function with double mode of functionality - c++

I have a function which should have two modes of behaviour according to the place where it's called from.
The core functionality is to do an insert into a table in my database, but it has to be done in two different ways.
Normal mode: whenever it's called only one time (outside of a loop)
For example:
//...
myfunc(param1, record); // it should insert a single record into the database
//...
Batch mode: whenever it's called from inside of a loop
For example:
while(...){
myfunc(param1, record);
}
Inside the "while" loop, each time it's called, it only should store the record in a list and when it reaches the end of the loop, it should fetch all records from the list and prepare a "batch" query that inserts all in one go.
I am wondering how to make it to detect from where it's called in order to switch to the corresponding mode and also how to detect that it has reached the end of a loop and from now on, it should start getting records from the list, prepare the query and execute it.
Any tips or suggestions will be highly appreciated!
Thanks heaps!

It is not, in general, possible to tell whether you are being called in a loop, even with full source code access.
You might be able to do something with caching and delaying the actual database insert for a limited time in all cases. Go on caching until you go for x microseconds without a new call, and then insert the cached data.
However, that could give strange effects if you are not in control of all accesses to the database. In particular, you should do your cached inserts any time there is query that might be affected by them, even in a loop.

Sometimes it is useful to cache queries like this in order to minimize the number of database queries. You can have one function that builds a cache and a second function that sends the request and flushes the cache. If you are going to do that, I recommend using the same function for both single-entry and multiple-entries. The pseudocode will look something like this:
Single-entry usage:
myfunc(param1, record); # caches requests
sendRequests(); # sends all cached requests, flushes cache
Multiple-entry usage:
while(...){
myfunc(param1, record);
}
sendRequests();
sendRequest() will send as many queries as it finds: 1 or many. For efficiency, it can format the requests differently based on their size.

Related

Dividing tasks into aws step functions and then join them back when all completed

We have a AWS step function that processes csv files. These CSV files records can be anything from 1 to 4000.
Now, I want to create another inner AWS step function that will process these csv records. The problem is for each record I need to hit another API and for that I want all of the record to be executed asynchronously.
For example - CSV recieved having records of 2500
The step function called another step function 2500 times (The other step function will take a CSV record as input) process it and then store the result in Dynamo or in any other place.
I have learnt about the callback pattern in aws step function but in my case I will be passing 2500 tokens and I want the outer step function to process them when all the 2500 records are done processing.
So my question is this possible using the AWS step function.
If you know any article or guide for me to reference then that would be great.
Thanks in advance
It sounds like dynamic parallelism could work:
To configure a Map state, you define an Iterator, which is a complete sub-workflow. When a Step Functions execution enters a Map state, it will iterate over a JSON array in the state input. For each item, the Map state will execute one sub-workflow, potentially in parallel. When all sub-workflow executions complete, the Map state will return an array containing the output for each item processed by the Iterator.
This keeps the flow all within a single Step Function and allows for easier traceability.
The limiting factor would be the amount of concurrency available (docs):
Concurrent iterations may be limited. When this occurs, some iterations will not begin until previous iterations have completed. The likelihood of this occurring increases when your input array has more than 40 items.
One additional thing to be aware of here is cost. You'll easily blow right through the free tier and start incurring actual cost (link).

First-run of queries are extremely slow

Our Redshift queries are extremely slow during their first execution. Subsequent executions are much faster (e.g., 45 seconds -> 2 seconds). After investigating this problem, the query compilation appears to be the culprit. This is a known issue and is even referenced on the AWS Query Planning And Execution Workflow and Factors Affecting Query Performance pages. Amazon itself is quite tight lipped about how the query cache works (tl;dr it's a magic black box that you shouldn't worry about).
One of the things that we tried was increasing the number of nodes we had, however we didn't expect it to solve anything seeing as how query compilation is a single-node operation anyway. It did not solve anything but it was a fun diversion for a bit.
As noted, this is a known issue, however, anywhere it is discussed online, the only takeaway is either "this is just something you have to live with using Redshift" or "here's a super kludgy workaround that only works part of the time because we don't know how the query cache works".
Is there anything we can do to speed up the compilation process or otherwise deal with this? So far about the best solution that's been found is "pre-run every query you might expect to run in a given day on a schedule" which is....not great, especially given how little we know about how the query cache works.
there are 3 things to consider
The first run of any query causes the query to be "compiled" by
redshift . this can take 2-20 seconds depending on how big it is.
subsequent executions of the same query use the same compiled code,
even if the where clause parameters change there is no re-compile.
Data is measured as marked as "hot" when a query has been run
against it, and is cached in redshift memory. you cannot (reliably) manually
clear this in any way EXCEPT a restart of the cluster.
Redshift will "results cache", depending on your redshift parameters
(enabled by default) redshift will quickly return the same result
for the exact same query, if the underlying data has not changed. if
your query includes current_timestamp or similar, then this will
stop if from caching. This can be turned off with SET enable_result_cache_for_session TO OFF;.
Considering your issue, you may need to run some example queries to pre compile or redesign your queries ( i guess you have some dynamic query building going on that changes the shape of the query a lot).
In my experience, more nodes will increase the compile time. this process happens on the master node not the data nodes, and is made more complex by having more data nodes to consider.
The query is probably not actually running a second time -- rather, Redshift is just returning the same result for the same query.
This can be tested by turning off the cache. Run this command:
SET enable_result_cache_for_session TO OFF;
Then, run the query twice. It should take the same time for each execution.
The result cache is great for repeated queries. Rather than being disappointed that the first execution is 'slow', be happy that subsequent cached queries are 'fast'!

Designing a timer functionality in VC++

I was implemnting some functionaliy in which i get a set of queries on database One shouldnt loose the query for a certain time lets say some 5min unless and untill the query is executed fine (this is incase the DB is down, we dont loose the query). so, what i was thinking to do is to set a sort of timer for each query through a different thread and wait on it for that time frame, and at the end if it still exists, remove it from the queue, but, i am not happy with this solution as i have to create as many threads as the number of queries. is there a better way to design this (environment is vc++), If the question is unclear, please let me know, i will try to frame it better.
One thread is enough to check lets say every 10 seconds that you do not have queries in that queue of yours whose due time has been reached and so should be aborted / rolled back.
Queues are usually grown from one end and erased from other end so you have to check only if the query on the end where the oldest items are has not reached its due time.

Sharing counter values between MapReduce mappers

I have a mapper that reads input and writes to a database. I want to limit how many inputs are actually converted and written to that database, and all mappers must contribute to the limit and then stop once that limit is reached (approximately; one or two extra isn't a big deal.)
I implemented a limiter function on our mapper that asks the other tasks, "How many records have you imported?" Once a given limit is reached, it will stop importing those records (although it will continue processing them for other purposes.)
the map code in question looks something like this:
public void map(ImmutableBytesWritable key, Result row, Context context) {
// prepare the input
// ...
if (context.getCounter(Metrics.IMPORTED).getValue()<IMPORT_LIMIT){
importRecord();
context.getCounter(Metrics.IMPORTED).increment(1l);
}
// do other things
// ...
}
So each mapper checks to see if there is more room to import, and only if the limit hasn't been reached does it perform any importing. However, each mapper itself is importing up to the limit, so that for 16 mappers, we get 16*IMPORT_LIMIT records imported. It's definitely doing SOME limiting (the count is much much lower than the normal number of imported records.)
When are counter values pushed to other mappers, or are they even available to each mapper? Can I actually get somewhat real-time values from the counter, or do they only update when a mapper is finished? Is there a better way to share a value between mappers?
Okay: from what I've seen, MapReduce doesn't share counters between mappers until the job is finished (ie. not at all.) I'm not sure if mappers that commit partway through will allow later mappers to see their counters, but it's not reliable enough to be done real time.
Instead what I'll do is I will run a simple java application that iterates over the rows on its own and write to a column, which the existing MapReduce job will use to determine if it should import the row or not.

Amazon SimpleDB Woes: Implementing counter attributes

Long story short, I'm rewriting a piece of a system and am looking for a way to store some hit counters in AWS SimpleDB.
For those of you not familiar with SimpleDB, the (main) problem with storing counters is that the cloud propagation delay is often over a second. Our application currently gets ~1,500 hits per second. Not all those hits will map to the same key, but a ballpark figure might be around 5-10 updates to a key every second. This means that if we were to use a traditional update mechanism (read, increment, store), we would end up inadvertently dropping a significant number of hits.
One potential solution is to keep the counters in memcache, and using a cron task to push the data. The big problem with this is that it isn't the "right" way to do it. Memcache shouldn't really be used for persistent storage... after all, it's a caching layer. In addition, then we'll end up with issues when we do the push, making sure we delete the correct elements, and hoping that there is no contention for them as we're deleting them (which is very likely).
Another potential solution is to keep a local SQL database and write the counters there, updating our SimpleDB out-of-band every so many requests or running a cron task to push the data. This solves the syncing problem, as we can include timestamps to easily set boundaries for the SimpleDB pushes. Of course, there are still other issues, and though this might work with a decent amount of hacking, it doesn't seem like the most elegant solution.
Has anyone encountered a similar issue in their experience, or have any novel approaches? Any advice or ideas would be appreciated, even if they're not completely flushed out. I've been thinking about this one for a while, and could use some new perspectives.
The existing SimpleDB API does not lend itself naturally to being a distributed counter. But it certainly can be done.
Working strictly within SimpleDB there are 2 ways to make it work. An easy method that requires something like a cron job to clean up. Or a much more complex technique that cleans as it goes.
The Easy Way
The easy way is to make a different item for each "hit". With a single attribute which is the key. Pump the domain(s) with counts quickly and easily. When you need to fetch the count (presumable much less often) you have to issue a query
SELECT count(*) FROM domain WHERE key='myKey'
Of course this will cause your domain(s) to grow unbounded and the queries will take longer and longer to execute over time. The solution is a summary record where you roll up all the counts collected so far for each key. It's just an item with attributes for the key {summary='myKey'} and a "Last-Updated" timestamp with granularity down to the millisecond. This also requires that you add the "timestamp" attribute to your "hit" items. The summary records don't need to be in the same domain. In fact, depending on your setup, they might best be kept in a separate domain. Either way you can use the key as the itemName and use GetAttributes instead of doing a SELECT.
Now getting the count is a two step process. You have to pull the summary record and also query for 'Timestamp' strictly greater than whatever the 'Last-Updated' time is in your summary record and add the two counts together.
SELECT count(*) FROM domain WHERE key='myKey' AND timestamp > '...'
You will also need a way to update your summary record periodically. You can do this on a schedule (every hour) or dynamically based on some other criteria (for example do it during regular processing whenever the query returns more than one page). Just make sure that when you update your summary record you base it on a time that is far enough in the past that you are past the eventual consistency window. 1 minute is more than safe.
This solution works in the face of concurrent updates because even if many summary records are written at the same time, they are all correct and whichever one wins will still be correct because the count and the 'Last-Updated' attribute will be consistent with each other.
This also works well across multiple domains even if you keep your summary records with the hit records, you can pull the summary records from all your domains simultaneously and then issue your queries to all domains in parallel. The reason to do this is if you need higher throughput for a key than what you can get from one domain.
This works well with caching. If your cache fails you have an authoritative backup.
The time will come where someone wants to go back and edit / remove / add a record that has an old 'Timestamp' value. You will have to update your summary record (for that domain) at that time or your counts will be off until you recompute that summary.
This will give you a count that is in sync with the data currently viewable within the consistency window. This won't give you a count that is accurate up to the millisecond.
The Hard Way
The other way way is to do the normal read - increment - store mechanism but also write a composite value that includes a version number along with your value. Where the version number you use is 1 greater than the version number of the value you are updating.
get(key) returns the attribute value="Ver015 Count089"
Here you retrieve a count of 89 that was stored as version 15. When you do an update you write a value like this:
put(key, value="Ver016 Count090")
The previous value is not removed and you end up with an audit trail of updates that are reminiscent of lamport clocks.
This requires you to do a few extra things.
the ability to identify and resolve conflicts whenever you do a GET
a simple version number isn't going to work you'll want to include a timestamp with resolution down to at least the millisecond and maybe a process ID as well.
in practice you'll want your value to include the current version number and the version number of the value your update is based on to more easily resolve conflicts.
you can't keep an infinite audit trail in one item so you'll need to issue delete's for older values as you go.
What you get with this technique is like a tree of divergent updates. you'll have one value and then all of a sudden multiple updates will occur and you will have a bunch of updates based off the same old value none of which know about each other.
When I say resolve conflicts at GET time I mean that if you read an item and the value looks like this:
11 --- 12
/
10 --- 11
\
11
You have to to be able to figure that the real value is 14. Which you can do if you include for each new value the version of the value(s) you are updating.
It shouldn't be rocket science
If all you want is a simple counter: this is way over-kill. It shouldn't be rocket science to make a simple counter. Which is why SimpleDB may not be the best choice for making simple counters.
That isn't the only way but most of those things will need to be done if you implement an SimpleDB solution in lieu of actually having a lock.
Don't get me wrong, I actually like this method precisely because there is no lock and the bound on the number of processes that can use this counter simultaneously is around 100. (because of the limit on the number of attributes in an item) And you can get beyond 100 with some changes.
Note
But if all these implementation details were hidden from you and you just had to call increment(key), it wouldn't be complex at all. With SimpleDB the client library is the key to making the complex things simple. But currently there are no publicly available libraries that implement this functionality (to my knowledge).
To anyone revisiting this issue, Amazon just added support for Conditional Puts, which makes implementing a counter much easier.
Now, to implement a counter - simply call GetAttributes, increment the count, and then call PutAttributes, with the Expected Value set correctly. If Amazon responds with an error ConditionalCheckFailed, then retry the whole operation.
Note that you can only have one expected value per PutAttributes call. So, if you want to have multiple counters in a single row, then use a version attribute.
pseudo-code:
begin
attributes = SimpleDB.GetAttributes
initial_version = attributes[:version]
attributes[:counter1] += 3
attributes[:counter2] += 7
attributes[:version] += 1
SimpleDB.PutAttributes(attributes, :expected => {:version => initial_version})
rescue ConditionalCheckFailed
retry
end
I see you've accepted an answer already, but this might count as a novel approach.
If you're building a web app then you can use Google's Analytics product to track page impressions (if the page to domain-item mapping fits) and then to use the Analytics API to periodically push that data up into the items themselves.
I haven't thought this through in detail so there may be holes. I'd actually be quite interested in your feedback on this approach given your experience in the area.
Thanks
Scott
For anyone interested in how I ended up dealing with this... (slightly Java-specific)
I ended up using an EhCache on each servlet instance. I used the UUID as a key, and a Java AtomicInteger as the value. Periodically a thread iterates through the cache and pushes rows to a simpledb temp stats domain, as well as writing a row with the key to an invalidation domain (which fails silently if the key already exists). The thread also decrements the counter with the previous value, ensuring that we don't miss any hits while it was updating. A separate thread pings the simpledb invalidation domain, and rolls up the stats in the temporary domains (there are multiple rows to each key, since we're using ec2 instances), pushing it to the actual stats domain.
I've done a little load testing, and it seems to scale well. Locally I was able to handle about 500 hits/second before the load tester broke (not the servlets - hah), so if anything I think running on ec2 should only improve performance.
Answer to feynmansbastard:
If you want to store huge amount of events i suggest you to use distributed commit log systems such as kafka or aws kinesis. They allow to consume stream of events cheap and simple (kinesis's pricing is 25$ per month for 1K events per seconds) – you just need to implement consumer (using any language), which bulk reads all events from previous checkpoint, aggregates counters in memory then flushes data into permanent storage (dynamodb or mysql) and commit checkpoint.
Events can be logged simply using nginx log and transfered to kafka/kinesis using fluentd. This is very cheap, performant and simple solution.
Also had similiar needs/challenges.
I looked at using google analytics and count.ly. the latter seemed too expensive to be worth it (plus they have a somewhat confusion definition of sessions). GA i would have loved to use, but I spent two days using their libraries and some 3rd party ones (gadotnet and one other from maybe codeproject). unfortunately I could only ever see counters post in GA realtime section, never in the normal dashboards even when the api reported success. we were probably doing something wrong but we exceeded our time budget for ga.
We already had an existing simpledb counter that updated using conditional updates as mentioned by previous commentor. This works well, but suffers when there is contention and conccurency where counts are missed (for example, our most updated counter lost several million counts over a period of 3 months, versus a backup system).
We implemented a newer solution which is somewhat similiar to the answer for this question, except much simpler.
We just sharded/partitioned the counters. When you create a counter you specify the # of shards which is a function of how many simulatenous updates you expect. this creates a number of sub counters, each which has the shard count started with it as an attribute :
COUNTER (w/5shards) creates :
shard0 { numshards = 5 } (informational only)
shard1 { count = 0, numshards = 5, timestamp = 0 }
shard2 { count = 0, numshards = 5, timestamp = 0 }
shard3 { count = 0, numshards = 5, timestamp = 0 }
shard4 { count = 0, numshards = 5, timestamp = 0 }
shard5 { count = 0, numshards = 5, timestamp = 0 }
Sharded Writes
Knowing the shard count, just randomly pick a shard and try to write to it conditionally. If it fails because of contention, choose another shard and retry.
If you don't know the shard count, get it from the root shard which is present regardless of how many shards exist. Because it supports multiple writes per counter, it lessens the contention issue to whatever your needs are.
Sharded Reads
if you know the shard count, read every shard and sum them.
If you don't know the shard count, get it from the root shard and then read all and sum.
Because of slow update propogation, you can still miss counts in reading but they should get picked up later. This is sufficient for our needs, although if you wanted more control over this you could ensure that- when reading- the last timestamp was as you expect and retry.