C+11 Strategy Pattern with state - c++

An example of Strategy Pattern from the book, Head First Design Patterns, was written in C++ at [here]. I'm practicing to transform it into C++11 style according to Effective GoF Patterns with C++11 and Boost as showing below.
The Quack behavior:
struct Quack {
static void quack()
{
std::cout << __FUNCTION__ << std::endl;
}
};
struct MuteQuack {
static void quack()
{
std::cout << __FUNCTION__ << std::endl;
}
};
The Fly behavior:
struct FlyWithWings {
public:
static void fly()
{
std::cout << __FUNCTION__ << std::endl;
}
};
struct FlyNoWay {
public:
static void fly()
{
std::cout << __FUNCTION__ << std::endl;
}
};
The Duck hierarchy:
class Duck
{
public:
typedef std::function<void(void)> QUACK;
typedef std::function<void(void)> FLY;
public:
Duck(const QUACK &q, const FLY &f)
: m_Quack(q), m_Fly(f) {}
virtual ~Duck()
{
}
void perform_quack()
{
m_Quack();
}
void perform_fly()
{
m_Fly();
}
protected:
QUACK m_Quack;
FLY m_Fly;
private:
Duck(const Duck&) = delete;
Duck& operator=(const Duck&) = delete;
};
class MallardDuck
: public Duck
{
public:
MallardDuck()
: Duck(&Quack::quack, &FlyWithWings::fly)
{
}
};
class PaintedDuck
: public Duck
{
public:
PaintedDuck()
: Duck(&MuteQuack::quack, &FlyNoWay::fly)
{
}
};
So far so good, the client works well.
int main()
{
MallardDuck x1;
x1.perform_quack();
x1.perform_fly();
PaintedDuck x2;
x2.perform_quack();
x2.perform_fly();
return 0;
}
Now I would like to extend to a new class RubberDuck to Duck hierarchy, and the RubberDuck uses a new fly behavior FlyWithRocket which has a object state. As following:
A new Fly behavior:
class FlyWithRocket {
public:
FlyWithRocket() : m_Energy(3) {}
void fly()
{
if(m_Energy > 0)
{
fly_with_rocket();
--m_Energy;
}
else
{
fly_out_of_energy();
}
}
private:
void fly_with_rocket()
{
std::cout << __FUNCTION__ << std::endl;
}
void fly_out_of_energy()
{
std::cout << __FUNCTION__ << std::endl;
}
unsigned int m_Energy;
};
A new Duck type:
class RubberDuck
: public Duck
{
public:
RubberDuck()
: Duck(&MuteQuack::quack, std::bind(&FlyWithRocket::fly, std::ref(m_flyrocket)))
, m_flyrocket()
{
}
private:
FlyWithRocket m_flyrocket;
};
From now I'm wondering that the rule of the order of member initialization. The base Duck initializes before the member m_flyrocket, but note that the base Duck is initialized with binding m_flyrocket which is not initialized yet.
As result as I run it in VS2013, this works without something wrong at run-time.
But is the code actually not safe? If not, how could I modify to a better design?

It's not safe, but it's unlikely to break unless you call m_Fly() from the base class constructor.
You can easily avoid this though, by either:
giving the base class constructor a dummy or default-constructed std::function, and re-assigning m_Fly to your bind functor in the derived class constructor
RubberDuck()
: Duck(&MuteQuack::quack, std::function<void()>())
{
m_Fly = std::bind(&FlyWithRocket::fly, std::ref(m_flyrocket));
}
making FlyWithRocket a functor itself (just rename void fly to void operator()) and passing it by value instead of keeping a private member (it will be owned by the m_Fly function object, and you can access it via std::function::target<FlyWithRocket>() if you need)
class FlyWithRocket {
public:
FlyWithRocket() : m_Energy(3) {}
void operator() () {
// ...
RubberDuck()
: Duck(&MuteQuack::quack, FlyWithRocket()) {}

Related

Handling unique methods of Subclasses

I have a component in a software that can be described by an interface / virtual class.
Which non-virtual subclass is needed is decided by a GUI selection at runtime.
Those subclasses have unique methods, for which is makes no sense to give them a shared interface (e.g. collection of different data types and hardware access).
A minimal code example looks like this:
#include <iostream>
#include <memory>
using namespace std;
// interface base class
class Base
{
public:
virtual void shared()=0;
};
// some subclasses with shared and unique methods
class A : public Base
{
public:
void shared()
{
cout << "do A stuff\n";
}
void methodUniqueToA()
{
cout << "stuff unique to A\n";
}
};
class B : public Base
{
public:
void shared()
{
cout << "do B stuff\n";
}
void methodUniqueToB()
{
cout << "stuff unique to B\n";
}
};
// main
int main()
{
// it is not known at compile time, which subtype will be needed. Therefore: pointer has base class type:
shared_ptr<Base> basePtr;
// choose which object subtype is needed by GUI - in this case e.g. now A is required. Could also have been B!
basePtr = make_shared<A>();
// do some stuff which needs interface functionality... so far so good
basePtr->shared();
// now I want to do methodUniqueToA() only if basePtr contains type A object
// this won't compile obviously:
basePtr->methodUniqueToA(); // COMPILE ERROR
// I could check the type using dynamic_pointer_cast, however this ist not very elegant!
if(dynamic_pointer_cast<A>(basePtr))
{
dynamic_pointer_cast<A>(basePtr)->methodUniqueToA();
}
else
if(dynamic_pointer_cast<B>(basePtr))
{
dynamic_pointer_cast<B>(basePtr)->methodUniqueToB();
}
else
{
// throw some exception
}
return 0;
}
Methods methodUniqueTo*() could have different argument lists and return data which is omitted here for clarity.
I suspect that this problem isn't a rare case. E.g. for accessing different hardware by the different subclasses while also needing the polymorphic functionality of their container.
How does one generally do this?
For the sake of completeness: the output (with compiler error fixed):
do A stuff
stuff unique to A
You can have an enum which will represent the derived class. For example this:
#include <iostream>
#include <memory>
using namespace std;
enum class DerivedType
{
NONE = 0,
AType,
BType
};
class Base
{
public:
Base()
{
mType = DerivedType::NONE;
}
virtual ~Base() = default; //You should have a virtual destructor :)
virtual void shared() = 0;
DerivedType GetType() const { return mType; };
protected:
DerivedType mType;
};
// some subclasses with shared and unique methods
class A : public Base
{
public:
A()
{
mType = DerivedType::AType;
}
void shared()
{
cout << "do A stuff\n";
}
void methodUniqueToA()
{
cout << "stuff unique to A\n";
}
};
class B : public Base
{
public:
B()
{
mType = DerivedType::BType;
}
void shared()
{
cout << "do B stuff\n";
}
void methodUniqueToB()
{
cout << "stuff unique to B\n";
}
};
// main
int main()
{
shared_ptr<Base> basePtr;
basePtr = make_shared<B>();
basePtr->shared();
// Here :)
if(basePtr->GetType() == DerivedType::AType)
static_cast<A*>(basePtr.get())->methodUniqueToA();
else if(basePtr->GetType() == DerivedType::BType)
static_cast<B*>(basePtr.get())->methodUniqueToB();
return 0;
}
You can store an enum and initialize it at the constructor. Then have a Getter for that, which will give you the Type. Then a simple static cast after getting the type would do your job!
The goal of using polymorphism for the client is to control different objects with a single way. In other words, the client do not have to pay any attention to the difference of each object. That way, checking the type of each object violates the basic goal.
To achieve the goal, you will have to :
write the concrete method(methodUniqueToX()).
write a wrapper of the concrete method.
name the wrapper method abstract.
make the method public and interface/abstract.
class Base
{
public:
virtual void shared()=0;
virtual void onEvent1()=0;
virtual void onEvent2()=0;
};
// some subclasses with shared and unique methods
class A : public Base
{
private:
void methodUniqueToA()
{
cout << "stuff unique to A\n";
}
public:
void shared()
{
cout << "do A stuff\n";
}
void onEvent1()
{
this.methodUniqueToA()
}
void onEvent2()
{
}
};
class B : public Base
{
private:
void methodUniqueToB()
{
cout << "stuff unique to B\n";
}
public:
void shared()
{
cout << "do B stuff\n";
}
void onEvent1()
{
}
void onEvent2()
{
methodUniqueToB()
}
};

Is there a way to wrap a function call in or overload a functions call?

My aim is to have a class that inherits from another class in C++ and overloads all of the parents class methods in an identical fashion.
So when a method is called some code is run, the original method is called and a bit more code is run all in the derived class overload method.
class Base
{
Base() {}
~Base() {}
void base_method()
{
// Does something.
}
}
template<class T>
class ClassWrapper : public T
{
public:
ClassWrapper(T base) : T( base ) {}
~ClassWrapper() {}
void wrap_function()
{
// multithread block {
// call base method within multithread block.
this->base_method();
// }
}
}
int main()
{
Base B;
ClassWrapper<Base> C( B );
C.base_method();
return 0;
}
Ideally nothing would be known about the base class but all of its methods could be overridden.
I'm not sure if this is even possible but if it is any suggestions would be great!
With inheritance, you might do:
class Base
{
Base() {}
virtual ~Base() {}
virtual void base_method()
{
// Does something.
}
};
class BaseWrapper : public Base
{
public:
BaseWrapper(Base base) : Bas( base ) {}
void base_method() override
{
// Some code ...
Base::base_method();
// Some code ...
}
}
int main()
{
Base B;
BaseWrapper C( B );
C.base_method();
}
Static polymorphism achieved through CRTP (Curiously Recurring Template Pattern) might be beneficial for you.
Read more about CRTP here and here.
Imagine you have a Wrapper class like:
template <typename Impl>
class Wrapper {
public:
Wrapper() {}
~Wrapper() {}
void some_preparation() {
std::cout << "Wrapper work!" << std::endl;
}
};
and then you have your actual class like:
class MyFoo : public Wrapper<MyFoo> {
public:
MyFoo() {}
~MyFoo() {}
void foo() {
Wrapper::some_preparation();
std::cout << "Derived work!" << std::endl;
}
};
and, eventually, you can use above code like:
MyFoo wrappedFoo;
wrappedFoo.foo();
The result would be:
Wrapper work!
Derived work!
Jarod's answer is a very good one for your question. However, I would like to add an answer more focused on your chosen design rather than the implementation.
Although you said that you want to "overloads all of the parents class methods in an identical fashion", your goal ("the original method is called and a bit more code is run all in the derived class overload method") indicates that it is slightly different.
The first one may indicate inheritance, but the second one may point to factory abstract design pattern (composition over inheritance):
#include<iostream>
class AbstractBar
{
public:
virtual void bar_method() = 0;
};
class Bar1 : public AbstractBar
{
public:
void bar_method() {
std::cout << "Bar 1" << std::endl;
}
};
class Bar2 : public AbstractBar
{
public:
void bar_method() {
std::cout << "Bar 2" << std::endl;
}
};
class Foo
{
public:
Foo(AbstractBar* bar_) : bar(bar_) { }
void foo_method() {
bar->bar_method();
std::cout << "Foo" << std::endl;
}
private:
AbstractBar* bar;
};
int main() {
Bar1 bar;
Foo foo(&bar);
foo.foo_method();
}
Being the output of the code:
Bar 1
Foo
Or a simplified version (based on your needs):
#include<iostream>
class Bar {
public:
void bar_method() {
std::cout << "Bar" << std::endl;
}
};
class Foo {
public:
Foo(Bar* bar_) : bar(bar_) { }
void foo_method() {
bar->bar_method();
std::cout << "Foo" << std::endl;
}
private:
Bar* bar;
};
int main() {
Bar bar;
Foo foo(&bar);
foo.foo_method();
}

C++ diamond problem - How to call base method only once

I'm using multiple inheritance in C++ and extending base methods by calling their base explicitly. Assume the following hierarchy:
Creature
/ \
Swimmer Flier
\ /
Duck
Which corresponds to
class Creature
{
public:
virtual void print()
{
std::cout << "I'm a creature" << std::endl;
}
};
class Swimmer : public virtual Creature
{
public:
void print()
{
Creature::print();
std::cout << "I can swim" << std::endl;
}
};
class Flier : public virtual Creature
{
public:
void print()
{
Creature::print();
std::cout << "I can fly" << std::endl;
}
};
class Duck : public Flier, public Swimmer
{
public:
void print()
{
Flier::print();
Swimmer::print();
std::cout << "I'm a duck" << std::endl;
}
};
Now this presents a problem - calling the duck's print method calls its respective base methods, all of which in turn call the Creature::print() method, so it ends up being called twice-
I'm a creature
I can fly
I'm a creature
I can swim
I'm a duck
I would like to find a way to make sure the base method is called only once. Something similar to the way virtual inheritance works (calling the base constructor on the first call, then only assigning a pointer to it on successive calls from other derived classes).
Is there some built-in way to do this or do we need to resort to implementing one ourselves?
If so, how would you approach this?
The question isn't specific to printing. I wondered if there's a mechanism for extending base methods and functionality while keeping the call order and avoiding the diamond problem.
I understand now that the most prominent solution would be to add helper methods, but I just wondered if there's a "cleaner" way.
Most likely this is a XY problem. But ... just don't call it twice.
#include <iostream>
class Creature
{
public:
virtual void identify()
{
std::cout << "I'm a creature" << std::endl;
}
};
class Swimmer : public virtual Creature
{
public:
virtual void identify() override
{
Creature::identify();
tell_ability();
std::cout << "I'm a swimmer\n";
}
virtual void tell_ability()
{
std::cout << "I can swim\n";
}
};
class Flier : public virtual Creature
{
public:
virtual void identify() override
{
Creature::identify();
tell_ability();
std::cout << "I'm a flier\n";
}
virtual void tell_ability()
{
std::cout << "I can fly\n";
}
};
class Duck : public Flier, public Swimmer
{
public:
virtual void tell_ability() override
{
Flier::tell_ability();
Swimmer::tell_ability();
}
virtual void identify() override
{
Creature::identify();
tell_ability();
std::cout << "I'm a duck\n";
}
};
int main()
{
Creature c;
c.identify();
std::cout << "------------------\n";
Swimmer s;
s.identify();
std::cout << "------------------\n";
Flier f;
f.identify();
std::cout << "------------------\n";
Duck d;
d.identify();
std::cout << "------------------\n";
}
Output:
I'm a creature
------------------
I'm a creature
I can swim
I'm a swimmer
------------------
I'm a creature
I can fly
I'm a flier
------------------
I'm a creature
I can fly
I can swim
I'm a duck
------------------
We can let the base class keep track of the attributes:
#include <iostream>
#include <string>
#include <vector>
using namespace std::string_literals;
class Creature
{
public:
std::string const attribute{"I'm a creature"s};
std::vector<std::string> attributes{attribute};
virtual void print()
{
for (auto& i : attributes)
std::cout << i << std::endl;
}
};
class Swimmer : public virtual Creature
{
public:
Swimmer() { attributes.push_back(attribute); }
std::string const attribute{"I can swim"s};
};
class Flier : public virtual Creature
{
public:
Flier() { attributes.push_back(attribute); }
std::string const attribute{"I can fly"s};
};
class Duck : public Flier, public Swimmer
{
public:
Duck() { attributes.push_back(attribute); }
std::string const attribute{"I'm a duck"s};
};
int main()
{
Duck d;
d.print();
}
Likewise, if it is not just printing we're after, but rather the function calls, then we could let the base class keep track of the functions:
#include <iostream>
#include <functional>
#include <vector>
class Creature
{
public:
std::vector<std::function<void()>> print_functions{[this] {Creature::print_this(); }};
virtual void print_this()
{
std::cout << "I'm a creature" << std::endl;
}
void print()
{
for (auto& f : print_functions)
f();
}
};
class Swimmer : public virtual Creature
{
public:
Swimmer() { print_functions.push_back([this] {Swimmer::print_this(); }); }
void print_this()
{
std::cout << "I can swim" << std::endl;
}
};
class Flier : public virtual Creature
{
public:
Flier() { print_functions.push_back([this] {Flier::print_this(); }); }
void print_this()
{
std::cout << "I can fly" << std::endl;
}
};
class Duck : public Flier, public Swimmer
{
public:
Duck() { print_functions.push_back([this] {Duck::print_this(); }); }
void print_this()
{
std::cout << "I'm a duck" << std::endl;
}
};
int main()
{
Duck d;
d.print();
}
An easy way is to create a bunch of helper classes that mimick the inheritance structure of your main hierarchy and do all the printing in their constructors.
struct CreaturePrinter {
CreaturePrinter() {
std::cout << "I'm a creature\n";
}
};
struct FlierPrinter: virtual CreaturePrinter ...
struct SwimmerPrinter: virtual CreaturePrinter ...
struct DuckPrinter: FlierPrinter, SwimmerPrinter ...
Then each print method in the main hierarchy just creates the corresponding helper class. No manual chaining.
For maintainability you can make each printer class nested in its corresponding main class.
Naturally in most real world cases you want to pass a reference to the main object as an argument to the constructor of its helper.
Your explicit calls to the print methods form the crux of the issue.
One way round this would be to drop the print calls, and replace them with say
void queue(std::set<std::string>& data)
and you accumulate the print messages into the set. Then it doesn't matter those functions in the hierarchy get called more than once.
You then implement the printing of the set in a single method in Creature.
If you want to preserve the order of printing, then you'd need to replace the set with another container that respects the order of insertion and rejects duplicates.
If you want that middle class method, do not call the base class method. The easiest and simplest way is to extract extra methods, and then reimplementing Print is easy.
class Creature
{
public:
virtual void print()
{
std::cout << "I'm a creature" << std::endl;
}
};
class Swimmer : public virtual Creature
{
public:
void print()
{
Creature::print();
detailPrint();
}
void detailPrint()
{
std::cout << "I can swim" << std::endl;
}
};
class Flier : public virtual Creature
{
public:
void print()
{
Creature::print();
detailPrint();
}
void detailPrint()
{
std::cout << "I can fly" << std::endl;
}
};
class Duck : public Flier, public Swimmer
{
public:
void print()
{
Creature::Print();
Flier::detailPrint();
Swimmer::detailPrint();
detailPrint();
}
void detailPrint()
{
std::cout << "I'm a duck" << std::endl;
}
};
Without details what is your actual problem is, it hard to come up with a better solution.
Use:
template<typename Base, typename Derived>
bool is_dominant_descendant(Derived * x) {
return std::abs(
std::distance(
static_cast<char*>(static_cast<void*>(x)),
static_cast<char*>(static_cast<void*>(dynamic_cast<Base*>(x)))
)
) <= sizeof(Derived);
};
class Creature
{
public:
virtual void print()
{
std::cout << "I'm a creature" << std::endl;
}
};
class Walker : public virtual Creature
{
public:
void print()
{
if (is_dominant_descendant<Creature>(this))
Creature::print();
std::cout << "I can walk" << std::endl;
}
};
class Swimmer : public virtual Creature
{
public:
void print()
{
if (is_dominant_descendant<Creature>(this))
Creature::print();
std::cout << "I can swim" << std::endl;
}
};
class Flier : public virtual Creature
{
public:
void print()
{
if (is_dominant_descendant<Creature>(this))
Creature::print();
std::cout << "I can fly" << std::endl;
}
};
class Duck : public Flier, public Swimmer, public Walker
{
public:
void print()
{
Walker::print();
Swimmer::print();
Flier::print();
std::cout << "I'm a duck" << std::endl;
}
};
And with Visual Studio 2015 the output is:
I'm a creature
I can walk
I can swim
I can fly
I'm a duck
But is_dominant_descendant does not have a portable definition. I wish it were a standard concept.
You are asking for something like inheritance on a function level that automatically calls the inherited function and just adds more code. Also you want it to be done in a virtual way just like class inheritance. Pseudo syntax:
class Swimmer : public virtual Creature
{
public:
// Virtually inherit from Creature::print and extend it by another line of code
void print() : virtual Creature::print()
{
std::cout << "I can swim" << std::endl;
}
};
class Flier : public virtual Creature
{
public:
// Virtually inherit from Creature::print and extend it by another line of code
void print() : virtual Creature::print()
{
std::cout << "I can fly" << std::endl;
}
};
class Duck : public Flier, public Swimmer
{
public:
// Inherit from both prints. As they were created using "virtual function inheritance",
// this will "mix" them just like in virtual class inheritance
void print() : Flier::print(), Swimmer::print()
{
std::cout << "I'm a duck" << std::endl;
}
};
So the answer to your question
Is there some built-in way to do this?
is no. Something like this does not exist in C++. Also, I'm not aware of any other language that has something like this. But it is an interesting idea...

Injecting a function into a subclass

Is it possible to do such things in C++14. I have a base class as follows:
#include <iostream>
class AbstractElement;
class ConcreteElement;
class SuperConcreteElement;
class B
{
public:
void bar(AbstractElement*)
{
std::cout << "Abstract element" << std::endl;
}
void bar(ConcreteElement*)
{
std::cout << "Concrete element" << std::endl;
}
void bar(SuperConcreteElement*)
{
std::cout << "Super concrete element" << std::endl;
}
};
class AbstractElement
{
public:
virtual void foo() = 0;
};
class ConcreteElement : public AbstractElement
{
private:
B _b;
public:
void foo()
{
_b.bar(this); //1
}
};
class SuperConcreteElement : public AbstractElement
{
private:
B _b;
public:
void foo()
{
_b.bar(this); //2
}
};
int main()
{
AbstractElement *e = new ConcreteElement();
e -> foo(); //Prints Concrete element
}
As you can see at //1 and //2, the function's body is completely similar. But I can't quite move it into a base class because of depending on the static type of this. In spite of that fact, I wouldn't like to write absolutely the same code every time I need to add one more subclass of AbstractElement. So, I need some kind of mechanism which provides us with the facility to inject code into a function.
As long as marcos are not very desirable solution, I'd like to ask about some tricks that can be done in C++14 for solving such a problem.
Yes, it is possible using CRTP:
#include <iostream>
class AbstractElement;
class ConcreteElement;
class SuperConcreteElement;
class B
{
public:
void bar(AbstractElement*)
{
std::cout << "Abstract element" << std::endl;
}
void bar(ConcreteElement*)
{
std::cout << "Concrete element" << std::endl;
}
void bar(SuperConcreteElement*)
{
std::cout << "Super concrete element" << std::endl;
}
};
class AbstractElement
{
public:
virtual void foo() = 0;
};
template <class T>
class CRTPAbstractElement : public AbstractElement
{
B _b;
public:
virtual void foo()
{
T* t = dynamic_cast<T *>(this);
_b.bar(t);
}
};
class ConcreteElement : public CRTPAbstractElement<ConcreteElement>
{
};
class SuperConcreteElement : public CRTPAbstractElement<SuperConcreteElement>
{
};
int main()
{
AbstractElement *e = new ConcreteElement();
e -> foo(); //Prints Concrete element
}
By adding an intermediate CRTP class we are able to cast a pointer to the base class to a pointer to the derived class. Thus solving the issue of code duplication.

How to achieve "virtual template function" in C++

first off: I have read and I know now that a virtual template member function is not (yet?) possible in C++. A workaround would be to make the class a template and then use the template-argument also in the member-function.
But in the context of OOP, I find that the below example would not be very "natural" if the class was actually a template. Please note that the code is actually not working, but the gcc-4.3.4 reports: error: templates may not be ‘virtual’
#include <iostream>
#include <vector>
class Animal {
public:
template< class AMOUNT >
virtual void eat( AMOUNT amount ) const {
std::cout << "I eat like a generic Animal." << std::endl;
}
virtual ~Animal() {
}
};
class Wolf : public Animal {
public:
template< class AMOUNT >
void eat( AMOUNT amount) const {
std::cout << "I eat like a wolf!" << std::endl;
}
virtual ~Wolf() {
}
};
class Fish : public Animal {
public:
template< class AMOUNT >
void eat( AMOUNT amount) const {
std::cout << "I eat like a fish!" << std::endl;
}
virtual ~Fish() {
}
};
class GoldFish : public Fish {
public:
template< class AMOUNT >
void eat( AMOUNT amount) const {
std::cout << "I eat like a goldfish!" << std::endl;
}
virtual ~GoldFish() {
}
};
class OtherAnimal : public Animal {
virtual ~OtherAnimal() {
}
};
int main() {
std::vector<Animal*> animals;
animals.push_back(new Animal());
animals.push_back(new Wolf());
animals.push_back(new Fish());
animals.push_back(new GoldFish());
animals.push_back(new OtherAnimal());
for (std::vector<Animal*>::const_iterator it = animals.begin(); it != animals.end(); ++it) {
(*it)->eat();
delete *it;
}
return 0;
}
So creating a "Fish< Amount > foo" is kind of strange. However, it seems desirable to me to provide an arbitrary amount of food to eat for each animal.
Thus, I am searching a solution about how to achieve something like
Fish bar;
bar.eat( SomeAmount food );
This becomes particularly useful when looking at the for-loop. One might like to feed a specific amount (FoodAmount) to all of the different animals (via eat() and bind1st() e.g.), it could not be done that easily, although I wound find this very inuitive (and thus to some extent "natural). While some might want to argue now that this is due to the "uniform"-character of a vector, I think/wish that it should be possible to achieve this and I really would like to know how, as this is puzzling me for quite some time now...
[EDIT]
To perhaps clarify the motivation behind my question, I want to program an Exporter-class and let different, more specialized classes derive from it. While the top-level Exporter-class is generally only for cosmetic/structural purpose, a GraphExporter-class is derived, that should again serve as a base-class for even more specialzed export. However, similar to the Animal-example, I would like to be able to define GraphExporter* even on specialized/derived classes (e.g. on SpecialGraphExplorer) but when calling "write( out_file )", it should call the appropriate member function for SpecialGraphExporter instead of GraphExporter::write( out_file).
Maybe this makes my situation and intentions clearer.
Best,
Shadow
After some thinking I recognized this as the classic multi-method requirement, i.e. a method that dispatches based on the runtime type of more than one parameter. Usual virtual functions are single dispatch in comparison (and they dispatch on the type of this only).
Refer to the following:
Andrei Alexandrescu has written (the seminal bits for C++?) on implementing multi-methods using generics in 'Modern C++ design'
Chapter 11: "Multimethods" - it implements basic multi-methods, making them logarithmic (using ordered typelists) and then going all the way to constant-time multi-methods. Quite powerful stuff !
A codeproject article that seems to have just such an implementation:
no use of type casts of any kind (dynamic, static, reinterpret, const or C-style)
no use of RTTI;
no use of preprocessor;
strong type safety;
separate compilation;
constant time of multimethod execution;
no dynamic memory allocation (via new or malloc) during multimethod call;
no use of nonstandard libraries;
only standard C++ features is used.
C++ Open Method Compiler, Peter Pirkelbauer, Yuriy Solodkyy, and Bjarne Stroustrup
The Loki Library has A MultipleDispatcher
Wikipedia has quite a nice simple write-up with examples on Multiple Dispatch in C++.
Here is the 'simple' approach from the wikipedia article for reference (the less simple approach scales better for larger number of derived types):
// Example using run time type comparison via dynamic_cast
struct Thing {
virtual void collideWith(Thing& other) = 0;
}
struct Asteroid : Thing {
void collideWith(Thing& other) {
// dynamic_cast to a pointer type returns NULL if the cast fails
// (dynamic_cast to a reference type would throw an exception on failure)
if (Asteroid* asteroid = dynamic_cast<Asteroid*>(&other)) {
// handle Asteroid-Asteroid collision
} else if (Spaceship* spaceship = dynamic_cast<Spaceship*>(&other)) {
// handle Asteroid-Spaceship collision
} else {
// default collision handling here
}
}
}
struct Spaceship : Thing {
void collideWith(Thing& other) {
if (Asteroid* asteroid = dynamic_cast<Asteroid*>(&other)) {
// handle Spaceship-Asteroid collision
} else if (Spaceship* spaceship = dynamic_cast<Spaceship*>(&other)) {
// handle Spaceship-Spaceship collision
} else {
// default collision handling here
}
}
}
Obviously, virtual member function templates are not allowed and could not be realized even theoretically. To build a base class' virtual table, there needs to be a finite number of virtual function-pointer entries. A function template would admit an indefinite amount of "overloads" (i.e. instantiations).
Theoretically-speaking, a language (like C++) could allow virtual member function templates if it had some mechanism to specify the actual (finite) list of instantiations. C++ does have that mechanism (i.e. explicit template instantiations), so I guess it could be possible to do this in a newer C++ standard (although I have no idea what trouble it would entail for compiler vendors to implement this feature). But, that's just a theoretical discussion, in practice, this is simply not allowed. The fact remains, you have to make the number of virtual functions finite (no templates allowed).
Of course, that doesn't mean that class template cannot have virtual functions, nor does it mean that virtual functions cannot call function templates. So, there are many solutions in that vein (like the Visitor pattern or other schemes).
One solution that, I think, serves your purpose (although it is hard to comprehend) elegantly is the following (which is basically a visitor pattern):
#include <iostream>
#include <vector>
struct Eater {
virtual void operator()(int amount) const = 0;
virtual void operator()(double amount) const = 0;
};
template <typename EaterType>
struct Eater_impl : Eater {
EaterType& data;
Eater_impl(EaterType& aData) : data(aData) { };
virtual void operator()(int amount) const { data.eat_impl(amount); };
virtual void operator()(double amount) const { data.eat_impl(amount); };
};
class Animal {
protected:
Animal(Eater& aEat) : eat(aEat) { };
public:
Eater& eat;
virtual ~Animal() { delete &eat; };
};
class Wolf : public Animal {
private:
template< class AMOUNT >
void eat_impl( AMOUNT amount) const {
std::cout << "I eat like a wolf!" << std::endl;
}
public:
friend struct Eater_impl<Wolf>;
Wolf() : Animal(*(new Eater_impl<Wolf>(*this))) { };
virtual ~Wolf() { };
};
class Fish : public Animal {
private:
template< class AMOUNT >
void eat_impl( AMOUNT amount) const {
std::cout << "I eat like a fish!" << std::endl;
}
public:
friend struct Eater_impl<Fish>;
Fish() : Animal(*(new Eater_impl<Fish>(*this))) { };
virtual ~Fish() { };
};
int main() {
std::vector<Animal*> animals;
animals.push_back(new Wolf());
animals.push_back(new Fish());
for (std::vector<Animal*>::const_iterator it = animals.begin(); it != animals.end(); ++it) {
(*it)->eat(int(0));
(*it)->eat(double(0.0));
delete *it;
};
return 0;
};
The above is a neat solution because it allows you to define a finite number of overloads that you want in one place only (in the Eater_impl class template) and all you need in the derived class is a function template (and possibly additional overloads, for special cases). There is, of course, a bit of overhead, but I guess that a bit more thought could be put into it to reduce the overhead (additional reference storage and dynamic allocation of Eater_impl). I guess, the curiously recurring template pattern could probably be employed somehow to this end.
I think the visitor pattern can be a solution.
UPDATE
I finished my example:
#include <iostream>
#include <vector>
#include <boost/shared_ptr.hpp>
class Animal;
class Wolf;
class Fish;
class Visitor
{
public:
virtual void visit(const Animal& p_animal) const = 0;
virtual void visit(const Wolf& p_animal) const = 0;
virtual void visit(const Fish& p_animal) const = 0;
};
template<class AMOUNT>
class AmountVisitor : public Visitor
{
public:
AmountVisitor(AMOUNT p_amount) : m_amount(p_amount) {}
virtual void visit(const Animal& p_animal) const
{
std::cout << "I eat like a generic Animal." << std::endl;
}
virtual void visit(const Wolf& p_animal) const
{
std::cout << "I eat like a wolf!" << std::endl;
}
virtual void visit(const Fish& p_animal) const
{
std::cout << "I eat like a fish!" << std::endl;
}
AMOUNT m_amount;
};
class Animal {
public:
virtual void Accept(const Visitor& p_visitor) const
{
p_visitor.visit(*this);
}
virtual ~Animal() {
}
};
class Wolf : public Animal {
public:
virtual void Accept(const Visitor& p_visitor) const
{
p_visitor.visit(*this);
}
};
class Fish : public Animal {
public:
virtual void Accept(const Visitor& p_visitor) const
{
p_visitor.visit(*this);
}
};
int main()
{
typedef boost::shared_ptr<Animal> TAnimal;
std::vector<TAnimal> animals;
animals.push_back(TAnimal(new Animal()));
animals.push_back(TAnimal(new Wolf()));
animals.push_back(TAnimal(new Fish()));
AmountVisitor<int> amount(10);
for (std::vector<TAnimal>::const_iterator it = animals.begin(); it != animals.end(); ++it) {
(*it)->Accept(amount);
}
return 0;
}
this prints:
I eat like a generic Animal.
I eat like a wolf!
I eat like a fish!
Per Mikael's post, I have made another offshoot, using the CRTP and following Eigen's style of using derived() for an explicit subclass reference:
// Adaptation of Visitor Pattern / CRTP from:
// http://stackoverflow.com/a/5872633/170413
#include <iostream>
using std::cout;
using std::endl;
class Base {
public:
virtual void tpl(int x) = 0;
virtual void tpl(double x) = 0;
};
// Generics for display
template<typename T>
struct trait {
static inline const char* name() { return "T"; }
};
template<>
struct trait<int> {
static inline const char* name() { return "int"; }
};
template<>
struct trait<double> {
static inline const char* name() { return "double"; }
};
// Use CRTP for dispatch
// Also specify base type to allow for multiple generations
template<typename BaseType, typename DerivedType>
class BaseImpl : public BaseType {
public:
void tpl(int x) override {
derived()->tpl_impl(x);
}
void tpl(double x) override {
derived()->tpl_impl(x);
}
private:
// Eigen-style
inline DerivedType* derived() {
return static_cast<DerivedType*>(this);
}
inline const DerivedType* derived() const {
return static_cast<const DerivedType*>(this);
}
};
// Have Child extend indirectly from Base
class Child : public BaseImpl<Base, Child> {
protected:
friend class BaseImpl<Base, Child>;
template<typename T>
void tpl_impl(T x) {
cout << "Child::tpl_impl<" << trait<T>::name() << ">(" << x << ")" << endl;
}
};
// Have SubChild extend indirectly from Child
class SubChild : public BaseImpl<Child, SubChild> {
protected:
friend class BaseImpl<Child, SubChild>;
template<typename T>
void tpl_impl(T x) {
cout << "SubChild::tpl_impl<" << trait<T>::name() << ">(" << x << ")" << endl;
}
};
template<typename BaseType>
void example(BaseType *p) {
p->tpl(2);
p->tpl(3.0);
}
int main() {
Child c;
SubChild sc;
// Polymorphism works for Base as base type
example<Base>(&c);
example<Base>(&sc);
// Polymorphism works for Child as base type
example<Child>(&sc);
return 0;
}
Output:
Child::tpl_impl<int>(2)
Child::tpl_impl<double>(3)
SubChild::tpl_impl<int>(2)
SubChild::tpl_impl<double>(3)
SubChild::tpl_impl<int>(2)
SubChild::tpl_impl<double>(3)
This snippet may be found in source here: repro:c808ef0:cpp_quick/virtual_template.cc
Virtual template function is not allowed. However you can use one OR the other here.
You could make an interface using virtual methods and implement your various animals in terms of having an eating interface. (i.e. PIMPL)
Less human intuitive would be having a non-member non-friend template function as a free function which could take templated const reference to any animal and make them eat accordingly.
For the record you don't need templates here. Pure virtual abstract method on the base class is enough to force and interface where all animals must eat and define how they do so with an override, providing a regular virtual would be enough to say all animals can eat but if they don't have a specific way then they can use this default way.
You can create a template class with virtual function, and implement the function in the derived class without using template in the follwing way:
a.h:
template <class T>
class A
{
public:
A() { qDebug() << "a"; }
virtual A* Func(T _template) { return new A;}
};
b.h:
class B : public A<int>
{
public:
B();
virtual A* Func(int _template) { return new B;}
};
and the function CTOR and call
A<int>* a1=new B;
int x=1;
a1->Func(x);
unfortunately i havn't found a way to create a virtual function with template parameters without declaring the class as a template and it template type on the dervied class
I have copied your code and modified it, so now it should work exactly as you want:
#include <iostream>
#include <vector>
//defined new enum type
enum AnimalEnum
{
animal,
wolf,
fish,
goldfish,
other
};
//forward declarations
class Wolf;
class Fish;
class GoldFish;
class OtherAnimal;
class Animal {
private:
AnimalEnum who_really_am_I;
void* animal_ptr;
public:
//declared new constructors overloads for each type of animal
Animal(const Animal&);
Animal(const Wolf&);
Animal(const Fish&);
Animal(const GoldFish&);
Animal(const OtherAnimal&);
template< class AMOUNT >
/*removed the virtual keyword*/ void eat( AMOUNT amount ) const {
switch (this->who_really_am_I)
{
case AnimalEnum::other: //You defined OtherAnimal so that it doesn't override the eat action, so it will uses it's Animal's eat
case AnimalEnum::animal: std::cout << "I eat like a generic Animal." << std::endl; break;
case AnimalEnum::wolf: ((Wolf*)this->animal_ptr)->eat(amount); break;
case AnimalEnum::fish: ((Fish*)this->animal_ptr)->eat(amount); break;
case AnimalEnum::goldfish: ((GoldFish*)this->animal_ptr)->eat(amount) break;
}
}
void DeleteMemory() { delete this->animal_ptr; }
virtual ~Animal() {
//there you can choose if whether or not to delete "animal_ptr" here if you want or not
}
};
class Wolf : public Animal {
public:
template< class AMOUNT >
void eat( AMOUNT amount) const {
std::cout << "I eat like a wolf!" << std::endl;
}
virtual ~Wolf() {
}
};
class Fish : public Animal {
public:
template< class AMOUNT >
void eat( AMOUNT amount) const {
std::cout << "I eat like a fish!" << std::endl;
}
virtual ~Fish() {
}
};
class GoldFish : public Fish {
public:
template< class AMOUNT >
void eat( AMOUNT amount) const {
std::cout << "I eat like a goldfish!" << std::endl;
}
virtual ~GoldFish() {
}
};
class OtherAnimal : public Animal {
//OtherAnimal constructors must be defined here as Animal's constructors
OtherAnimal(const Animal& a) : Animal(a) {}
OtherAnimal(const Wolf& w) : Animal(w) {}
OtherAnimal(const Fish& f) : Animal(f) {}
OtherAnimal(const GoldFish& g) : Animal(g) {}
OtherAnimal(const OtherAnimal& o) : Animal(o) {}
virtual ~OtherAnimal() {
}
};
//OtherAnimal will be useful only if it has it's own actions and members, because if not, typedef Animal OtherAnimal or using OtherAnimal = Animal can be used, and it can be removed from above declarations and below definitions
//Here are the definitions of Animal constructors that were declared above/before:
Animal::Animal(const Animal& a) : who_really_am_I(AnimalEnum::animal), animal_ptr(nullptr) {}
Animal::Animal(const Wolf& w) : who_really_am_I(AnimalEnum::wolf), animal_ptr(new Wolf(w)) {}
Animal::Animal(const Fish& f) : who_really_am_I(AnimalEnum::fish), animal_ptr(new Fish(f)) {}
Animal::Animal(const GoldFish& g) : who_really_am_I(AnimalEnum::goldfish), animal_ptr(new GoldFish(g)) {}
Animal::Animal(const OtherAnimal& o) :
who_really_am_I(AnimalEnum::other), animal_ptr(new OtherAnimal(o)) {}
int main() {
std::vector<Animal> animals;
animals.push_back(Animal());
animals.push_back(Wolf()); //Wolf is converted to Animal via constructor
animals.push_back(Fish()); //Fish is converted to Animal via constructor
animals.push_back(GoldFish()); //GoldFish is converted to Animal via constructor
animals.push_back(OtherAnimal()); //OtherAnimal is converted to Animal via constructor
for (std::vector<Animal>::const_iterator it = animals.begin(); it != animals.end(); ++it) {
it->eat(); //this is Animal's eat that invokes other animals eat
//delete *it; Now it should be:
it->DeleteMemory();
}
animals.clear(); //All animals have been killed, and we don't want full vector of dead animals.
return 0;
}
In you scenario, you are trying to mix compile time polymorphism with runtime polymorphism, but it cannot be done in this "direction".
Essential, your AMOUNT template argument represents an expected interface for the type to implement based on the union of all the operations each implementation of eat uses. If you where to create an abstract type that declared each of those operations making them virtual where needed, then you could call eat with different types (that derived from your AMOUNT interface). And it would behave as expected.
I don't work with templates, but I think:
(1) You cannot use templates inside a class, templates are more like global types or global variables.
(2) In O.O.P., the same problem you present, and that you are trying to solve by using templates, can be solved by using inheritance.
Classes work similar to templates, you can extended by adding new things, or replace things of classes with pointers, pointers to objects (A.K.A. "references") and overriding virtual functions.
#include <iostream>
struct Animal {
virtual void eat(int amount ) {
std::cout << "I eat like a generic Animal." << std::endl;
}
virtual ~Animal() { }
};
#if 0
// example 1
struct Wolf : Animal {
virtual void eat(int amount) {
std::cout << "I eat like a wolf!" << std::endl;
}
};
struct Fish : Animal {
virtual void eat(int amount) {
std::cout << "I eat like a fish!" << std::endl;
}
};
#else
// example 2
struct AnimalFood {
virtual int readAmount() { return 5; }
virtual void showName() {
std::cout << "I'm generic animal food" << std::endl;
}
};
struct PredatorFood : AnimalFood {
virtual int readAmount() { return 500; }
virtual void showName() {
std::cout << "I'm food for a predator" << std::endl;
}
};
struct Fish : Animal {
virtual void eat(AnimalFood* aFood) {
if (aFood->readAmount() < 50) {
std::cout << "OK food, vitamines: " << aFood->readAmount() << std::endl;
} else {
std::cout << "too much food, vitamines: " << aFood->readAmount() << std::endl;
}
}
};
struct Shark : Fish {
virtual void eat(AnimalFood* aFood) {
if (aFood->readAmount() < 250) {
std::cout << "too litle food for a shark, Im very hungry, vitamines: " << aFood->readAmount() << std::endl;
} else {
std::cout << "OK, vitamines: " << aFood->readAmount() << std::endl;
}
}
};
struct Wolf : Fish {
virtual void eat(AnimalFood* aFood) {
if (aFood->readAmount() < 150) {
std::cout << "too litle food for a wolf, Im very hungry, vitamines: " << aFood->readAmount() << std::endl;
} else {
std::cout << "OK, vitamines: " << aFood->readAmount() << std::endl;
}
}
};
#endif
int main() {
// find animals
Wolf* loneWolf = new Wolf();
Fish* goldenFish = new Fish();
Shark* sharky = new Shark();
// prepare food
AnimalFood* genericFood = new AnimalFood();
PredatorFood* bigAnimalFood = new PredatorFood();
// give food to animals
loneWolf->eat(genericFood);
loneWolf->eat(bigAnimalFood);
goldenFish->eat(genericFood);
goldenFish->eat(bigAnimalFood);
sharky->eat(genericFood);
sharky->eat(bigAnimalFood);
delete bigAnimalFood;
delete genericFood;
delete sharky;
delete goldenFish;
delete loneWolf;
}
Cheers.