to change this object
What does the emphasized text mean in the quoted text above? So confused.
Update:
After reading the text again, I find out that I may miss something.
So according the code above, let's assume there are 2 shared_ptr (one is p mentioned here) pointing to the original dynamic memory object let's say A. Then if I want to modify object A, I allocate a new dynamic memory with the copy value of A(new string(*p)), assign it to p, let's say B. So eventually A is not modified, but only create a copy of modified version of A?
Why not directly do *p += newVal;? And why is it related to Copy-on-write mentioned in answers? I mean, there's no extra copy operation needed. All shared_ptr originally points to dynamic memory object A. Only 1 object.
Screenshot that may supply a little bit more context:
I think authors of the book described here how Copy-on-write paradigm can be implemented using shared_ptr. As mentioned in comments before "this isn't a requirement of shared_ptr, its simply a design decision".
For you are only allowed to modify the shared_ptr and not the objects they refer to. This is to prevent data races.
From util.smartptr.shared/4:
For purposes of determining the presence of a data race, member
functions shall access and modify only the shared_­ptr and weak_­ptr
objects themselves and not objects they refer to.
Changes in
use_­count() do not reflect modifications that can introduce data
races.
For the reset() member function:
void reset() noexcept;
Effects: Equivalent to shared_­ptr().swap(*this).
Update: Substantially revised, based on new knowledge.
Short answer (to the title of your question): you don't. What C++ primer are you reading? No way is the example you quote there primer material.
The whole idea behind smart pointers is that they 'just work', once you understand them properly, and the author of the passage has pulled a stunt here which would rarely, if ever, be used in practice.
He appears to be trying to describe some sort of oh-so-slightly-weird copy-on-write mechanism implemented in software, but he has clearly bamboozled the OP and no doubt most of the rest of his readership in doing so. It's all a bit silly and it's just not worth trying to understand why they present it as they do (or, indeed, just what it is supposed to do in the first place). Like I say, it has no place in a primer (or probably anywhere else).
Anyway, std::shared_ptr::unique() is flawed (it is not threadsafe) and will be going away soon.
It should probably never have existed in the first place, don't use it.
One other issue arose during various discussions in the thread, and that is whether it is safe to mutate an object managed by a shared_ptr. Well wherever did you get the notion that it isn't? Of course it is. If you couldn't, many programs simply could not be written at all. Just don't mutate the same object from two different threads at the same time (that's what the standard calls a data race) - that's the only issue. If you do want to do that, use a mutex.

Is there a way to optimize shared_ptr for the case of permanent objects?

I've got some code that is using shared_ptr quite widely as the standard way to refer to a particular type of object (let's call it T) in my app. I've tried to be careful to use make_shared and std::move and const T& where I can for efficiency. Nevertheless, my code spends a great deal of time passing shared_ptrs around (the object I'm wrapping in shared_ptr is the central object of the whole caboodle). The kicker is that pretty often the shared_ptrs are pointing to an object that is used as a marker for "no value"; this object is a global instance of a particular T subclass, and it lives forever since its refcount never goes to zero.
Using a "no value" object is nice because it responds in nice ways to various methods that get sent to these objects, behaving in the way that I want "no value" to behave. However, performance metrics indicate that a huge amount of the time in my code is spent incrementing and decrementing the refcount of that global singleton object, making new shared_ptrs that refer to it and then destroying them. To wit: for a simple test case, the execution time went from 9.33 seconds to 7.35 seconds if I stuck nullptr inside the shared_ptrs to indicate "no value", instead of making them point to the global singleton T "no value" object. That's a hugely important difference; run on much larger problems, this code will soon be used to do multi-day runs on computing clusters. So I really need that speedup. But I'd really like to have my "no value" object, too, so that I don't have to put checks for nullptr all over my code, special-casing that possibility.
So. Is there a way to have my cake and eat it too? In particular, I'm imagining that I might somehow subclass shared_ptr to make a "shared_immortal_ptr" class that I could use with the "no value" object. The subclass would act just like a normal shared_ptr, but it would simply never increment or decrement its refcount, and would skip all related bookkeeping. Is such a thing possible?
I'm also considering making an inline function that would do a get() on my shared_ptrs and would substitute a pointer to the singleton immortal object if get() returned nullptr; if I used that everywhere in my code, and never used * or -> directly on my shared_ptrs, I would be insulated, I suppose.
Or is there another good solution for this situation that hasn't occurred to me?
Galik asked the central question that comes to mind regarding your containment strategy. I'll assume you've considered that and have reason to rely on shared_ptr as a communical containment strategy for which no alternative exists.
I have to suggestions which may seem controversial. What you've defined is that you need a type of shared_ptr that never has a nullptr, but std::shared_ptr doesn't do that, and I checked various versions of the STL to confirm that the customer deleter provided is not an entry point to a solution.
So, consider either making your own smart pointer, or adopting one that you change to suit your needs. The basic idea is to establish a kind of shared_ptr which can be instructed to point it's shadow pointer to a global object it doesn't own.
You have the source to std::shared_ptr. The code is uncomfortable to read. It may be difficult to work with. It is one avenue, but of course you'd copy the source, change the namespace and implement the behavior you desire.
However, one of the first things all of us did in the middle 90's when templates were first introduced to the compilers of the epoch was to begin fashioning containers and smart pointers. Smart pointers are remarkably easy to write. They're harder to design (or were), but then you have a design to model (which you've already used).
You can implement the basic interface of shared_ptr to create a drop in replacement. If you used typedefs well, there should be a limited few places you'd have to change, but at least a search and replace would work reasonably well.
These are the two means I'm suggesting, both ending up with the same feature. Either adopt shared_ptr from the library, or make one from scratch. You'd be surprised how quickly you can fashion a replacement.
If you adopt std::shared_ptr, the main theme would be to understand how shared_ptr determines it should decrement. In most implementations shared_ptr must reference a node, which in my version it calls a control block (_Ref). The node owns the object to be deleted when the reference count reaches zero, but naturally shared_ptr skips that if _Ref is null. However, operators like -> and *, or the get function, don't bother checking _Ref, they just return the shadow, or _Ptr in my version.
Now, _Ptr will be set to nullptr (or 0 in my source) when a reset is called. Reset is called when assigning to another object or pointer, so this works even if using assignment to nullptr. The point is, that for this new type of shared_ptr you need, you could simply change the behavior such that whenever that happens (a reset to nullptr), you set _Ptr, the shadow pointer in shared_ptr, to the "no value global" object's address.
All uses of *,get or -> will return the _Ptr of that no value object, and will correctly behave when used in another assignment, or reset is called again, because those functions don't rely upon the shadow pointer to act upon the node, and since in this special condition that node (or control block) will be nullptr, the rest of shared_ptr would behave as though it was pointing to nullptr correctly - that is, not deleting the global object.
Obviously this sounds crazy to alter std::pointer to such application specific behavior, but frankly that's what performance work tends to make us do; otherwise strange things, like abandoning C++ occasionally in order to obtain the more raw speed of C, or assembler.
Modifying std::shared_ptr source, taken as a copy for this special purpose, is not what I would choose (and, factually, I've faced other versions of your situation, so I have made this choice several times over decades).
To that end, I suggest you build a policy based smart pointer. I find it odd I suggested this earlier on another post today (or yesterday, it's 1:40am).
I refer to Alexandrescu's book from 2001 (I think it was Modern C++...and some words I don't recall). In that he presented loki, which included a policy based smart pointer design, which is still published and freely available on his website.
The idea should have been incorporated into shared_ptr, in my opinion.
Policy based design is implemented as the paradigm of a template class deriving from one or more of it's parameters, like this:
template< typename T, typename B >
class TopClass : public B {};
In this way, you can provide B, from which the object is built. Now, B may have the same construction, it may also be a policy level which derives from it's second parameter (or multiple derivations, however the design works).
Layers can be combined to implement unique behaviors in various categories.
For example:
std::shared_ptr and std::weak_ptrare separate classes which interact as a family with others (the nodes or control blocks) to provide smart pointer service. However, in a design I used several times, these two were built by the same top level template class. The difference between a shared_ptr and a weak_ptr in that design was the attachment policy offered in the second parameter to the template. If the type is instantiated with the weak attachment policy as the second parameter, it's a weak pointer. If it's given a strong attachment policy, it's a smart pointer.
Once you create a policy designed template, you can introduce layers not in the original design (expanding it), or to "intercept" behavior and specialize it like the one you currently require - without corrupting the original code or design.
The smart pointer library I developed had high performance requirements, along with a number of other options including custom memory allocation and automatic locking services to make writing to smart pointers thread safe (which std::shared_ptr doesn't provide). The interface and much of the code is shared, yet several different kinds of smart pointers could be fashioned simply by selecting different policies. To change behavior, a new policy could be inserted without altering the existing code. At present, I use both std::shared_ptr (which I used when it was in boost years ago) and the MetaPtr library I developed years ago, the latter when I need high performance or flexible options, like yours.
If std::shared_ptr had been a policy based design, as loki demonstrates, you'd be able to do this with shared_ptr WITHOUT having to copy the source and move it to a new namespace.
In any event, simply creating a shared pointer which points the shadow pointer to the global object on reset to nullptr, leaving the node pointing to null, provides the behavior you described.

What is a good way to share an object between classes?

What is a good way to share an instance of an object between several classes in a class hierarchy? I have the following situation:
class texture_manager;
class world {
...
std::vector<object> objects_;
skybox skybox_;
}
I currently implemented texture_manager as a singleton, and clients call its instancing method from anywhere in the code. texture_manager needs to be used by objects in the objects_ vector, by skybox_, and possibly by other classes as well that may or may not be part of the world class.
As I am trying to limit the use of singletons in my code, do you recommend any alternatives to this approach? One solution that came to mind would be to pass a texture_manager reference as an argument to the constructors of all classes that need access to it. Thanks.
The general answer to that question is to use ::std::shared_ptr. Or if you don't have that, ::std::tr1::shared_ptr, or if you don't have that, ::boost::shared_ptr.
In your particular case, I would recommend one of a few different approaches:
One possibility is, of course, the shared_ptr approach. You basically pass around your pointer to everybody who needs the object, and it's automatically destroyed when none of them need it anymore. Though if your texture manager is going to end up with pointers to the objects pointing at it, you're creating a reference cycle, and that will have to be handled very carefully.
Another possibility is just to declare it as a local variable in main and pass it as a pointer or reference to everybody who needs it. It won't be going away until your program is finished that way, and you shouldn't have to worry about managing the lifetime. A bare pointer or reference is just fine in this case.
A third possibility is one of the sort of vaguely acceptable uses of something sort of like a singleton. And this deserves a detailed explanation.
You make a singleton who's only job is to hand out useful pointers to things. A key feature it has is the ability to tell it what thing to hand out a pointer to. It's kind of like a global configurable factory.
This allows you to escape from the huge testing issues you create with a singleton in general. Just tell it to hand out a pointer to a stub object when it comes time to test things.
It also allows you to escape from the access control/security issue (yes, they create security issues as well) that a singleton represents for the same reason. You can temporarily tell it to pass out a pointer to an object that doesn't allow access to things that the section of code you're about to execute doesn't need access to. This idea is generally referred to as the principle of least authority.
The main reason to use this is that it saves you the problem of figuring out who needs your pointer and handing it to them. This is also the main reason not to use it, thinking that through is good for you. You also introduce the possibility that two things that expected to get the same pointer to a texture manager actually get pointers to a different texture manager because of a control flow you didn't anticipate, which is basically the result of the sloppy thinking that caused you to use the Singleton in the first place. Lastly, Singletons are so awful, that even this more benign use of them makes me itchy.
Personally, in your case, I would recommend approach #2, just creating it on the stack in main and passing in a pointer to wherever it's needed. It will make you think more carefully about the structure of your program, and this sort of object should probably live for your entire program's lifetime anyway.

Boost shared_ptr use_count function

My application problem is the following -
I have a large structure foo. Because these are large and for memory management reasons, we do not wish to delete them when processing on the data is complete.
We are storing them in std::vector<boost::shared_ptr<foo>>.
My question is related to knowing when all processing is complete. First decision is that we do not want any of the other application code to mark a complete flag in the structure because there are multiple execution paths in the program and we cannot predict which one is the last.
So in our implementation, once processing is complete, we delete all copies of boost::shared_ptr<foo>> except for the one in the vector. This will drop the reference counter in the shared_ptr to 1. Is it practical to use shared_ptr.use_count() to see if it is equal to 1 to know when all other parts of my app are done with the data.
One additional reason I'm asking the question is that the boost documentation on the shared pointer shared_ptr recommends not using "use_count" for production code.
Edit -
What I did not say is that when we need a new foo, we will scan the vector of foo pointers looking for a foo that is not currently in use and use that foo for the next round of processing. This is why I was thinking that having the reference counter of 1 would be a safe way to ensure that this particular foo object is no longer in use.
My immediate reaction (and I'll admit, it's no more than that) is that it sounds like you're trying to get the effect of a pool allocator of some sort. You might be better off overloading operator new and operator delete to get the effect you want a bit more directly. With something like that, you can probably just use a shared_ptr like normal, and the other work you want delayed, will be handled in operator delete for that class.
That leaves a more basic question: what are you really trying to accomplish with this? From a memory management viewpoint, one common wish is to allocate memory for a large number of objects at once, and after the entire block is empty, release the whole block at once. If you're trying to do something on that order, it's almost certainly easier to accomplish by overloading new and delete than by playing games with shared_ptr's use_count.
Edit: based on your comment, overloading new and delete for class sounds like the right thing to do. If anything, integration into your existing code will probably be easier; in fact, you can often do it completely transparently.
The general idea for the allocator is pretty much the same as you've outlined in your edited question: have a structure (bitmaps and linked lists are both common) to keep track of your free objects. When new needs to allocate an object, it can scan the bit vector or look at the head of the linked list of free objects, and return its address.
This is one case that linked lists can work out quite well -- you (usually) don't have to worry about memory usage, because you store your links right in the free object, and you (virtually) never have to walk the list, because when you need to allocate an object, you just grab the first item on the list.
This sort of thing is particularly common with small objects, so you might want to look at the Modern C++ Design chapter on its small object allocator (and an article or two since then by Andrei Alexandrescu about his newer ideas of how to do that sort of thing). There's also the Boost::pool allocator, which is generally at least somewhat similar.
If you want to know whether or not the use count is 1, use the unique() member function.
I would say your application should have some method that eliminates all references to the Foo from other parts of the app, and that method should be used instead of checking use_count(). Besides, if use_count() is greater than 1, what would your program do? You shouldn't be relying on shared_ptr's features to eliminate all references, your application architecture should be able to eliminate references. As a final check before removing it from the vector, you could assert(unique()) to verify it really is being released.
I think you can use shared_ptr's custom deleter functionality to call a particular function when the last copy has been released. That way, you're not using use_count at all.
You would need to hold something other than a copy of the shared_ptr in your vector so that the shared_ptr is only tracking the outstanding processing.
Boost has several examples of custom deleters in the shared_ptr docs.
I would suggest that instead of trying to use the shared_ptr's use_count to keep track, it might be better to implement your own usage counter. this way you will have full control over this rather than using the shared_ptr's one which, as you rightly suggest, is not recommended. You can also pre-set your own counter to allow for the number of threads you know will need to act on the data, rather than relying on them all being initialised at the beginning to get their copies of the structure.

Know what references an object

I have an object which implements reference counting mechanism. If the number of references to it becomes zero, the object is deleted.
I found that my object is never deleted, even when I am done with it. This is leading to memory overuse. All I have is the number of references to the object and I want to know the places which reference it so that I can write appropriate cleanup code.
Is there some way to accomplish this without having to grep in the source files? (That would be very cumbersome.)
A huge part of getting reference counting (refcounting) done correctly in C++ is to use Resource Allocation Is Initialization so it's much harder to accidentally leak references. However, this doesn't solve everything with refcounts.
That said, you can implement a debug feature in your refcounting which tracks what is holding references. You can then analyze this information when necessary, and remove it from release builds. (Use a configuration macro similar in purpose to how DEBUG macros are used.)
Exactly how you should implement it is going to depend on all your requirements, but there are two main ways to do this (with a brief overview of differences):
store the information on the referenced object itself
accessible from your debugger
easier to implement
output to a special trace file every time a reference is acquired or released
still available after the program exits (even abnormally)
possible to use while the program is running, without running in your debugger
can be used even in special release builds and sent back to you for analysis
The basic problem, of knowing what is referencing a given object, is hard to solve in general, and will require some work. Compare: can you tell me every person and business that knows your postal address or phone number?
One known weakness of reference counting is that it does not work when there are cyclic references, i.e. (in the simplest case) when one object has a reference to another object which in turn has a reference to the former object. This sounds like a non-issue, but in data structures such as binary trees with back-references to parent nodes, there you are.
If you don't explicitly provide for a list of "reverse" references in the referenced (un-freed) object, I don't see a way to figure out who is referencing it.
In the following suggestions, I assume that you don't want to modify your source, or if so, just a little.
You could of course walk the whole heap / freestore and search for the memory address of your un-freed object, but if its address turns up, it's not guaranteed to actually be a memory address reference; it could just as well be any random floating point number, of anything else. However, if the found value lies inside a block a memory that your application allocated for an object, chances improve a little that it's indeed a pointer to another object.
One possible improvement over this approach would be to modify the memory allocator you use -- e.g. your global operator new -- so that it keeps a list of all allocated memory blocks and their sizes. (In a complete implementation of this, operator delete would have remove the list entry for the freed block of memory.) Now, at the end of your program, you have a clue where to search for the un-freed object's memory address, since you have a list of memory blocks that your program actually used.
The above suggestions don't sound very reliable to me, to be honest; but maybe defining a custom global operator new and operator delete that does some logging / tracing goes in the right direction to solve your problem.
I am assuming you have some class with say addRef() and release() member functions, and you call these when you need to increase and decrease the reference count on each instance, and that the instances that cause problems are on the heap and referred to with raw pointers. The simplest fix may be to replace all pointers to the controlled object with boost::shared_ptr. This is surprisingly easy to do and should enable you to dispense with your own reference counting - you can just make those functions I mentioned do nothing. The main change required in your code is in the signatures of functions that pass or return your pointers. Other places to change are in initializer lists (if you initialize pointers to null) and if()-statements (if you compare pointers with null). The compiler will find all such places after you change the declarations of the pointers.
If you do not want to use the shared_ptr - maybe you want to keep the reference count intrinsic to the class - you can craft your own simple smart pointer just to deal with your class. Then use it to control the lifetime of your class objects. So for example, instead of pointer assignment being done with raw pointers and you "manually" calling addRef(), you just do an assignment of your smart pointer class which includes the addRef() automatically.
I don't think it's possible to do something without code change. With code change you can for example remember the pointers of the objects which increase reference count, and then see what pointer is left and examine it in the debugger. If possible - store more verbose information, such as object name.
I have created one for my needs. You can compare your code with this one and see what's missing. It's not perfect but it should work in most of the cases.
http://sites.google.com/site/grayasm/autopointer
when I use it I do:
util::autopointer<A> aptr=new A();
I never do it like this:
A* ptr = new A();
util::autopointer<A> aptr = ptr;
and later to start fulling around with ptr; That's not allowed.
Further I am using only aptr to refer to this object.
If I am wrong I have now the chance to get corrections. :) See ya!