VC++ Runtime Error : Debug Assertation Failed - c++

Currently I am getting an runtime "assertation error"
Here is the error:
I'm reading words from a text file into dynamically allocated arrays.
this block of code is where I am filling the new arrays.
I know the problem is being caused by this block of code and something about my logic is off just can't see what it is.
//fill new arrays
for( int y = 0; y < new_numwords; y++)
{
for( int i = 0; i < NUM_WORDS; i++)
{
if (!strcmp(SentenceArry[i], EMPTY[0]) == 0)
{
New_SentenceArry[y] = SentenceArry[i];
New_WordCount[y] = WordCount[i];
y++;
}
}
}
Also how would I pass this dynamically allocated 2D array to a function? (the code really needs to be cleaned up as a whole)
char** SentenceArry = new char*[NUM_WORDS]; //declare pointer for the sentence
for( int i = 0; i < NUM_WORDS; i++)
{
SentenceArry[i] = new char[WORD_LENGTH];
}
Here is the full extent of the code.. help would be much appreciated!
Here is what is being read in:
and the current output (the output is how it's suppose to be ):
#define _CRT_SECURE_NO_WARNINGS
#include <iostream>
#include <fstream>
#include <cstring>
#include <cctype>
#include <iomanip>
using std::setw;
using std::left;
using std::cout;
using std::cin;
using std::endl;
using std::ifstream;
int main()
{
const int NUM_WORDS = 17;//constant for the elements of arrays
const int WORD_LENGTH = 50;//constant for the length of the cstrings (NEED TO GIVE THE VALUE ZERO STILL!)
short word_entry = 0; //declare counter
short new_numwords= 0; //declare new word count
char EMPTY[1][4]; //NULL ARRAY
EMPTY[0][0] = '\0';//define it as null
char** SentenceArry = new char*[NUM_WORDS]; //declare pointer for the sentence
for( int i = 0; i < NUM_WORDS; i++)
{
SentenceArry[i] = new char[WORD_LENGTH];
}
int WordCount[NUM_WORDS];//declare integer array for the word counter
for(int i = 0; i < NUM_WORDS; i++)//fill int array
{
WordCount[i] = 1;
}
int New_WordCount[NUM_WORDS] = {0};
ifstream read_text("DataFile.txt"); //read in our text file
if (read_text.is_open()) //check if the the file was opened
{
read_text >> SentenceArry[word_entry];
//REMOVE PUNCTUATION BEFORE BEING READ INTO THE ARRAY
while (!read_text.eof())
{
word_entry++; //increment counter
read_text >> SentenceArry[word_entry]; //read in single words of the text file into the array SentenceArry
char* ptr_ch;//declare our pointer that will find chars
ptr_ch = strstr( SentenceArry[word_entry], ",");//look for "," within the array
if (ptr_ch != NULL)//if true replace it with a null character
{
strncpy( ptr_ch, "\0" , 1);
}//end if
else
{
ptr_ch = strstr( SentenceArry[word_entry], ".");//look for "." within the array
if (ptr_ch != NULL)//if true replace it with a null character
{
strncpy( ptr_ch, "\0" , 1);
}//end if
}//end else
} //end while
}//end if
else
{
cout << "The file could not be opened!" << endl;//display error message if file doesn't open
}//end else
read_text.close(); //close the text file after eof
//WORD COUNT NESTED FOR LOOP
for(int y = 0; y < NUM_WORDS; y++)
{
for(int i = y+1; i < NUM_WORDS; i++)
{
if (strcmp(SentenceArry[y], EMPTY[0]) == 0)//check if the arrays match
{
y++;
}
else
{
if (strcmp(SentenceArry[y], SentenceArry[i]) == 0)//check if the arrays match
{
WordCount[y]++;
strncpy(SentenceArry[i], "\0" , 3);
}//end if
}//end if
}//end for
}//end for
//find how many arrays still contain chars
for(int i = 0; i < NUM_WORDS; i++)
{
if (!strcmp(SentenceArry[i], EMPTY[0]) == 0)
{
new_numwords++;
}
}
//new dynamic array
char** New_SentenceArry = new char*[new_numwords]; //declare pointer for the sentence
for( int i = 0; i < new_numwords; i++)
{
New_SentenceArry[i] = new char[new_numwords];
}
//fill new arrays
for( int y = 0; y < new_numwords; y++)
{
for( int i = 0; i < NUM_WORDS; i++)
{
if (!strcmp(SentenceArry[i], EMPTY[0]) == 0)
{
New_SentenceArry[y] = SentenceArry[i];
New_WordCount[y] = WordCount[i];
y++;
}
}
}
//DISPLAY REPORT
cout << left << setw(15) << "Words" << left << setw(9) << "Frequency" << endl;
for(int i = 0; i < new_numwords; i++) //compare i to the array constant NUM_WORDS
{
cout << left << setw(15) << New_SentenceArry[i] << left << setw(9) << New_WordCount[i] << endl; //display the contents of the array SentenceArry
}
//DEALLOCATION
for( int i = 0; i < NUM_WORDS; i++)//deallocate the words inside the arrays
{
delete [] SentenceArry[i];
}
for(int i = 0; i < new_numwords; i++)
{
delete [] New_SentenceArry[i];
}
delete [] SentenceArry; //deallocate the memory allocation made for the array SentenceArry
delete [] New_SentenceArry;//deallocate the memory allocation made for the array New_SentenceArry
}//end main

There are several issues with the code, not withstanding that this could be written using C++, not C with a sprinkling of C++ I/O..
Issue 1:
Since you're using c-style strings, any copying of string data will require function calls such as strcpy(), strncpy(), etc. You failed in following this advice in this code:
for( int y = 0; y < new_numwords; y++)
{
for( int i = 0; i < NUM_WORDS; i++)
{
if (!strcmp(SentenceArry[i], EMPTY[0]) == 0)
{
New_SentenceArry[y] = SentenceArry[i]; // This is wrong
New_WordCount[y] = WordCount[i];
y++;
}
}
}
You should be using strcpy(), not = to copy strings.
strcpy(New_SentenceArry[y], SentenceArry[i]);
Issue 2:
You should allocate WORD_LENGTH for both the original and new arrays. The length of the strings is independent of the number of strings.
char** New_SentenceArry = new char*[new_numwords]; //declare pointer for the sentence
for( int i = 0; i < new_numwords; i++)
{
New_SentenceArry[i] = new char[new_numwords];
}
This should be:
char** New_SentenceArry = new char*[new_numwords]; //declare pointer for the sentence
for( int i = 0; i < new_numwords; i++)
{
New_SentenceArry[i] = new char[WORD_LENGTH];
}
Issue 3:
Your loops do not check to see if the index is going out of bounds of your arrays.
It seems that you coded your program in accordance to the data that you're currently using, instead of writing code regardless of what the data will be. If you have limited yourself to 17 words, where is the check to see if the index goes above 16? Nowhere.
For example:
while (!read_text.eof() )
Should be:
while (!read_text.eof() && word_entry < NUM_WORDS)
Issue 4:
You don't process the first string found correctly:
read_text >> SentenceArry[word_entry]; // Here you read in the first word
while (!read_text.eof() )
{
word_entry++; //increment counter
read_text >> SentenceArry[word_entry]; // What about the first word you read in?
Summary:
Even with these changes, I can't guarantee that the program won't crash. Even it it doesn't crash with these changes, I can't guarantee it will work 100% of the time -- a guarantee would require further analysis.
The proper C++ solution, given what this assignment was about, is to use a std::map<std::string, int> to keep the word frequency. The map would automatically store similar words in one entry (given that you remove the junk from the word), and would bump up the count to 1 automatically, when the entry is inserted into the map.
Something like this:
#include <string>
#include <map>
#include <algorithm>
typedef std::map<std::string, int> StringMap;
using namespace std;
bool isCharacterGarbage(char ch)
{ return ch == ',' || ch == '.'; }
int main()
{
StringMap sentenceMap;
//...
std::string temp;
read_text >> temp;
temp.erase(std::remove_if(temp.begin(), temp.end(), isCharacterGarbage),temp.end());
sentenceMap[temp]++;
//...
}
That code alone does everything your original code did -- keep track of the strings, bumps up the word count, removes the junk characters from the word before being processed, etc. But best of all, no manual memory management. No calls to new[], delete[], nothing. The code just "works". That is effectively 5 lines of code that you would just need to write a "read" loop around.
I won't go through every detail, you can do that for yourself since the code is small, and there are vast amounts of resources available explaining std::map, remove_if(), etc.
Then printing out is merely going through the map and printing each entry (string and count). If you add the printing, that may be 4 lines of extra code. So in all, practically all of the assignment is done with effectively 10 or so lines of code.

Remove below code.
for(int i = 0; i < new_numwords; i++)
{
delete [] New_SentenceArry[i];
}

Related

allocate and deallocate memory in c++

I'm trying to figure it out why this code doesn't work as it should. I would like to allocate memory for a dictionary file with over 250,000 words. Memory allocation works OK. However free memory doesn't. And, honestly I don't know why. It breaks during deallocation. Below is the code.
Thank you.
#include <iostream> // For general IO
#include <fstream> // For file input and output
#include <cassert> // For the assert statement
using namespace std;
const int NumberOfWords = 500000; // Number of dictionary words
//if i change to == to exact number of words also doesnt work
const int WordLength = 17; // Max word size + 1 for null
void allocateArray(char ** & matrix){
matrix = new char*[NumberOfWords];
for (int i = 0; i < NumberOfWords; i++) {
matrix[i] = new char[WordLength];
// just to be safe, initialize C-string to all null characters
for (int j = 0; j < WordLength; j++) {
matrix[i][j] = NULL;
}//end for (int j=0...
}//end for (int i...
}//end allocateArray()
void deallocateArray(char ** & matrix){
// Deallocate dynamically allocated space for the array
for (int i = 0; i < NumberOfWords; i++) {
delete[] matrix[i];
}
delete[] matrix; // delete the array at the outermost level
}
int main(){
char ** dictionary;
// allocate memory
allocateArray(dictionary);
// Now read the words from the dictionary
ifstream inStream; // declare an input stream for my use
int wordRow = 0; // Row for the current word
inStream.open("dictionary.txt");
assert(!inStream.fail()); // make sure file open was OK
// Keep repeating while input from the file yields a word
while (inStream >> dictionary[wordRow]) {
wordRow++;
}
cout << wordRow << " words were read in." << endl;
cout << "Enter an array index number from which to display a word: ";
long index;
cin >> index;
// Display the word at that memory address
cout << dictionary[index] << endl;
deallocateArray(dictionary);
return 0;
}
The problem is in the following line:
while (inStream >> dictionary[wordRow]) {
There is no limit on the input line length and the application overwrites at least one of string buffers. I would fix it this way:
while (inStream >> std::setw(WordLength - 1) >> dictionary[wordRow]) {
Please do not forget to add
#include <iomanip>
with setd::setw declaration

Segmentation Fault when using Structures and pThreads

I have been working with a program that will read through multiple text files, record the number of words in them, and write to a file all of the words and the frequency of them. However, I have encounter a segmentation fault somewhere in my code. I have tried using tools such as Valgrind to help me debug it, however it only points to where I say int i = 0 in the main loop. I apologize for posting a large portion of my code but I have spent hours trying to find where the bug is and cannot seem to find it for the life of me. The issues began when I started passing a structure in pthread_exit().
#include <iostream>
#include <fstream>
#include <string>
#include <pthread.h>
#include <vector>
#include <algorithm>
#include <sstream>
#include <iterator>
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#include <cstdio>
using namespace std;
// Create a structure that we can store information in
typedef struct info{
int words;
string dictionary[500000];
} info;
// Counts the number of words in the text file so we know how big to make our array
int countWord(char *arg){
char words[25000];
int count = 0;
ifstream check;
check.open(arg);
while(!check.eof()){
check>>words;
count++;
}
cout<<"Word Count: "<< count << '\n';
check.close();
return count;
}
// Checks to see if the word exists in our dictionary or not
int findWord(string array[], string target, int wordCount){
for(int i = 0; i < wordCount; ++i){
if(array[i] == target){
return 1;
}
}
return 0;
}
// Checks to see how many times a word is repeated
int checkWord(string array[], string target, int wordCount){
int number = 0;
for(int i = 0; i < wordCount; i++){
if(array[i] == target){
number++;
}
}
return number;
}
void *threads(void *arg){
info information;
char *fileName = (char *)arg;
ifstream myfile (fileName);
string line;
string fullText[15000];
string dictionary[500000];
int wordCount = countWord(fileName);
int i = 0;
int find;
int check;
int x = 0;
int checkingStart = 0;
// Opens and reads the file word by word removing any symbols that we dislike
if (myfile.is_open()){
while(myfile >> line){
transform(line.begin(), line.end(), line.begin(), ::tolower);
line.erase(remove(line.begin(), line.end(), ','), line.end());
fullText[i] = line;
i++;
}
}
else cout << "Unable to Open the File";
myfile.close();
// Goes through and adds all the words to our dictionary
for(i = 0; i < wordCount; ++i){
find = findWord(dictionary, fullText[i], wordCount);
if(find == 0){
dictionary[x] = {fullText[i]};
++x;
checkingStart = 1;
}
}
// Sets each section of dictionary equal to the one in the structure
for(i = 0; i < wordCount; ++i){
information.dictionary[i] = dictionary[i];
}
// Sets words equal to word count and then passes the structure information out of the thread
information.words = wordCount;
pthread_exit(&information);
return NULL;
}
int main(){
int i = 0;
int x = 0;
int y = 0;
int z = 0;
int a = 0;
int b = 0;
int add = 0;
int currentSize = 0;
int checkingStart = 0;
int wordCount;
int find;
string fullDictionary[500000];
string dict[500000];
ofstream writeFile;
info information;
char *fileName;
char *fileList[2];
pthread_t threadCount[2];
int frequency[500000];
int check;
fileList[0] = "text1";
fileList[1] = "text2";
// Creates a loop that creates and joins threads for each text file
for(a = 0; a < 1; ++a){
fileName = fileList[a];
pthread_create(&threadCount[a], NULL, threads, &fileName);
pthread_join(threadCount[a], (void **)&information);
wordCount = information.words;
// Sets each part of dict equal to the same slot on info.dict
for(b = 0; b < wordCount; ++b){
dict[b] = information.dictionary[b];
}
// Adds to a complete list of all the text files added together
for(y = 0, z = currentSize; z < wordCount; ++z, ++y){
fullDictionary[z] = dict[y];
}
currentSize = (currentSize + wordCount);
}
// Goes through and adds all the words to our dictionary
for(i = 0; i < wordCount; ++i){
find = findWord(dict, fullDictionary[i], currentSize);
if(find == 0){
dict[x] = {fullDictionary[i]};
cout << "Added the Word: " << fullDictionary[i] << "\n";
add = 1;
checkingStart = 1;
}
// Checks the number of times each word appears in the text file
if(checkingStart == 1){
check = checkWord(fullDictionary, dict[x], wordCount);
frequency[x] = {check};
}
// Checks to see if it needs to move to the next open dictionary spot
if(add == 1){
++x;
add = 0;
}
}
return 0;
}
These were the changes that were needed to get the program working.
1) One issue seems to be that the size of the variables in the function threads. Looks like every thread that is spawned has some default limit . You could read up on pthread_attr_setstacksize. but the simplest solution was to reduce the size of the strings in thread.So the size of the variables are why it's gives a segmentation fault as soon as the threads function is called.
As already mention in the comments above usage of vector/maps classes will help reduce the need for large local variables.
2) The return variable needs to be a non-local variable else the return value does not make it back successfully.
3) just noticed the main loop ( variable a ) is running only once . Also once the thread is launched(pthread_create) the loop is waiting for the join . This will result in serialization of the threads. The create can be done first and then the join can be in called in a separate loop after that.
Changes are given below ..
In function - threads
info *information;
//changed to pointer
// info information;
char *fileName = (char *)arg;
ifstream myfile (fileName);
string line;
string fullText[1500];
string dictionary[5000];
// reduced size
//string fullText[15000];
//string dictionary[500000];
.....
information = new info; // create an instance
........
// change to pointer
information->dictionary[i] = dictionary[i];
}
// Sets words equal to word count and then passes the structure information out of the thread
information->words = wordCount;
pthread_exit(information); // return pointer
in function - main
info *information; // change to pointer
....
for(a = 0; a < 2; ++a){ // loop to 2
.....
pthread_create(&threadCount[a], NULL, threads, (void *)fileName); // changed file name
// pthread_create(&threadCount[a], NULL, threads, &fileName);
wordCount = information->words; // changed for pointer
...
dict[b] = information->dictionary[b] // changed for pointer
After the edits you should be able to run to debug the rest of the functionality.

How to display duplicate characters in a string in C++?

I am working on some code for a class that requires me to output duplicates in a string. This string can have any ascii character but the output needs to show only the repeated character and the total number of times it repeats.
Here are some sample inputs and outputs
mom, m:2
taco, No duplicates
good job, o:3
tacocat, t:2 c:2 a:2
My code works for all but the last test case, the t:2 and a:2 appears twice, Now I have come to the conclusion that I need to store duplicated characters somewhere and run a check on that list to see if that duplicate has already been printed so I tried using a vector.
My method is to push the character into the vector as the duplicates are printed and if a character is already in the vector then it is skipped in the printing. But I have not been able to find a way to this. I tried to use the find() from #include<algorithm> but got a syntax error that I am unable to fix. Is there a function that I can apply for this? Or am I going about this in a bad way?
I found the implementation of find() here & I looked here but they don't match and it breaks my code completely when I try to apply it.
#include<iostream>
#include<string>
#include<vector>
#include<algorithm>
using namespace std;
vector <char> alreadyprintedcharacters;
void findrepeats(string const&);
int main()
{
string input;
cout << "Enter the input : ";
getline(cin, input);
findrepeats(input);
return 0;
}
void findrepeats(string const &in)
{
int trackerOfDuplicates = 0;
int asciiArray[256];
char ch;
int charconv;
for (int i = 0; i < 256; i++) // creates my refference array for the comparison and sets all the values equal to zero
asciiArray[i] = 0;
for (unsigned int i = 0; i < in.length(); i++)
{
ch = in[i];
charconv = static_cast<int>(ch);
if (asciiArray[charconv] == 0)
{
asciiArray[charconv] = 1;
}
else if (asciiArray[charconv] > 0)
{
asciiArray[charconv] = asciiArray[charconv]++;
}
}
bool trip = false;
for (unsigned int i = 0; i < in.length(); i++)
{
char static alreadyprinted;
char ch = in[i];
if ((asciiArray[ch] > 1) && (ch != alreadyprinted) && (find(alreadyprintedcharacters.begin(), alreadyprintedcharacters.end(), ch)!= alreadyprintedcharacters.end()))// change reflected HERE
{
cout << in[i] << " : " << asciiArray[ch] << endl;//???? maybe a nested loop
trip = true;
alreadyprinted = ch;
alreadyprintedcharacters.push_back(alreadyprinted);
}
}
if (trip == false)
cout << "No repeated characters were found.\n";
}
Your code works fine for me (gives the correct output for tacocat) if you fix the error related to std::find:
std::find doesn't return a bool, it returns an iterator (in your case, a std::vector<char>::iterator). If you want to check if std::find found something, you should compare it to alreadyprintedcharacters.end(), because that's what std::find returns if it didn't find something.
You can create an integer array of 256 and initialize it to 0 at first. Then loop over characters in the string and increment each index that corresponds to that letter. In the end, you can print out letters that have values greater than 1. Just change your findrepeats function to the following:
void findrepeats(string const &in)
{
int asciiArray[256];
char ch;
int charconv;
bool foundAny = false;
for (int i = 0; i < 256; i++) asciiArray[i] = 0;
for (unsigned int i = 0; i < in.length(); i++)
{
ch = in[i];
charconv = static_cast<int>(ch);
asciiArray[charconv]++;
}
for (unsigned int i = 0; i < 256; i++)
{
char static alreadyprinted;
if (asciiArray[i] > 1)
{
foundAny = true;
cout << static_cast<char>(i) << " : " << asciiArray[i] << endl;
}
}
if (!foundAny)
cout << "No repeated characters were found.\n";
}
You have to make following changes in your code
change the loop body where you are updating the reference array for the comparison and sets all the values like this:
//your code
else if (asciiArray[charconv] > 0)
{
asciiArray[charconv] = asciiArray[charconv]++;
}
in the above code the value of asciiArray[charconv] doesn't change because it is a post increment asciiArray[charconv]++; , either change it to a pre increment ++asciiArray[charconv]; or write asciiArray[charconv] = asciiArray[charconv]+1;
Here is a link to this why it doesn't increment.
Also you can change the loop like this,more simplified:
for (unsigned int i = 0; i < in.length(); i++)
{
ch = in[i];
charconv = static_cast<int>(ch);
asciiArray[charconv]++;
}
change the type of found to std::vector<char>::iterator coz find returns an iterator to the first element in the range that compares equal to val & if no elements match, the function returns last.
std::vector<char>::iterator found = find(alreadyprintedcharacters.begin(), alreadyprintedcharacters.end(), ch);
Then your condition should be like
if((asciiArray[ch] > 1) && (ch!=alreadyprinted) && (found == alreadyprintedcharacters.end()))
I don't quite get why you need all of that code (given you stated you can't use std::map).
You declared an array of 256 and set each item to 0, which is OK:
for (int i = 0; i < 256; i++)
asciiArray[i] = 0;
Now the next step should be simple -- just go through the string, one character at a time, and increment the associated value in your array. You seem to start out this way, then go off on a tangent doing other things:
for (unsigned int i = 0; i < in.length(); i++)
{
ch = in[i]; // ok
asciiArray[ch]++;
We can set a boolean to true if we discover that the character count we just incremented is > 1:
bool dup = false;
for (unsigned int i = 0; i < in.length(); i++)
{
ch = in[i]; // ok
asciiArray[ch]++;
if ( asciiArray[ch] > 1 )
dup = true;
}
That is the entire loop to preprocess the string. Then you need a loop after this to print out the results.
As to printing, just go through your array only if there are duplicates, and you know this by just inspecting the dup value. If the array's value at character i is > 1, you print the information for that character, if not, skip to the next one.
I won't show the code for the last step, since this is homework.
Just met similar question last week, here is what I did, maybe not a best solution, but it did work well.
string str("aer08%&#&%$$gfdslh6FAKSFH");
vector<char> check;
vector<int> counter;
//subscript is the bridge between charcheck and count. counter[sbuscript] store the times that check[subscript] appeared
int subscript = 0;
bool charisincheck = false;
for (const auto cstr : str) //read every char in string
{
subscript = 0;
charisincheck = false;
for (const auto ccheck : check) // read every element in charcheck
{
if (cstr == ccheck)//check if the char get from the string had already existed in charcheck
{
charisincheck = true; //if exist, break the for loop
break;
}
subscript++;
}
if (charisincheck == true) //if the char in string, then the count +1
{
counter[subscript] += 1;
}
else //if not, add the new char to check, and also add a counter for this new char
{
check.push_back(cstr);
counter.push_back(1);
}
}
for (decltype(counter.size()) i = 0; i != counter.size(); i++)
{
cout << check[i] << ":" << counter[i] << endl;
}met
import java.util.*;
class dublicate{
public static void main(String arg[]){
Scanner sc =new Scanner(System.in);
String str=sc.nextLine();
int d[]=new int[256];
int count=0;
for(int i=0;i<256;i++){
d[i]=0;
}
for(int i=0;i<str.length();i++){
if(d[str.charAt(i)]==0)
for(int j=i+1;j<str.length();j++){
if(str.charAt(i)==str.charAt(j)){
d[str.charAt(i)]++;
}
}
}
for(char i=0;i<256;i++){
if(d[i]>0)
System.out.println(i+" :="+(d[i]+1));
}
}
}
//here simple code for duplicate characters in a string in C++
#include<iostream.h>
#include<conio.h>
#include<string.h>
void main(){
clrscr();
char str[100];
cin>>str;
int d[256];
int count=0;
for(int k=0;k<256;k++){
d[k]=0;
}
for(int i=0;i<strlen(str);i++){
if(d[str[i]]==0)
for(int j=i+1;j<strlen(str);j++){
if(str[i]==str[j]){
d[str[i]]++;
}
}
}
for(int c=0;c<256;c++){
if(d[c]>0)
cout<<(char)c<<" :="<<(d[c]+1)<<"\n";
}
getch();
}

Splitting an array at a given value

Hello I am trying to split an array any time there is a negative value (excluding the negative value) and am a bit stuck at the moment. I tried an approach as seen in my code but I am not getting the desired output.
#include <iostream>
#include <string>
#include <vector>
#include <fstream>
using namespace std;
int main()
{
string line;
string filename;
int n,length;
std::vector<int>arr1;
fstream file("t1.txt");
if(file.is_open())
{
while(file >> n)
arr1.push_back(n);
for(int i =0; i < (int)arr1.size(); i++)
cout << arr1.at(i);
}
cout << endl;
int* arr2 = &arr1[0];
int arr3[arr1.size()/2];
int arr4[arr1.size()/2];
for(int i = 0; i < arr1.size(); i++)
{
cout << arr2[i];
}
for (int i =0; i < arr1.size(); i++)
{
if(i == -1)
break;
else
arr3[i] = arr2[i];
}
return 0;
}
The main problem is here:
int arr3[arr1.size()/2];
int arr4[arr1.size()/2];
This doesn't compile, and can be replaced with
std::vector<int> arr3; arr3.reserve(arr1.size() / 2);
std::vector<int> arr4; arr4.reserve(arr1.size() / 2);
I've added the "reserve" function so that the program doesn't have to allocate memory over and over in the loop.
Next, you are checking i in your loop, and your i loops from 0 to arr1.size() (which is unsigned so can't be negative) therefore i will never be negative.
What you really wanna check is what is in the arr1 vector at "i" position, and you can do so with the [] operator like
for (int i =0; i < arr1.size(); i++)
{
if (arr1[i] >= 0) //if the value is positive, we push it inside our arr3 vector
arr3.push_back(arr1[i]);
else
{
i++; //skip negative value
//
while (i < arr1.size())
{
if (arr1[i] > 0)
arr4.push_back(arr1[i]);
i++;
}
//
//or
//insert all the elemenents we haven't processed yet in the arr4 vector
//this code assumes those elements are positive values
//arr4.insert(arr4.begin(), arr1.begin() + i, arr1.end());
//break;
}
}
Of course this could be done in a different way, like instead of creating 2 vectors, you could just use the one you have generated already.
Hope this helps.
There are several problems in your code
you should not access the vector's data this way unless you really need to
you prepare arrays with predefined size without knowing where to expect the negative values
you do not assign anything to your array 4
you check the index for being negative, not the value
according to your text there could be several negative values leading to multiple result-arrays. You seem to be prepared for only two.
Here is some code that actually splits when encountering negative values:
std::vector<vector<int> > splitted;
for (int i = 0; i < arr1.size(); ++i)
{
if (i ==0 or arr1[i] < 0)
splitted.push_back(std::vector<int>());
if (arr1[i] >= 0)
splitted.back().push_back(arr1[i]);
}
Testing it:
for (int i = 0; i < splitted.size(); ++i)
{
for (int k = 0; k < splitted[i].size(); ++k)
{
std::cout << splitted[i][k];
}
if (splitted[i].empty())
std::cout << "(emtpy)";
std::cout << '\n';
}
Using the following test input
1 2 3 -1 1 -1 -1
You get the following output:
123
1
(emtpy)
(emtpy)

Algorithm to print asterisks for duplicate characters [closed]

Closed. This question needs to be more focused. It is not currently accepting answers.
Want to improve this question? Update the question so it focuses on one problem only by editing this post.
Closed 8 years ago.
Improve this question
I was asked this question in an interview:
Given an array with the input string, display the output as shown below
Input
INDIA
Output
INDA
****
*
I iterated through the array and stored each character as a key in std::map with value as number of occurrence. Later I iterate the map and print the asteriks and reduce the value in the map for each character.
Initially, I was asked not to use any library. I gave a solution which needed lot of iterations. For every character, iterate the complete array till the index to find previous occurrences and so on.
Is there any better way, e.g. better complexity, such as faster operation, by which this can be achieved?
Essentially what you are asking is how to implement map without using the STL code, as using some kind of data structure which replicates the basic functionality of map is pretty much the most reasonable way of solving this problem.
There are a number of ways of doing this. If your keys (here the possible characters) come from a very large set where most elements of the set don't appear (such as the full Unicode character set), you would probably want to use either a tree or a hash table. Both of these data structures are very important with lots of variations and different ways of implementing them. There is lots of information and example code about the two structures around.
As #PeterG said in a comment, if the only characters you are going to see are from a set of 256 8-bit chars (eg ASCII or similar), or some other limited collection like the upper-case alphabet you should just use an array of 256 ints and store a count for each char in that.
here is another one:
You can see it working HERE
#include <stdio.h>
int main()
{
int i,j=0,f=1;
char input[50]={'I','N','D','I','A','N','A','N'};
char letters[256]={0};
int counter[256]={0};
for(i=0;i<50;i++)
{
if(input[i])
counter[input[i]]++;
if(counter[input[i]]==1)
{
putchar(input[i]);
letters[j]=input[i];
j++;
}
}
putchar('\n');
while(f)
{
f=0;
for(i=0;i<j;i++)
if(counter[letters[i]])
{
putchar('*');
counter[letters[i]]--;
f=1;
}
else
{
putchar(' ');
}
putchar('\n');
}
return 0;
}
If the alphabet under consideration is fixed, it can be done in two passes:
Create an integer array A with the size of the alphabet, initialized with all zeros.
Create a boolean array B with size of the input, initialize with all false.
Iterate the input; increase for every character the corresponding content of A.
Iterate the input; output a character if its value it B is false and set its value in B to true. Finally, output a carriage return.
Reset B.
Iterate input as in 4., but print a star if if the character's count in A is positive, then decrease this count; print a space otherwise.
Output a carriage return; loop to 5 as long as there are any stars in the output generated.
This is interesting. You shouldnt use a stl::map because that is not a hashmap. An stl map is a binary tree. An unordered_map is actually a hash map. In this case we dont need either. We can use a simple array for char counts.
void printAstr(std::string str){
int array[256] ;// assumining it is an ascii string
memset(array, 0, sizeof(array));
int astrCount = 0;
for(int i = 0; i < str.length()-1; i++){
array[(int) str[i]]++;
if(array[(int) str[i]] > 1) astrCount++;
}
std::cout << str << std::endl;
for(int i = 0; i < str.length()-1;i++) std::cout << "* ";
std::cout << std::endl;
while(astrCount != 0){
for(int i= 0; i< str.length() - 1;i++){
if(array[(int) str[i]] > 1){
std::cout << "* ";
array[(int) str[i]]--;
astrCount--;
}else{
std::cout << " ";
}
}
std::cout << std::endl;
}
}
pretty simple just add all values to the array, then print them out the number of times you seem them.
EDIT: sorry just made some logic changes. This works now.
The following code works correctly. I am assuming that you can't use std::string and take note that this doesn't take overflowing into account since I didn't use dynamic containers. This also assumes that the characters can be represented with a char.
#include <iostream>
int main()
{
char input[100];
unsigned int input_length = 0;
char letters[100];
unsigned int num_of_letters = 0;
std::cin >> input;
while (input[input_length] != '\0')
{
input_length += 1;
}
//This array acts like a hash map.
unsigned int occurrences[256] = {0};
unsigned int max_occurrences = 1;
for (int i = 0; i < input_length; ++i)
{
if ((occurrences[static_cast<unsigned char>(input[i])] += 1) == 1)
{
std::cout<< " " << (letters[num_of_letters] = input[i]) << " ";
num_of_letters += 1;
}
if (occurrences[static_cast<unsigned char>(input[i])] > max_occurrences)
{
max_occurrences = occurrences[static_cast<unsigned char>(input[i])];
}
}
std::cout << std::endl;
for (int row = 1; row <= max_occurrences; ++row)
{
for (int i = 0; i < num_of_letters; ++i)
{
if (occurrences[static_cast<unsigned char>(letters[i])] >= row)
{
std::cout << " * ";
}
else
{
std::cout << " ";
}
}
std::cout << std::endl;
}
return 0;
}
The question is marked as c++ but It seems to me that the answers not are all quite C++'ish, but could be quite difficult to achieve a good C++ code with a weird requirement like "not to use any library". In my approach I've used some cool C++11 features like in-class initialization or nullptr, here is the live demo and below the code:
struct letter_count
{
char letter = '\0';
int count = 0;
};
int add(letter_count *begin, letter_count *end, char letter)
{
while (begin != end)
{
if (begin->letter == letter)
{
return ++begin->count;
}
else if (begin->letter == '\0')
{
std::cout << letter; // Print the first appearance of each char
++begin->letter = letter;
return ++begin->count;
}
++begin;
}
return 0;
}
int max (int a, int b)
{
return a > b ? a : b;
}
letter_count *buffer = nullptr;
auto testString = "supergalifragilisticoespialidoso";
int len = 0, index = 0, greater = 0;
while (testString[index++])
++len;
buffer = new letter_count[len];
for (index = 0; index < len; ++index)
greater = max(add(buffer, buffer + len, testString[index]), greater);
std::cout << '\n';
for (int count = 0; count < greater; ++count)
{
for (index = 0; buffer[index].letter && index < len; ++index)
std::cout << (count < buffer[index].count ? '*' : ' ');
std::cout << '\n';
}
delete [] buffer;
Since "no libraries are allowed" (except for <iostream>?) I've avoided the use of std::pair<char, int> (which could have been the letter_count struct) and we have to code many utilities (such as max and strlen); the output of the program avobe is:
supergaliftcod
**************
* ******* *
* *** *
* *
*
*
My general solution would be to traverse the word and replace repeated characters with an unused nonsense character. A simple example is below, where I used an exclamation point (!) for the nonsense character (the input could be more robust, some character that is not easily typed, disallowing the nonsense character in the answer, error checking, etc). After traversal, the final step would be removing the nonsense character. The problem is keeping track of the asterisks while retaining the original positions they imply. For that I used a temp string to save the letters and a process string to create the final output string and the asterisks.
#include <iostream>
#include <string>
using namespace std;
int
main ()
{
string input = "";
string tempstring = "";
string process = "";
string output = "";
bool test = false;
cout << "Enter your word below: " << endl;
cin >> input;
for (unsigned int i = 0; i < input.length (); i++)
{ //for the traversed letter, traverse through subsequent letters
for (unsigned int z = i + 1; z < input.length (); z++)
{
//avoid analyzing nonsense characters
if (input[i] != '!')
{
if (input[i] == input[z])
{ //matched letter; replace with nonsense character
input[z] = '!';
test = true; //for string management later
}
}
}
if (test)
{
tempstring += input[i];
input[i] = '*';
test = false; //reset bool for subsequent loops
}
}
//remove garbage symbols and save to a processing string
for (unsigned int i = 0; i < input.size (); i++)
if (input[i] != '!')
process += input[i];
//create the modified output string
unsigned int temp = 0;
for (unsigned int i = 0; i < process.size (); i++)
if (process[i] == '*')
{ //replace asterisks with letters stored in tempstring
output += tempstring[temp];
temp++;
}
else
output += process[i];
//output word with no repeated letters
cout << output << endl;
//output asterisks equal to output.length
for (unsigned int a = 0; a < output.length (); a++)
cout << "*";
cout << endl;
//output asterisks for the letter instances removed
for (unsigned int i = 0; i < process.size (); i++)
if (process[i] != '*')
process[i] = ' ';
cout << process << endl << endl;
}
Sample output I received by running the code:
Enter your word below:
INDIA
INDA
****
*
Enter your word below:
abcdefgabchijklmnop
abcdefghijklmnop
****************
***
It is possible just using simple array to keep count of values.
#include<iostream>
#include<string>
using namespace std;
int main(){
string s;
char arr[10000];
cin>>s;
int count1[256]={0},count2[256]={0};
for(int i=0;i<s.size();++i){
count1[s[i]]++;
count2[s[i]]++;
}
long max=-1;
int j=0;
for(int i=0;i<s.size();++i){
if(count1[s[i]]==count2[s[i]]){ //check if not printing duplicate
cout<<s[i];
arr[j++]=s[i];
}
if(count2[s[i]]>max)
max=count2[s[i]];
--count1[s[i]];
}
cout<<endl;
for(int i =1; i<=max;++i){
for(int k=0;k<j;++k){
if(count2[arr[k]]){
cout<<"*";
count2[arr[k]]--;
}
else
cout<<" ";
}
cout<<endl;
}
}