Overridden function applied to base class list - c++

i just want to know if there is any way to do something like this:
Class A {}; //Base class
Class B : A {}; //B inherits from A
Class C : A {}; //C inherits from A
...
...
...
void func(B){do x;}
void func(C){do y;}
...
...
...
list<A> l //l contains Bs or Cs.
for each element in l {func(element);}
And get the expected behaviour for each one?

You can do something like the following:
class A // Base clss
{
public: // or protected, depends on your needs
virtual void func() {};
};
class B : public A //B inherits from A
{
public: // or protected, depends on your needs
void func() { do x };
};
class C : public A //C inherits from A
{
public: // or protected, depends on your needs
void func() { do y };
};
...
...
...
list<A*> l //l contains Bs or Cs.
for each element in l { element->func(); }
In this way you use polymorphism instead of overloading the static function func.

#include <iostream>
#include <vector>
class A
{
public:
virtual void func() {}
};
class B : public A
{
public:
void func()
{
std::cout << "B prints x" << std::endl;
}
};
class C : public A
{
public:
void func()
{
std::cout << "C prints y" << std::endl;
}
};
int main()
{
std::vector<A*> v;
v.push_back(new B());
v.push_back(new C());
for (std::vector<A*>::iterator it = v.begin(); it != v.end(); ++it){
(*it)->func();
}
return 0;
}
Output:
B prints x
C prints y

You can use polymorphism. For example
#include <iostream>
#include <memory>
#include <list>
#include <algorithm>
class A
{
public:
virtual ~A() {}
virtual void do_it() = 0;
};
class B : public A
{
public:
virtual void do_it() { std::cout << "processing of B\n"; };
};
class C : public A
{
public:
virtual void do_it() { std::cout << "processing of C\n"; };
};
void f( std::unique_ptr<A> &pa ) { pa->do_it(); }
int main()
{
std::list<std::unique_ptr<A>> l;
l.push_back( std::unique_ptr<A>( new B ) );
l.push_back( std::unique_ptr<A>( new C ) );
std::for_each( l.begin(), l.end(), f );
}

Related

How do I call an overridden method that was declared after the class calling it?

Say I have this code:
class A
{
public:
A(){};
void some_func(){
std::cout << 1;
};
};
class B
{
A* my_A;
public:
B(A* a) : my_A{a} {};
void use_A()
{
my_A->some_func();
}
};
class C : public A
{
public:
C(){};
void some_func()
{
std::cout << 2;
}
};
int main()
{
C new_c;
B new_b(&new_c);
new_b.use_A();
}
Now this compiles just fine, however use_A() is calling the original some_func(), not the override declared after. How can I do that? I expect the program to print 2, not 1.
You need to declare A::some_func() as virtual in order for C to override it, eg:
class A
{
public:
A(){};
virtual void some_func(){ // <--
std::cout << 1;
};
};
class B
{
A* my_A;
public:
B(A* a) : my_A{a} {};
void use_A()
{
my_A->some_func();
}
};
class C : public A
{
public:
C(){};
void some_func() override // <--
{
std::cout << 2;
}
};
int main()
{
C new_c;
B new_b(&new_c);
new_b.use_A(); // prints 2, not 1
}
Online Demo

List of multiple class to run same function name C++ [duplicate]

This question already has answers here:
How to store object of different class types into one container in modern c++?
(2 answers)
Closed 3 years ago.
I have multiple classes with same function as below
class A
{
void display()
{
// display something
}
};
class B
{
void display()
{
// display something two
}
};
I want to store difference class at a list or a vector and loop to call the same function with same name
int main()
{
A * a;
B * b;
//list or vector to store object
std::vector < Something that can store different class > listofclass;
listofclass.emplace_back(a);
listofclass.emplace_back(b);
for (int i = 0; i < listofclass.size(); i++)
{
listofclass[i].display();
}
}
Is that possible to do like this?
Because there is separate classes, having different purpose, and now i try to group them together
Or there is other alternative way to achieve something like this
If you control the definition of A and B, you can write a common base class, and have them inherit it.
class can_display {
public:
virtual void display() = 0;
virtual ~can_display() = default;
};
class A : public can_display
{
void display() override
{
// display something
}
};
class B : public can_display
{
void display() override
{
// display something two
}
};
int main()
{
A a;
B b;
std::vector<can_display *> displayables;
displayables.push_back(&a);
displayables.push_back(&b);
for (can_display * displayable : displayables)
{
displayable->display();
}
}
As an alternative to changing the definition of A and B to inherit from a common base, you can have a wrapper that inherits.
template <typename T>
class can_display_impl {
T * wrapped;
public:
can_display_impl(T * wrapped) : wrapped(wrapped) {}
void display() override { wrapped->display(); }
}
template <typename T>
std::unique_ptr<can_display> make_can_display(T & wrapped) {
return std::make_unique<can_display_impl<T>>(&wrapped);
}
int main()
{
A a;
B b;
std::vector<std::unique_ptr<can_display>> displayables;
displayables.emplace_back(make_can_display(a));
displayables.emplace_back(make_can_display(b));
for (auto & displayable : displayables)
{
displayable->display();
}
}
You have two solutions for this problem:
Use inheritance and just make a abstract class that will be a interface for your classes. In class A and class B just inherit from that interface and in std::vector hold pointer to base class.
#include <vector>
#include <iostream>
#include <memory>
class Interface_display {
public:
virtual void display() = 0;
virtual ~Interface_display(){};
};
class A : public Interface_display
{
public:
void display() override
{
std::cout << "Display from A\n";
}
~A() override = default;
};
class B : public Interface_display
{
public:
void display() override
{
std::cout << "Display from B\n";
}
~B() override = default;
};
int main(void)
{
std::vector<std::unique_ptr<Interface_display>> v;
v.emplace_back(std::make_unique<A>());
v.emplace_back(std::make_unique<B>());
for (const auto &element: v) {
element->display();
}
}
And if you are using c++17, you could use std::variant and wrap objects of your class to std::variant:
#include <vector>
#include <iostream>
#include <variant>
class A
{
public:
void display()
{
std::cout << "Display from A\n";
}
};
class B
{
public:
void display()
{
std::cout << "Display from B\n";
}
};
int main(void)
{
using variant_t = std::variant<A, B>;
std::vector<variant_t> v;
v.emplace_back(A());
v.emplace_back(B());
for (auto &element: v) {
std::visit([](auto &x) { x.display(); }, element);
}
}
https://wandbox.org/permlink/8VBmziWzafbPZk99
A way to solve this problem is by using polymorphism. You make a superclass, which contains a pure virtual version of this function and let both A and B inherit from this class. By doing this, you can dynamic_cast any pointer of type A or B to a superclass type, on which you have defined the display function.
This will get you something like this
class C {
public:
virtual void display() = 0;
virtual ~C() = default;
};
class A : public C {
public:
void display() override {
std::cout << "A" << std::endl;
};
~A() override = default;
};
class B : public C {
public:
void display(){
std::cout << "B" << std::endl;
};
~B() override = default;
};
So you can do:
C* c = new A();
// You can put the types of C* in the same list, and iterate over this list and do on each element
c->display();
delete c;

Automatic method selection based on class instance

I have two variants of the same method. I also have an instance of a base class type, but I don't know what specific class it is an instance of. I now want to automatically select the appropriate method depending on the actual type of the object. It seems impossible though and the only solution I can come up with is to check all possibilities by casting.
There has to be a nicer solution though.
Here is my minimal example:
// Example program
#include <iostream>
#include <string>
#include <memory>
class A
{
public:
virtual void bar() const = 0;
};
class B : public A
{
public:
void bar() const
{
std::cout << "B.bar()" << std::endl;
}
};
class C : public A
{
public:
void bar() const
{
std::cout << "C.bar()" << std::endl;
}
};
class Z
{
public:
Z(int variable) : m_variable(variable) {};
void foo(std::shared_ptr<B> b)
{
std::cout << "Calling foo(B) method! " << m_variable << std::endl;
b->bar();
}
void foo(std::shared_ptr<C> c)
{
std::cout << "Calling foo(C) method!" << m_variable << std::endl;
c->bar();
}
private:
int m_variable;
};
int main()
{
std::shared_ptr<A> b(new B());
Z z(42);
//z.foo(b); // This doesn't work
// But this does
std::shared_ptr<B> b_cast = std::dynamic_pointer_cast<B>(b);
if (b_cast.get())
z.foo(b_cast);
}
http://cpp.sh/9fqne
At the moment I have to resort to dynamic_pointer_cast, but I find it kinda ugly and not very maintainable.
I also don't want to add the functionality of foo() to the classes B and C, because those are small independent data structures on which many other classes operate.
Thank you very much!
EDIT: In the original post I simplified a bit too much. The new example should clear things up.
Add a pure virtual function foo() to your base class and override in subsequent derived classes. Then have your global function foo() (which has nothing to do with member functions with the same name) accept a reference to std::shared_ptr const as a parameter:
#include <iostream>
#include <memory>
class A{
public:
virtual void foo() = 0;
};
class B : public A{
public:
void foo() override{
std::cout << "Calling foo(B) method!" << std::endl;
}
};
class C : public A{
public:
void foo() override{
std::cout << "Calling foo(C) method!" << std::endl;
}
};
void foo(const std::shared_ptr<A>& param){
param->foo();
}
int main(){
std::shared_ptr<A> b = std::make_shared<B>();
std::shared_ptr<A> c = std::make_shared<C>();
foo(b);
foo(c);
}
As BoBTFish pointed out, the visitor pattern is a potential solution for this problem:
// Example program
#include <iostream>
#include <string>
#include <memory>
class B;
class C;
class Visitor
{
public:
virtual void visit(B* b) const = 0;
virtual void visit(C* b) const = 0;
};
class A
{
public:
virtual void bar() const = 0;
virtual void accept(const Visitor* visitor) = 0;
};
class B : public A
{
public:
void bar() const
{
std::cout << "B.bar()" << std::endl;
}
void accept(const Visitor* visitor)
{
visitor->visit(this);
}
};
class C : public A
{
public:
void bar() const
{
std::cout << "C.bar()" << std::endl;
}
void accept(const Visitor* visitor)
{
visitor->visit(this);
}
};
class Z : public Visitor
{
public:
Z(int variable) : m_variable(variable) {};
void visit(B* b) const
{
std::cout << "Calling foo(B) method! " << m_variable << std::endl;
b->bar();
}
void visit(C* c) const
{
std::cout << "Calling foo(C) method!" << m_variable << std::endl;
c->bar();
}
private:
int m_variable;
};
int main()
{
std::shared_ptr<A> b(new B());
Z z(42);
b->accept(&z);
}
http://cpp.sh/2vah5
Thank you very much!

Strategy for calling functions in classes with diamond inheritance and virtual base classes

If we have diamond inheritance and use public virtual base classes, we can stop the first constructor from being called multiple times. Now, I'd like to do the same sort of thing for functions outside of the constructor. For example, the code:
#include <iostream>
struct A {
virtual void foo() {
std::cout << "A" << std::endl;
}
};
struct B : virtual public A {
virtual void foo() {
A::foo();
std::cout << "B" << std::endl;
}
};
struct C : virtual public A {
virtual void foo() {
A::foo();
std::cout << "C" << std::endl;
}
};
struct D : public B, public C{
virtual void foo() {
B::foo();
C::foo();
std::cout << "D" << std::endl;
}
};
int main() {
D d;
d.foo();
}
produces the result
A
B
A
C
D
I'd like to modify it so that it just produces
A
B
C
D
What sort of strategies or patterns accomplish this?
EDIT 1
I like Tony D's answer better than the following. Nonetheless, it's in theory possible to use constructors of another class in order to define the proper hierarchy of functions. Specifically
#include <iostream>
struct A;
struct B;
struct C;
struct D;
namespace foo {
struct A {
A(::A* self);
};
struct B : virtual public A {
B(::B* self);
};
struct C : virtual public A {
C(::C* self);
};
struct D : public B, public C{
D(::D* self);
};
}
struct A {
private:
friend class foo::A;
friend class foo::B;
friend class foo::C;
friend class foo::D;
int data;
public:
A() : data(0) {}
virtual void foo() {
(foo::A(this));
}
void printme() {
std::cout << data << std::endl;
}
};
struct B : virtual public A {
virtual void foo() {
(foo::B(this));
}
};
struct C : virtual public A {
virtual void foo() {
(foo::C(this));
}
};
struct D : public B, public C{
virtual void foo() {
(foo::D(this));
}
};
foo::A::A(::A* self) {
self->data+=1;
std::cout << "A" << std::endl;
}
foo::B::B(::B* self) : A(self) {
self->data+=2;
std::cout << "B" << std::endl;
}
foo::C::C(::C* self) : A(self) {
self->data+=4;
std::cout << "C" << std::endl;
}
foo::D::D(::D* self) : A(self), B(self), C(self) {
self->data+=8;
std::cout << "D" << std::endl;
}
int main() {
D d;
d.foo();
d.printme();
}
Basically, the classes inside of the namespace foo do the computation for the function named foo. This seems a little verbose, so perhaps there's a better way to do it.
EDIT 2
Thanks again to Tony D for clarifying the above example. Yes, essentially what the above does is create temporary variables that adhere to the virtual base designation. In this way, we can use the constructor in order to prevent redundant computations. The extra cruft was to try and show how to get access to access to private members that may have been buried in the base class. Thinking about it a little bit more, there's another way to do this, which may or may not be cleaner depending on the application. I'll leave it here for reference. As with the last example, the weakness is that we're essentially required to wire the the inheritance again, by hand.
#include <iostream>
struct A {
protected:
int data;
public:
A() : data(0) {}
struct foo{
foo(A & self) {
self.data+=1;
std::cout << "A" << std::endl;
}
};
void printme() {
std::cout << data << std::endl;
}
};
struct B : virtual public A {
struct foo : virtual public A::foo {
foo(B & self) : A::foo(self) {
self.data+=2;
std::cout << "B" << std::endl;
}
};
};
struct C : virtual public A {
struct foo : virtual public A::foo {
foo(C & self) : A::foo(self) {
self.data+=4;
std::cout << "C" << std::endl;
}
};
};
struct D : public B, public C{
struct foo : public B::foo, public C::foo {
foo(D & self) : A::foo(self) , B::foo(self), C::foo(self) {
self.data+=8;
std::cout << "D" << std::endl;
}
};
};
int main() {
D d;
(D::foo(d));
d.printme();
}
Essentially, the call (D::foo(d)) creates a temporary who's constructor does the actions we desire. We pass in the object d by hand in order to access to the memory. Since the classes foo are inside of the classes A..D, this gives us access to the protected members.
Just an implementation of polkadotcadaver's idea. Here, Limiter is designed to be a reusable mechanism for this, and the virtual base class should have a member of that type. The controlled base-class function uses bool Limiter::do_next() to ask whether it should run "as usual" or return immediately, while the derived classes calling the base-class function get a scope-guard object from the limiter that takes ownership if not already claimed, and releases any ownership it had on destruction.
#include <iostream>
class Limiter
{
public:
Limiter() : state_(Unlimited) { }
class Scope
{
public:
Scope(Limiter& l)
: p_(l.state_ == Unlimited ? &l : NULL)
{ if (p_) p_->state_ = Do_Next; }
~Scope() { if (p_) p_->state_ = Unlimited; }
private:
Limiter* p_;
};
Scope get() { return Scope(*this); }
bool do_next()
{
if (state_ == Do_Next) { state_ = Suspended; return true; }
return state_ != Suspended;
}
private:
enum State { Unlimited, Do_Next, Suspended } state_;
};
struct A {
Limiter limiter_;
virtual void foo() {
if (limiter_.do_next())
std::cout << "A" << std::endl;
}
};
struct B : virtual public A {
virtual void foo() {
Limiter::Scope ls = A::limiter_.get();
A::foo();
std::cout << "B" << std::endl;
}
};
struct C : virtual public A {
virtual void foo() {
Limiter::Scope ls = A::limiter_.get();
A::foo();
std::cout << "C" << std::endl;
}
};
struct D : public B, public C{
virtual void foo() {
Limiter::Scope ls = A::limiter_.get();
B::foo();
C::foo();
std::cout << "D" << std::endl;
}
};
int main() {
D d;
d.foo();
}
Discussion of technique edited into your question
Took me a while to work out what you were doing in your code ;-P - so for the sake of discussion I'll post what I boiled it down to:
#include <iostream>
namespace foo {
struct A {
A() { std::cout << "A\n"; }
};
struct B : virtual public A {
B() { std::cout << "B\n"; }
};
struct C : virtual public A {
C() { std::cout << "C\n"; }
};
struct D : public B, public C{
D() { std::cout << "D\n"; }
};
}
struct A { virtual void foo() { foo::A(); } };
struct B : virtual public A { void foo() { foo::B(); } };
struct C : virtual public A { void foo() { foo::C(); } };
struct D : public B, public C { void foo() { foo::D(); } };
int main() {
D d;
d.foo();
}
For others' sake - this works by having the A..D::foo() functions create temporary objects of types foo::A..D, the constructors for which honour the virtual base designation so foo::A::A() is only called once.
As a general solution, an issue with this is that you have to manually synchronise the foo:: structures, so there's redundancy and fragility. It's clever though!

Can i call VFunc from outside of the object?

I like the results of this code but i was curious, is it possible to call B::VFunc() from main()? I know writing B::VFunc(); inside of C will call it but is it possible to call the function from outside of the object?
http://ideone.com/Dg8aa
#include <cstdio>
class I { public: virtual void VFunc()=0; };
class B : public I { public: void VFunc() { printf("B\n"); } };
class C : public B { public: void VFunc() { printf("C\n"); } };
int main(){
C v;
B&i = v;
i.VFunc();
}
output:
C
This will do it:
#include <cstdio>
class I { public: virtual void VFunc()=0; };
class B : public I { public: void VFunc() { printf("B\n"); } };
class C : public B { public: void VFunc() { printf("C\n"); } };
int main(){
C v;
B&i = v;
i.B::VFunc();
}
Example: http://ideone.com/MfyYJ
You can resort to slicing:
C v;
B i = (B)v;
http://ideone.com/YVI2T
The dynamic type of v is lost, so B::VFunc is called.