Large numbers Class, Initialisation - c++

I am working on a class that deals with big numbers in C++.
Thing is I want it to be able to do a normal initialisation like:
Largeint A = 1934804692305674830675460730458673084576;
Instead of having to put the number between " ".
How should I go about achieving that?
Edit due to comments:
I know how to work with big numbers and do operations with them. The thing i was asking for is that i just don't want it too look like a string when giving it a value. Why? Just because.
And if integer literals are bound to the compiler settings, is there anyway i can go around this?
Both answeres are interesting and UDL are cool :D But, is there a way to use UDL without having to put a suffix at the end ?

With C++11, we can make User-defined literals
Largeint operator "" _largeint(const char* literal_string)
{
Largeint largeint;
// initialize largeint with literal string content;
return largeint;
}
or, if you prefer the variadic template
template<char... Cs> Largeint operator "" _largeint();
And then use it:
Largeint largeint = 123456789012345678901234567890_largeint;
You may use a more appropriate suffix name.

You could use a macro like this:
#define MakeLargeint(VAR, N) Largeint VAR = #N;
and define Largeints constructor to take a string.
So your line becomes:
MakeLargeint(A ,1934804692305674830675460730458673084576)

Related

How to cleanly use: const char* and std::string?

tl:dr
How can I concatenate const char* with std::string, neatly and
elegantly, without multiple function calls. Ideally in one function
call and have the output be a const char*. Is this impossible, what
is an optimum solution?
Initial Problem
The biggest barrier I have experienced with C++ so far is how it handles strings. In my opinion, of all the widely used languages, it handles strings the most poorly. I've seen other questions similar to this that either have an answer saying "use std::string" or simply point out that one of the options is going to be best for your situation.
However this is useless advice when trying to use strings dynamically like how they are used in other languages. I cannot guaranty to always be able to use std::string and for the times when I have to use const char* I hit the obvious wall of "it's constant, you can't concatenate it".
Every solution to any string manipulation problem I've seen in C++ requires repetitive multiple lines of code that only work well for that format of string.
I want to be able to concatenate any set of characters with the + symbol or make use of a simple format() function just how I can in C# or Python. Why is there no easy option?
Current Situation
Standard Output
I'm writing a DLL and so far I've been output text to cout via the << operator. Everything has been going fine so far using simple char arrays in the form:
cout << "Hello world!"
Runtime Strings
Now it comes to the point where I want to construct a string at runtime and store it with a class, this class will hold a string that reports on some errors so that they can be picked up by other classes and maybe sent to cout later, the string will be set by the function SetReport(const char* report). So I really don't want to use more than one line for this so I go ahead and write something like:
SetReport("Failure in " + __FUNCTION__ + ": foobar was " + foobar + "\n"); // __FUNCTION__ gets the name of the current function, foobar is some variable
Immediately of course I get:
expression must have integral or unscoped enum type and...
'+': cannot add two pointers
Ugly Strings
Right. So I'm trying to add two or more const char*s together and this just isn't an option. So I find that the main suggestion here is to use std::string, sort of weird that typing "Hello world!" doesn't just give you one of those in the first place but let's give it a go:
SetReport(std::string("Failure in ") + std::string(__FUNCTION__) + std::string(": foobar was ") + std::to_string(foobar) + std::string("\n"));
Brilliant! It works! But look how ugly that is!! That's some of the ugliest code I've every seen. We can simplify to this:
SetReport(std::string("Failure in ") + __FUNCTION__ + ": foobar was " + std::to_string(foobar) + "\n");
Still possibly the worst way I've every encounter of getting to a simple one line string concatenation but everything should be fine now right?
Convert Back To Constant
Well no, if you're working on a DLL, something that I tend to do a lot because I like to unit test so I need my C++ code to be imported by the unit test library, you will find that when you try to set that report string to a member variable of a class as a std::string the compiler throws a warning saying:
warning C4251: class 'std::basic_string<_Elem,_Traits,_Alloc>' needs to have dll-interface to be used by clients of class'
The only real solution to this problem that I've found other than "ignore the warning"(bad practice!) is to use const char* for the member variable rather than std::string but this is not really a solution, because now you have to convert your ugly concatenated (but dynamic) string back to the const char array you need. But you can't just tag .c_str() on the end (even though why would you want to because this concatenation is becoming more ridiculous by the second?) you have to make sure that std::string doesn't clean up your newly constructed string and leave you with garbage. So you have to do this inside the function that receives the string:
const std::string constString = (input);
m_constChar = constString.c_str();
Which is insane. Because now I traipsed across several different types of string, made my code ugly, added more lines than should need and all just to stick some characters together. Why is this so hard?
Solution?
So what's the solution? I feel that I should be able to make a function that concatenates const char*s together but also handle other object types such as std::string, int or double, I feel strongly that this should be capable in one line, and yet I'm unable to find any examples of it being achieved. Should I be working with char* rather than the constant variant, even though I've read that you should never change the value of char* so how would this help?
Are there any experienced C++ programmers who have resolved this issue and are now comfortable with C++ strings, what is your solution? Is there no solution? Is it impossible?
The standard way to build a string, formatting non-string types as strings, is a string stream
#include <sstream>
std::ostringstream ss;
ss << "Failure in " << __FUNCTION__ << ": foobar was " << foobar << "\n";
SetReport(ss.str());
If you do this often, you could write a variadic template to do that:
template <typename... Ts> std::string str(Ts&&...);
SetReport(str("Failure in ", __FUNCTION__, ": foobar was ", foobar, '\n'));
The implementation is left as an exercise for the reader.
In this particular case, string literals (including __FUNCTION__) can be concatenated by simply writing one after the other; and, assuming foobar is a std::string, that can be concatenated with string literals using +:
SetReport("Failure in " __FUNCTION__ ": foobar was " + foobar + "\n");
If foobar is a numeric type, you could use std::to_string(foobar) to convert it.
Plain string literals (e.g. "abc" and __FUNCTION__) and char const* do not support concatenation. These are just plain C-style char const[] and char const*.
Solutions are to use some string formatting facilities or libraries, such as:
std::string and concatenation using +. May involve too many unnecessary allocations, unless operator+ employs expression templates.
std::snprintf. This one does not allocate buffers for you and not type safe, so people end up creating wrappers for it.
std::stringstream. Ubiquitous and standard but its syntax is at best awkward.
boost::format. Type safe but reportedly slow.
cppformat. Reportedly modern and fast.
One of the simplest solution is to use an C++ empty string. Here I declare empty string variable named _ and used it in front of string concatenation. Make sure you always put it in the front.
#include <cstdio>
#include <string>
using namespace std;
string _ = "";
int main() {
char s[] = "chararray";
string result =
_ + "function name = [" + __FUNCTION__ + "] "
"and s is [" + s + "]\n";
printf( "%s", result.c_str() );
return 0;
}
Output:
function name = [main] and s is [chararray]
Regarding __FUNCTION__, I found that in Visual C++ it is a macro while in GCC it is a variable, so SetReport("Failure in " __FUNCTION__ "; foobar was " + foobar + "\n"); will only work on Visual C++. See: https://msdn.microsoft.com/en-us/library/b0084kay.aspx and https://gcc.gnu.org/onlinedocs/gcc/Function-Names.html
The solution using empty string variable above should work on both Visual C++ and GCC.
My Solution
I've continued to experiment with different things and I've got a solution which combines tivn's answer that involves making an empty string to help concatenate long std::string and character arrays together and a function of my own which allows single line copying of that std::string to a const char* which is safe to use when the string object leaves scope.
I would have used Mike Seymour's variadic templates but they don't seem to be supported by the Visual Studio 2012 I'm running and I need this solution to be very general so I can't rely on them.
Here is my solution:
Strings.h
#ifndef _STRINGS_H_
#define _STRINGS_H_
#include <string>
// tivn's empty string in the header file
extern const std::string _;
// My own version of .c_str() which produces a copy of the contents of the string input
const char* ToCString(std::string input);
#endif
Strings.cpp
#include "Strings.h"
const std::string str = "";
const char* ToCString(std::string input)
{
char* result = new char[input.length()+1];
strcpy_s(result, input.length()+1, input.c_str());
return result;
}
Usage
m_someMemberConstChar = ToCString(_ + "Hello, world! " + someDynamicValue);
I think this is pretty neat and works in most cases. Thank you everyone for helping me with this.
As of C++20, fmtlib has made its way into the ISO standard but, even on older iterations, you can still download and use it.
It gives similar capabilities as Python's str.format()(a), and your "ugly strings" example then becomes a relatively simple:
#include <fmt/format.h>
// Later on, where code is allowed (inside a function for example) ...
SetReport(fmt::format("Failure in {}: foobar was {}\n", __FUNCTION__, foobar));
It's much like the printf() family but with extensibility and type safety built in.
(a) But, unfortunately, not its string interpolation feature (use of f-strings), which has the added advantage of putting the expressions in the string at the place where they're output, something like:
set_report(f"Failure in {__FUNCTION__}: foobar was {foobar}\n");
If fmtlib ever got that capability, I'd probably wet my pants in excitement :-)

Tokenizer - Initialization with '{...}' expected for aggregate object

I'm working on creating a program that will take a fraction and reduce it to it's lowest terms. I'm using a tokenizer to parse through the string (In my case I'm reading in a string) and separate the numerator from the denominator.
I'm getting the following error, and am looking for an explanation to why it's happening. I've looked up people with similar problems, but I'm still a beginner looking for a basic explanation and suggestion for an alternative way to solve it.
RationalNum() // Default
:numerator(0), denominator(1){}
RationalNum(int num) // Whole Number
:numerator(num), denominator(1){}
RationalNum(int num, int denom) // Fractional Number
:numerator(num), denominator(denom){}
RationalNum(string s)
{
int num = 0;
char str[] = s;
}
I know the problem lies in the setting the char array to s.
Thanks for taking the time to look at this.
You are trying to initialise an array of char to a std::string, which is an object. The literal meaning of the error is that the compiler is expecting an initialisation that looks something like this :
char str[] = {'1','2','3','4'};
However, since you are planning on string manipulation anyway, you would have a much easier time just keeping the string object rather than trying to assign it to a char array.
Instead of building your parser from scratch, you can use string stream and getline. with '/' as your delimiter. You can initialise an std::stringstream with a string by passing it as an argument when constructing it. You can also use another stringstream to convert a string into a number by using the >> operator.

C++ Need Help Overloading += for a MyString Class

I'm working on writing my own string class and am having trouble with overloading the += operator for a MyString being +='d to a char. I figured this would work but with no luck. Here's the implementation I tried. Any assistance on getting it to work correctly will be much appreciated.
MyString& MyString::operator +=(char c)
{
char derp[1] = {c};
strcat(value, derp);
return *this;
}
This is not going to work for several reasons:
derp is not a null-terminated array, which it has to be if you pass it as a parameter to strcat
There is no check that the buffer that value represents can actually hold more data; neither is there a facility to make sure that the buffer is always null-terminated (which again it needs to be because you are passing it to strcat)
Even if you correct the above, your string class will never be able to include the character \0 as part of a string value because that will be mistaken for a null terminator; in technical terms, your string class would not be "binary safe"; to fix this you need to drop strcat and similar functions entirely and switch to memcpy and friends
Apart from the above, overloading operator += like this allows for code such as
MyString str("foo");
foo += 80; // this compiles, but should it?
Finally, the str*** family of functions is going to get needlessly slower as your strings are getting larger (because they have to scan the string from the beginning each time in order to determine where it ends). Keeping your own length variable and switching to mem*** is going to fix this issue as well.
The use of strcat is incorrect as it requires a null terminated source string and is being provided with a buffer with no null terminator.
value will only be capable of holding a finite number of characters, and there is no attempt to increase the size of value.
Assuming value is large enough and you retain the length of the string inside your instance, I'd say:
value[size] = c;
value[size+1] = '\0';

How to concatenate const char* strings in c++ with no function calls?

Ps: This is more of a conceptual question.
I know this makes things more complicated for no good reason, but here is what I'm wondering. If I'm not mistaken, a const char* "like this" in c++ is pointing to l and will be automatically zero terminated on compile time. I believe it is creating a temporary variable const char* to hold it, unless it is keeping track of the offset using a byte variable (I didn't check the disassembly). My question is, how would you if even possible, add characters to this string without having to call functions or instantiating strings?
Example (This is wrong, just so you can visualize what I meant):
"Like thi" + 's';
The closest thing I came up with was to store it to a const char* with enough spaces and change the other characters.
Example:
char str[9];
strcpy(str, "Like thi")
str[8] = 's';
Clarification:
Down vote: This question does not show any research effort; it is unclear or not useful
Ok, so the question has been highly down voted. There wasn't much reasoning on which of these my question was lacking on, so I'll try to improve all of those qualities.
My question was more so I could have a better understanding of what goes on when you simply create a string "like this" without storing the address of that string in a const char* I also wanted to know if it was possible to concatenate/change the content of that string without using functions like strcat() and without using the overloaded operator + from the class string. I'm aware this is not exactly useful for dealing with strings in C++, but I was curious whether or not there was a way besides the standard ways for doing so.
string example = "Like thi" + "s"; //I'm aware of the string class and its member functions
const char* example2 = "Like this"; //I'm also aware of C-type Strings (CString as well)
It is also possible that not having English as my native language made things even worst, I apologize for the confusion.
Instead of using a plain char string, you should use the string library provided by the C++ library:
#include <string>
#include <iostream>
using namespace std;
int main()
{
string str = "Like thi";
cout << str << endl;
str = str + "s";
cout << str << endl;
return 0;
}
Normally, it's not possible to simply concatenate plain char * strings in C or C++, because they are merely pointers to arrays of characters. There's almost no reason you should be using a bare character array in C++ if you intend on doing any string manipulations within your own code.
Even if you need access to the C representation (e.g. for an external library) you can use string::c_str().
First, there is nothing null terminated, but the zero terminated. All char* strings in C end with '\0'.
When you in code do something like this:
char *name="Daniel";
compiler will generate a string that has a contents:
Daniel\0
and will initialize name pointer to point at it at a certain time during program execution depending on the variable context (member, static, ...).
Appending ANYTHING to the name won't work as you expect, since memory pointed to by name isn't changeable, and you'll probably get either access violation error or will overwrite something else.
Having
const char* copyOfTheName = name;
won't create a copy of the string in question, it will only have copyOfTheName point to the original string, so having
copyOfTheName[6]='A';
will be exactly as
name[6]='A';
and will only cause problems to you.
Use std::strcat instead. And please, do some investigating how the basic string operations work in C.

Char to Int in C++? [duplicate]

This question already has answers here:
Closed 11 years ago.
Possible Duplicate:
How to convert a single char into an int
Well, I'm doing a basic program, wich handles some input like:
2+2
So, I need to add 2 + 2.
I did something like:
string mys "2+2";
fir = mys[0];
sec = mys[2];
But now I want to add "fir" to "sec", so I need to convert them to Int.
I tried "int(fir)" but didn't worked.
There are mulitple ways of converting a string to an int.
Solution 1: Using Legacy C functionality
int main()
{
//char hello[5];
//hello = "12345"; --->This wont compile
char hello[] = "12345";
Printf("My number is: %d", atoi(hello));
return 0;
}
Solution 2: Using lexical_cast(Most Appropriate & simplest)
int x = boost::lexical_cast<int>("12345");
Solution 3: Using C++ Streams
std::string hello("123");
std::stringstream str(hello);
int x;
str >> x;
if (!str)
{
// The conversion failed.
}
Alright so first a little backround on why what you attempted didn't work. In your example, fir is declared as a string. When you attempted to do int(fir), which is the same as (int)fir, you attempted a c-style cast from a string to an integer. Essentially you will get garbage because a c-style cast in c++ will run through all of the available casts and take the first one that works. At best your going to get the memory value that represents the character 2, which is dependent upon the character encoding your using (UTF-8, ascii etc...). For instance, if fir contained "2", then you might possibly get 0x32 as your integer value (assuming ascii). You should really never use c-style casts, and the only place where it's really safe to use them are conversions between numeric types.
If your given a string like the one in your example, first you should separate the string into the relevant sequences of characters (tokens) using a function like strtok. In this simple example that would be "2", "+" and "2". Once you've done that you can simple call a function such as atoi on the strings you want converted to integers.
Example:
string str = "2";
int i = atoi(str.c_str()); //value of 2
However, this will get slightly more complicated if you want to be able to handle non-integer numbers as well. In that case, your best bet is to separate on the operand (+ - / * etc), and then do a find on the numeric strings for a decimal point. If you find one you can treat it as a double and use the function atof instead of atoi, and if you don't, just stick with atoi.
Have you tried atoi or boost lexical cast?