C++ - Decimal to binary converting - c++

I wrote a 'simple' (it took me 30 minutes) program that converts decimal number to binary. I am SURE that there's a lot simpler way so can you show me?
Here's the code:
#include <iostream>
#include <stdlib.h>
using namespace std;
int a1, a2, remainder;
int tab = 0;
int maxtab = 0;
int table[0];
int main()
{
system("clear");
cout << "Enter a decimal number: ";
cin >> a1;
a2 = a1; //we need our number for later on so we save it in another variable
while (a1!=0) //dividing by two until we hit 0
{
remainder = a1%2; //getting a remainder - decimal number(1 or 0)
a1 = a1/2; //dividing our number by two
maxtab++; //+1 to max elements of the table
}
maxtab--; //-1 to max elements of the table (when dividing finishes it adds 1 additional elemnt that we don't want and it's equal to 0)
a1 = a2; //we must do calculations one more time so we're gatting back our original number
table[0] = table[maxtab]; //we set the number of elements in our table to maxtab (we don't get 10's of 0's)
while (a1!=0) //same calculations 2nd time but adding every 1 or 0 (remainder) to separate element in table
{
remainder = a1%2; //getting a remainder
a1 = a1/2; //dividing by 2
table[tab] = remainder; //adding 0 or 1 to an element
tab++; //tab (element count) increases by 1 so next remainder is saved in another element
}
tab--; //same as with maxtab--
cout << "Your binary number: ";
while (tab>=0) //until we get to the 0 (1st) element of the table
{
cout << table[tab] << " "; //write the value of an element (0 or 1)
tab--; //decreasing by 1 so we show 0's and 1's FROM THE BACK (correct way)
}
cout << endl;
return 0;
}
By the way it's complicated but I tried my best.
edit - Here is the solution I ended up using:
std::string toBinary(int n)
{
std::string r;
while(n!=0) {r=(n%2==0 ?"0":"1")+r; n/=2;}
return r;
}

std::bitset has a .to_string() method that returns a std::string holding a text representation in binary, with leading-zero padding.
Choose the width of the bitset as needed for your data, e.g. std::bitset<32> to get 32-character strings from 32-bit integers.
#include <iostream>
#include <bitset>
int main()
{
std::string binary = std::bitset<8>(128).to_string(); //to binary
std::cout<<binary<<"\n";
unsigned long decimal = std::bitset<8>(binary).to_ulong();
std::cout<<decimal<<"\n";
return 0;
}
EDIT: Please do not edit my answer for Octal and Hexadecimal. The OP specifically asked for Decimal To Binary.

The following is a recursive function which takes a positive integer and prints its binary digits to the console.
Alex suggested, for efficiency, you may want to remove printf() and store the result in memory... depending on storage method result may be reversed.
/**
* Takes a unsigned integer, converts it into binary and prints it to the console.
* #param n the number to convert and print
*/
void convertToBinary(unsigned int n)
{
if (n / 2 != 0) {
convertToBinary(n / 2);
}
printf("%d", n % 2);
}
Credits to UoA ENGGEN 131
*Note: The benefit of using an unsigned int is that it can't be negative.

You can use std::bitset to convert a number to its binary format.
Use the following code snippet:
std::string binary = std::bitset<8>(n).to_string();
I found this on stackoverflow itself. I am attaching the link.

A pretty straight forward solution to print binary:
#include <iostream>
using namespace std;
int main()
{
int num,arr[64];
cin>>num;
int i=0,r;
while(num!=0)
{
r = num%2;
arr[i++] = r;
num /= 2;
}
for(int j=i-1;j>=0;j--){
cout<<arr[j];
}
}

Non recursive solution:
#include <iostream>
#include<string>
std::string toBinary(int n)
{
std::string r;
while(n!=0) {r=(n%2==0 ?"0":"1")+r; n/=2;}
return r;
}
int main()
{
std::string i= toBinary(10);
std::cout<<i;
}
Recursive solution:
#include <iostream>
#include<string>
std::string r="";
std::string toBinary(int n)
{
r=(n%2==0 ?"0":"1")+r;
if (n / 2 != 0) {
toBinary(n / 2);
}
return r;
}
int main()
{
std::string i=toBinary(10);
std::cout<<i;
}

An int variable is not in decimal, it's in binary. What you're looking for is a binary string representation of the number, which you can get by applying a mask that filters individual bits, and then printing them:
for( int i = sizeof(value)*CHAR_BIT-1; i>=0; --i)
cout << value & (1 << i) ? '1' : '0';
That's the solution if your question is algorithmic. If not, you should use the std::bitset class to handle this for you:
bitset< sizeof(value)*CHAR_BIT > bits( value );
cout << bits.to_string();

Here are two approaches. The one is similar to your approach
#include <iostream>
#include <string>
#include <limits>
#include <algorithm>
int main()
{
while ( true )
{
std::cout << "Enter a non-negative number (0-exit): ";
unsigned long long x = 0;
std::cin >> x;
if ( !x ) break;
const unsigned long long base = 2;
std::string s;
s.reserve( std::numeric_limits<unsigned long long>::digits );
do { s.push_back( x % base + '0' ); } while ( x /= base );
std::cout << std::string( s.rbegin(), s.rend() ) << std::endl;
}
}
and the other uses std::bitset as others suggested.
#include <iostream>
#include <string>
#include <bitset>
#include <limits>
int main()
{
while ( true )
{
std::cout << "Enter a non-negative number (0-exit): ";
unsigned long long x = 0;
std::cin >> x;
if ( !x ) break;
std::string s =
std::bitset<std::numeric_limits<unsigned long long>::digits>( x ).to_string();
std::string::size_type n = s.find( '1' );
std::cout << s.substr( n ) << std::endl;
}
}

The conversion from natural number to a binary string:
string toBinary(int n) {
if (n==0) return "0";
else if (n==1) return "1";
else if (n%2 == 0) return toBinary(n/2) + "0";
else if (n%2 != 0) return toBinary(n/2) + "1";
}

For this , In C++ you can use itoa() function .This function convert any Decimal integer to binary, decimal , hexadecimal and octal number.
#include<bits/stdc++.h>
using namespace std;
int main(){
int a;
char res[1000];
cin>>a;
itoa(a,res,10);
cout<<"Decimal- "<<res<<endl;
itoa(a,res,2);
cout<<"Binary- "<<res<<endl;
itoa(a,res,16);
cout<<"Hexadecimal- "<<res<<endl;
itoa(a,res,8);
cout<<"Octal- "<<res<<endl;return 0;
}
However, it is only supported by specific compilers.
You can see also: itoa - C++ Reference

Here is modern variant that can be used for ints of different sizes.
#include <type_traits>
#include <bitset>
template<typename T>
std::enable_if_t<std::is_integral_v<T>,std::string>
encode_binary(T i){
return std::bitset<sizeof(T) * 8>(i).to_string();
}

Your solution needs a modification. The final string should be reversed before returning:
std::reverse(r.begin(), r.end());
return r;

DECIMAL TO BINARY NO ARRAYS USED *made by Oya:
I'm still a beginner, so this code will only use loops and variables xD...
Hope you like it. This can probably be made simpler than it is...
#include <iostream>
#include <cmath>
#include <cstdlib>
using namespace std;
int main()
{
int i;
int expoentes; //the sequence > pow(2,i) or 2^i
int decimal;
int extra; //this will be used to add some 0s between the 1s
int x = 1;
cout << "\nThis program converts natural numbers into binary code\nPlease enter a Natural number:";
cout << "\n\nWARNING: Only works until ~1.073 millions\n";
cout << " To exit, enter a negative number\n\n";
while(decimal >= 0){
cout << "\n----- // -----\n\n";
cin >> decimal;
cout << "\n";
if(decimal == 0){
cout << "0";
}
while(decimal >= 1){
i = 0;
expoentes = 1;
while(decimal >= expoentes){
i++;
expoentes = pow(2,i);
}
x = 1;
cout << "1";
decimal -= pow(2,i-x);
extra = pow(2,i-1-x);
while(decimal < extra){
cout << "0";
x++;
extra = pow(2,i-1-x);
}
}
}
return 0;
}

here a simple converter by using std::string as container. it allows a negative value.
#include <iostream>
#include <string>
#include <limits>
int main()
{
int x = -14;
int n = std::numeric_limits<int>::digits - 1;
std::string s;
s.reserve(n + 1);
do
s.push_back(((x >> n) & 1) + '0');
while(--n > -1);
std::cout << s << '\n';
}

This is a more simple program than ever
//Program to convert Decimal into Binary
#include<iostream>
using namespace std;
int main()
{
long int dec;
int rem,i,j,bin[100],count=-1;
again:
cout<<"ENTER THE DECIMAL NUMBER:- ";
cin>>dec;//input of Decimal
if(dec<0)
{
cout<<"PLEASE ENTER A POSITIVE DECIMAL";
goto again;
}
else
{
cout<<"\nIT's BINARY FORM IS:- ";
for(i=0;dec!=0;i++)//making array of binary, but reversed
{
rem=dec%2;
bin[i]=rem;
dec=dec/2;
count++;
}
for(j=count;j>=0;j--)//reversed binary is printed in correct order
{
cout<<bin[j];
}
}
return 0;
}

There is in fact a very simple way to do so. What we do is using a recursive function which is given the number (int) in the parameter. It is pretty easy to understand. You can add other conditions/variations too. Here is the code:
int binary(int num)
{
int rem;
if (num <= 1)
{
cout << num;
return num;
}
rem = num % 2;
binary(num / 2);
cout << rem;
return rem;
}

// function to convert decimal to binary
void decToBinary(int n)
{
// array to store binary number
int binaryNum[1000];
// counter for binary array
int i = 0;
while (n > 0) {
// storing remainder in binary array
binaryNum[i] = n % 2;
n = n / 2;
i++;
}
// printing binary array in reverse order
for (int j = i - 1; j >= 0; j--)
cout << binaryNum[j];
}
refer :-
https://www.geeksforgeeks.org/program-decimal-binary-conversion/
or
using function :-
#include<bits/stdc++.h>
using namespace std;
int main()
{
int n;cin>>n;
cout<<bitset<8>(n).to_string()<<endl;
}
or
using left shift
#include<bits/stdc++.h>
using namespace std;
int main()
{
// here n is the number of bit representation we want
int n;cin>>n;
// num is a number whose binary representation we want
int num;
cin>>num;
for(int i=n-1;i>=0;i--)
{
if( num & ( 1 << i ) ) cout<<1;
else cout<<0;
}
}

#include <iostream>
#include <bitset>
#define bits(x) (std::string( \
std::bitset<8>(x).to_string<char,std::string::traits_type, std::string::allocator_type>() ).c_str() )
int main() {
std::cout << bits( -86 >> 1 ) << ": " << (-86 >> 1) << std::endl;
return 0;
}

Okay.. I might be a bit new to C++, but I feel the above examples don't quite get the job done right.
Here's my take on this situation.
char* DecimalToBinary(unsigned __int64 value, int bit_precision)
{
int length = (bit_precision + 7) >> 3 << 3;
static char* binary = new char[1 + length];
int begin = length - bit_precision;
unsigned __int64 bit_value = 1;
for (int n = length; --n >= begin; )
{
binary[n] = 48 | ((value & bit_value) == bit_value);
bit_value <<= 1;
}
for (int n = begin; --n >= 0; )
binary[n] = 48;
binary[length] = 0;
return binary;
}
#value = The Value we are checking.
#bit_precision = The highest left most bit to check for.
#Length = The Maximum Byte Block Size. E.g. 7 = 1 Byte and 9 = 2 Byte, but we represent this in form of bits so 1 Byte = 8 Bits.
#binary = just some dumb name I gave to call the array of chars we are setting. We set this to static so it won't be recreated with every call. For simply getting a result and display it then this works good, but if let's say you wanted to display multiple results on a UI they would all show up as the last result. This can be fixed by removing static, but make sure you delete [] the results when you are done with it.
#begin = This is the lowest index that we are checking. Everything beyond this point is ignored. Or as shown in 2nd loop set to 0.
#first loop - Here we set the value to 48 and basically add a 0 or 1 to 48 based on the bool value of (value & bit_value) == bit_value. If this is true the char is set to 49. If this is false the char is set to 48. Then we shift the bit_value or basically multiply it by 2.
#second loop - Here we set all the indexes we ignored to 48 or '0'.
SOME EXAMPLE OUTPUTS!!!
int main()
{
int val = -1;
std::cout << DecimalToBinary(val, 1) << '\n';
std::cout << DecimalToBinary(val, 3) << '\n';
std::cout << DecimalToBinary(val, 7) << '\n';
std::cout << DecimalToBinary(val, 33) << '\n';
std::cout << DecimalToBinary(val, 64) << '\n';
std::cout << "\nPress any key to continue. . .";
std::cin.ignore();
return 0;
}
00000001 //Value = 2^1 - 1
00000111 //Value = 2^3 - 1.
01111111 //Value = 2^7 - 1.
0000000111111111111111111111111111111111 //Value = 2^33 - 1.
1111111111111111111111111111111111111111111111111111111111111111 //Value = 2^64 - 1.
SPEED TESTS
Original Question's Answer: "Method: toBinary(int);"
Executions: 10,000 , Total Time (Milli): 4701.15 , Average Time (Nanoseconds): 470114
My Version: "Method: DecimalToBinary(int, int);"
//Using 64 Bit Precision.
Executions: 10,000,000 , Total Time (Milli): 3386 , Average Time (Nanoseconds): 338
//Using 1 Bit Precision.
Executions: 10,000,000, Total Time (Milli): 634, Average Time (Nanoseconds): 63

Below is simple C code that converts binary to decimal and back again. I wrote it long ago for a project in which the target was an embedded processor and the development tools had a stdlib that was way too big for the firmware ROM.
This is generic C code that does not use any library, nor does it use division or the remainder (%) operator (which is slow on some embedded processors), nor does it use any floating point, nor does it use any table lookup nor emulate any BCD arithmetic. What it does make use of is the type long long, more specifically unsigned long long (or uint64_t), so if your embedded processor (and the C compiler that goes with it) cannot do 64-bit integer arithmetic, this code is not for your application. Otherwise, I think this is production quality C code (maybe after changing long to int32_t and unsigned long long to uint64_t). I have run this overnight to test it for every 2³² signed integer values and there is no error in conversion in either direction.
We had a C compiler/linker that could generate executables and we needed to do what we could do without any stdlib (which was a pig). So no printf() nor scanf(). Not even an sprintf() nor sscanf(). But we still had a user interface and had to convert base-10 numbers into binary and back. (We also made up our own malloc()-like utility also and our own transcendental math functions too.)
So this was how I did it (the main program and calls to stdlib were there for testing this thing on my mac, not for the embedded code). Also, because some older dev systems don't recognize "int64_t" and "uint64_t" and similar types, the types long long and unsigned long long are used and assumed to be the same. And long is assumed to be 32 bits. I guess I could have typedefed it.
// returns an error code, 0 if no error,
// -1 if too big, -2 for other formatting errors
int decimal_to_binary(char *dec, long *bin)
{
int i = 0;
int past_leading_space = 0;
while (i <= 64 && !past_leading_space) // first get past leading spaces
{
if (dec[i] == ' ')
{
i++;
}
else
{
past_leading_space = 1;
}
}
if (!past_leading_space)
{
return -2; // 64 leading spaces does not a number make
}
// at this point the only legitimate remaining
// chars are decimal digits or a leading plus or minus sign
int negative = 0;
if (dec[i] == '-')
{
negative = 1;
i++;
}
else if (dec[i] == '+')
{
i++; // do nothing but go on to next char
}
// now the only legitimate chars are decimal digits
if (dec[i] == '\0')
{
return -2; // there needs to be at least one good
} // digit before terminating string
unsigned long abs_bin = 0;
while (i <= 64 && dec[i] != '\0')
{
if ( dec[i] >= '0' && dec[i] <= '9' )
{
if (abs_bin > 214748364)
{
return -1; // this is going to be too big
}
abs_bin *= 10; // previous value gets bumped to the left one digit...
abs_bin += (unsigned long)(dec[i] - '0'); // ... and a new digit appended to the right
i++;
}
else
{
return -2; // not a legit digit in text string
}
}
if (dec[i] != '\0')
{
return -2; // not terminated string in 64 chars
}
if (negative)
{
if (abs_bin > 2147483648)
{
return -1; // too big
}
*bin = -(long)abs_bin;
}
else
{
if (abs_bin > 2147483647)
{
return -1; // too big
}
*bin = (long)abs_bin;
}
return 0;
}
void binary_to_decimal(char *dec, long bin)
{
unsigned long long acc; // 64-bit unsigned integer
if (bin < 0)
{
*(dec++) = '-'; // leading minus sign
bin = -bin; // make bin value positive
}
acc = 989312855LL*(unsigned long)bin; // very nearly 0.2303423488 * 2^32
acc += 0x00000000FFFFFFFFLL; // we need to round up
acc >>= 32;
acc += 57646075LL*(unsigned long)bin;
// (2^59)/(10^10) = 57646075.2303423488 = 57646075 + (989312854.979825)/(2^32)
int past_leading_zeros = 0;
for (int i=9; i>=0; i--) // maximum number of digits is 10
{
acc <<= 1;
acc += (acc<<2); // an efficient way to multiply a long long by 10
// acc *= 10;
unsigned int digit = (unsigned int)(acc >> 59); // the digit we want is in bits 59 - 62
if (digit > 0)
{
past_leading_zeros = 1;
}
if (past_leading_zeros)
{
*(dec++) = '0' + digit;
}
acc &= 0x07FFFFFFFFFFFFFFLL; // mask off this digit and go on to the next digit
}
if (!past_leading_zeros) // if all digits are zero ...
{
*(dec++) = '0'; // ... put in at least one zero digit
}
*dec = '\0'; // terminate string
}
#if 1
#include <stdlib.h>
#include <stdio.h>
int main (int argc, const char* argv[])
{
char dec[64];
long bin, result1, result2;
unsigned long num_errors;
long long long_long_bin;
num_errors = 0;
for (long_long_bin=-2147483648LL; long_long_bin<=2147483647LL; long_long_bin++)
{
bin = (long)long_long_bin;
if ((bin&0x00FFFFFFL) == 0)
{
printf("bin = %ld \n", bin); // this is to tell us that things are moving along
}
binary_to_decimal(dec, bin);
decimal_to_binary(dec, &result1);
sscanf(dec, "%ld", &result2); // decimal_to_binary() should do the same as this sscanf()
if (bin != result1 || bin != result2)
{
num_errors++;
printf("bin = %ld, result1 = %ld, result2 = %ld, num_errors = %ld, dec = %s \n",
bin, result1, result2, num_errors, dec);
}
}
printf("num_errors = %ld \n", num_errors);
return 0;
}
#else
#include <stdlib.h>
#include <stdio.h>
int main (int argc, const char* argv[])
{
char dec[64];
long bin;
printf("bin = ");
scanf("%ld", &bin);
while (bin != 0)
{
binary_to_decimal(dec, bin);
printf("dec = %s \n", dec);
printf("bin = ");
scanf("%ld", &bin);
}
return 0;
}
#endif

My way of converting decimal to binary in C++. But since we are using mod, this function will work in case of hexadecimal or octal also. You can also specify bits. This function keeps calculating the lowest significant bit and place it on the end of the string. If you are not so similar to this method than you can vist: https://www.wikihow.com/Convert-from-Decimal-to-Binary
#include <bits/stdc++.h>
using namespace std;
string itob(int bits, int n) {
int count;
char str[bits + 1]; // +1 to append NULL character.
str[bits] = '\0'; // The NULL character in a character array flags the end
// of the string, not appending it may cause problems.
count = bits - 1; // If the length of a string is n, than the index of the
// last character of the string will be n - 1. Cause the
// index is 0 based not 1 based. Try yourself.
do {
if (n % 2)
str[count] = '1';
else
str[count] = '0';
n /= 2;
count--;
} while (n > 0);
while (count > -1) {
str[count] = '0';
count--;
}
return str;
}
int main() {
cout << itob(1, 0) << endl; // 0 in 1 bit binary.
cout << itob(2, 1) << endl; // 1 in 2 bit binary.
cout << itob(3, 2) << endl; // 2 in 3 bit binary.
cout << itob(4, 4) << endl; // 4 in 4 bit binary.
cout << itob(5, 15) << endl; // 15 in 5 bit binary.
cout << itob(6, 30) << endl; // 30 in 6 bit binary.
cout << itob(7, 61) << endl; // 61 in 7 bit binary.
cout << itob(8, 127) << endl; // 127 in 8 bit binary.
return 0;
}
The Output:
0
01
010
0100
01111
011110
0111101
01111111

Since you asked for a simple way, I am sharing this answer, after 8 years
Here is the expression!
Is it not interesting when there is no if condition, and we can get 0 or 1 with just a simple expression?
Well yes, NO if, NO long division
Here is what each variable means
Note: variable is the orange highlighted ones
Number: 0-infinity (a value to be converted to binary)
binary holder: 1 / 2 / 4 / 8 / 16 / 32 / ... (Place of binary needed, just like tens, hundreds)
Result: 0 or 1
If you want to make binary holder from 1 / 2 / 4 / 8 / 16 /... to 1 / 2 / 3 / 4 / 5/...
then use this expression
The procedure is simple for the second expression
First, the number variable is always, your number needed, and its stable.
Second the binary holder variable needs to be changed ,in a for loop, by +1 for the second image, x2 for the first image
I don't know c++ a lot ,here is a js code,for your understanding
function FindBinary(Number) {
var x,i,BinaryValue = "",binaryHolder = 1;
for (i = 1; Math.pow(2, i) <= Number; i++) {}//for trimming, you can even remove this and set i to 7,see the result
for (x = 1; x <= i; x++) {
var Algorithm = ((Number - (Number % binaryHolder)) / binaryHolder) % 2;//Main algorithm
BinaryValue = Algorithm + BinaryValue;
binaryHolder += binaryHolder;
}
return BinaryValue;
}
console.log(FindBinary(17));//your number
more ever, I think language doesn't matters a lot for algorithm questions

You want to do something like:
cout << "Enter a decimal number: ";
cin >> a1;
cout << setbase(2);
cout << a1

#include "stdafx.h"
#include<iostream>
#include<vector>
#include<cmath>
using namespace std;
int main() {
// Initialize Variables
double x;
int xOct;
int xHex;
//Initialize a variable that stores the order if the numbers in binary/sexagesimal base
vector<int> rem;
//Get Demical value
cout << "Number (demical base): ";
cin >> x;
//Set the variables
xOct = x;
xHex = x;
//Get the binary value
for (int i = 0; x >= 1; i++) {
rem.push_back(abs(remainder(x, 2)));
x = floor(x / 2);
}
//Print binary value
cout << "Binary: ";
int n = rem.size();
while (n > 0) {
n--;
cout << rem[n];
} cout << endl;
//Print octal base
cout << oct << "Octal: " << xOct << endl;
//Print hexademical base
cout << hex << "Hexademical: " << xHex << endl;
system("pause");
return 0;
}

#include <iostream>
using namespace std;
int main()
{
int a,b;
cin>>a;
for(int i=31;i>=0;i--)
{
b=(a>>i)&1;
cout<<b;
}
}

HOPE YOU LIKE THIS SIMPLE CODE OF CONVERSION FROM DECIMAL TO BINARY
#include<iostream>
using namespace std;
int main()
{
int input,rem,res,count=0,i=0;
cout<<"Input number: ";
cin>>input;`enter code here`
int num=input;
while(input > 0)
{
input=input/2;
count++;
}
int arr[count];
while(num > 0)
{
arr[i]=num%2;
num=num/2;
i++;
}
for(int i=count-1 ; i>=0 ; i--)
{
cout<<" " << arr[i]<<" ";
}
return 0;
}

#include <iostream>
// x is our number to test
// pow is a power of 2 (e.g. 128, 64, 32, etc...)
int printandDecrementBit(int x, int pow)
{
// Test whether our x is greater than some power of 2 and print the bit
if (x >= pow)
{
std::cout << "1";
// If x is greater than our power of 2, subtract the power of 2
return x - pow;
}
else
{
std::cout << "0";
return x;
}
}
int main()
{
std::cout << "Enter an integer between 0 and 255: ";
int x;
std::cin >> x;
x = printandDecrementBit(x, 128);
x = printandDecrementBit(x, 64);
x = printandDecrementBit(x, 32);
x = printandDecrementBit(x, 16);
std::cout << " ";
x = printandDecrementBit(x, 8);
x = printandDecrementBit(x, 4);
x = printandDecrementBit(x, 2);
x = printandDecrementBit(x, 1);
return 0;
}
this is a simple way to get the binary form of an int. credit to learncpp.com. im sure this could be used in different ways to get to the same point.

In this approach, the decimal will be converted to the respective binary number in the string formate. The string return type is chosen since it can handle more range of input values.
class Solution {
public:
string ConvertToBinary(int num)
{
vector<int> bin;
string op;
for (int i = 0; num > 0; i++)
{
bin.push_back(num % 2);
num /= 2;
}
reverse(bin.begin(), bin.end());
for (size_t i = 0; i < bin.size(); ++i)
{
op += to_string(bin[i]);
}
return op;
}
};

using bitmask and bitwise and .
string int2bin(int n){
string x;
for(int i=0;i<32;i++){
if(n&1) {x+='1';}
else {x+='0';}
n>>=1;
}
reverse(x.begin(),x.end());
return x;
}

You Could use std::bitset:
#include <bits/stdc++.h>
int main()
{
std::string binary = std::bitset<(int)ceil(log2(10))>(10).to_string(); // decimal number is 10
std::cout << binary << std::endl; // 1010
return 0;
}

SOLUTION 1
Shortest function. Recursive. No headers required.
size_t bin(int i) {return i<2?i:10*bin(i/2)+i%2;}
The simplicity of this function comes at the cost of some limitations. It returns correct values only for arguments between 0 and 1048575 (2 to the power of how many digits the largest unsigned int has, -1). I used the following program to test it:
#include <iostream> // std::cout, std::cin
#include <climits> // ULLONG_MAX
#include <math.h> // pow()
int main()
{
size_t bin(int);
int digits(size_t);
int i = digits(ULLONG_MAX); // maximum digits of the return value of bin()
int iMax = pow(2.0,i)-1; // maximum value of a valid argument of bin()
while(true) {
std::cout << "Decimal: ";
std::cin >> i;
if (i<0 or i>iMax) {
std::cout << "\nB Integer out of range, 12:1";
return 0;
}
std::cout << "Binary: " << bin(i) << "\n\n";
}
return 0;
}
size_t bin(int i) {return i<2?i:10*bin(i/2)+i%2;}
int digits(size_t i) {return i<10?1:digits(i/10)+1;}
SOLUTION 2
Short. Recursive. Some headers required.
std::string bin(size_t i){return !i?"0":i==1?"1":bin(i/2)+(i%2?'1':'0');}
This function can return the binary representation of the largest integers as a string. I used the following program to test it:
#include <string> // std::string
#include <iostream> // std::cout, std::cin
int main()
{
std::string s, bin(size_t);
size_t i, x;
std::cout << "Enter exit code: "; // Used to exit the program.
std::cin >> x;
while(i!=x) {
std::cout << "\nDecimal: ";
std::cin >> i;
std::cout << "Binary: " << bin(i) << "\n";
}
return 0;
}
std::string bin(size_t i){return !i?"0":i==1?"1":bin(i/2)+(i%2?'1':'0');}

Related

Code to convert decimal to hexadecimal without using arrays

I have this code here and I'm trying to do decimal to hexadecimal conversion without using arrays. It is working pretty much but it gives me wrong answers for values greater than 1000. What am I doing wrong? are there any counter solutions? kindly can anyone give suggestions how to improve this code.
for(int i = num; i > 0; i = i/16)
{
temp = i % 16;
(temp < 10) ? temp = temp + 48 : temp = temp + 55;
num = num * 100 + temp;
}
cout<<"Hexadecimal = ";
for(int j = num; j > 0; j = j/100)
{
ch = j % 100;
cout << ch;
}
There's a couple of errors in the code. But elements of the approach are clear.
This line sort of works:
(temp < 10) ? temp = temp + 48 : temp = temp + 55;
But is confusing because it's using 48 and 55 as magic numbers!
It also may lead to overflow.
It's repacking hex digits as decimal character values.
It's also unconventional to use ?: in that way.
Half the trick of radix output is that each digit is n%r followed by n/r but the digits come out 'backwards' for conventional left-right output.
This code reverses the hex digits into another variable then reads them out.
So it avoids any overflow risks.
It works with an unsigned value for clarity and a lack of any specification as how to handle negative values.
#include <iostream>
void hex(unsigned num){
unsigned val=num;
const unsigned radix=16;
unsigned temp=0;
while(val!=0){
temp=temp*radix+val%radix;
val/=radix;
}
do{
unsigned digit=temp%16;
char c=digit<10?'0'+digit:'A'+(digit-10);
std::cout << c;
temp/=16;
}while(temp!=0);
std::cout << '\n';
}
int main(void) {
hex(0x23U);
hex(0x0U);
hex(0x7U);
hex(0xABCDU);
return 0;
}
Expected Output:
23
0
8
ABCD
Arguably it's more obvious what is going on if the middle lines of the first loop are:
while(val!=0){
temp=(temp<<4)+(val&0b1111);
val=val>>4;
}
That exposes that we're building temp as blocks of 4 bits of val in reverse order.
So the value 0x89AB with be 0xBA98 and is then output in reverse.
I've not done that because bitwise operations may not be familiar.
It's a double reverse!
The mapping into characters is done at output to avoid overflow issues.
Using character literals like 0 instead of integer literals like 44 is more readable and makes the intention clearer.
So here's a single loop version of the solution to the problem which should work for any sized integer:-
#include <iostream>
#include <string>
using namespace std;
void main(int argc, char *argv[1])
{
try
{
unsigned
value = argc == 2 ? stoi(argv[1]) : 64;
for (unsigned i = numeric_limits<unsigned>::digits; i > 0; i -= 4)
{
unsigned
digit = (value >> (i - 4)) & 0xf;
cout << (char)((digit < 10) ? digit + 48 : digit + 55);
}
cout << endl;
}
catch (exception e)
{
cout << e.what() << endl;
}
}
There is a mistake in your code, in the second loop you should exit when j > original num, or set the cumulative sum with non-zero value, I also changed the cumulative num to be long int, rest should be fine.
void tohex(int value){
long int num = 1;
char ch = 0;
int temp = 0;
for(int i = value; i > 0; i = i/16)
{
temp = i % 16;
(temp < 10) ? temp = temp + 48 : temp = temp + 55;
num = num * 100 + temp;
}
cout<<"Hexadecimal = ";
for(long int j = num; j > 99; j = j/100)
{
ch = j % 100;
cout << ch;
}
cout << endl;
}
If this is a homework assignment, it is probably related to the chapter on Recursivity. See a solution below. To understand it, you need to know
what a lookup table is
what recursion is
how to convert a number from one base to another iteratively
basic io
void hex_out(unsigned n)
{
static const char* t = "0123456789abcdef"; // lookup table
if (!n) // recursion break condition
return;
hex_out(n / 16);
std::cout << t[n % 16];
}
Note that there is no output for zero. This can be solved simply by calling the recursive function from a second function.
You can also add a second parameter, base, so that you can call the function this way:
b_out(123, 10); // decimal
b_out(123, 2); // binary
b_out(123, 8); // octal

cpp powers of 2 algorothm

so i want this code to be able to count the exact number of powers of 2 but it won't stop until i put odd number in console , any fixes to my code? Thanks a lot in advance
enter code here :
#include <iostream>
using namespace std;
int main()
{
int a;
int counter=0;
cin >> a;
while(true){
cin >> a;
if(a%2==1)
break;
a/=2;
counter=counter+1;
}
cout << counter;
return 0;
}
You were missing some things:
you were not taking inputs as you want.
your counting procedure was wrong.
Soln:
If a number n is a 2's power, then the and operation of n and
n - 1 must be 0. And in all other cases, the result is not 0. Say,
n = 4 (in binary it is 100)
n - 1 = 3 (in binary it is 11)
n & (n - 1) = 0
100 (4)
& 011 (3)
-----------
000 (0)
use this technique
#include <iostream>
using namespace std;
int main()
{
int tests, a;
int counter = 0;
cin >> tests;
for (int i = 0; i < tests; i++)
{
cin >> a;
if ((a & (a - 1)) == 0)
counter = counter + 1;
}
cout << counter;
return 0;
}
If you want to evaluate all inputs power of two, I would use a double as input in order to get those exponent less than zero (0.5, 0.25, etc.).
With this aim, due to the fact that doubles are expressed in double-precision floating-point format (as defined in IEEE 754-2008 standard), you only should check that the normalized fraction got after descomposing the number with std::frexp (https://en.cppreference.com/w/cpp/numeric/math/frexp) is equal to 0.5:
#include <cmath>
bool isPowerOfTwo(double a)
{
int exp;
return std::frexp(a, &exp) == 0.5;
}
Then the code:
#include <cmath>
#include <iostream>
bool isPowerOfTwo(double a)
{
int exp;
return std::frexp(a, &exp) == 0.5;
}
int main() {
unsigned counter = 0;
while (true) {
double input;
std::cin >> input;
if (!isPowerOfTwo(input)) {
break;
}
counter++;
}
std::cout << "Number of inputs power of 2: " << counter << std::endl;
return 0;
}

C++ check If a hexadecimal consists of ABCDEF1 OR 0

I have written a program below that converts a string to an int and then converts the decimal number to hexadecimal. I'm struggling to check if the hexadecimal consists only of these characters A, B, C, D, E, F, 1, 0. If so set a flag to true or false.
#include<iostream>
#include <stdlib.h>
#include <string>
#include <sstream>
string solution(string &S){
int n = stoi(S);
int answer;
cout << "stoi(\"" << S << "\") is "
<< n << '\n';
//decToHexa(myint);
// char array to store hexadecimal number
string hexaDeciNum[100];
// counter for hexadecimal number array
int i = 0;
while(n!=0)
{
// temporary variable to store remainder
int temp = 0;
// storing remainder in temp variable.
temp = n % 16;
// check if temp < 10
if(temp < 10)
{
hexaDeciNum[i] = temp + 48;
i++;
}
else
{
hexaDeciNum[i] = temp + 55;
i++;
}
n = n/16;
}
// printing hexadecimal number array in reverse order
for(int j=i-1; j>=0; j--){
cout << hexaDeciNum[j] << "\n";
return "";
}
int main() {
string word = "300";
cout << solution(word);
return 0;
}
OK, it is not the exact answer to what you are asking for, but it is a valuable alternative approach for the entire problem of conversion:
char letter(unsigned int digit)
{
return "0123456789abcdefg"[digit];
// alternatively upper case letters, if you prefer...
}
Now you don't have to differenciate... You can even use this approach for inverse conversion:
int digit(char letter)
{
int d = -1; // invalid letter...
char const* letters = "0123456789abcdefABCDEF";
char* l = strchr(letters, letter);
if(l)
{
d = l - letters;
if(d >= 16)
d -= 6;
}
// alternatively upper case letters, if you prefer...
}
Another advantage: This works even on these strange character sets where digits and letters are not necessarily grouped into ranges (e. g. EBCDIC).

reverse the position of integer digits?

i have to reverse the position of integer like this
input = 12345
output = 54321
i made this but it gives wrong output e.g 5432
#include <iostream>
using namespace std;
int main(){
int num,i=10;
cin>>num;
do{
cout<< (num%i)/ (i/10);
i *=10;
}while(num/i!=0);
return 0;
}
Here is a solution
int num = 12345;
int new_num = 0;
while(num > 0)
{
new_num = new_num*10 + (num % 10);
num = num/10;
}
cout << new_num << endl;
Your loop terminates too early. Change
}while(num/i!=0);
to
}while((num*10)/i!=0);
to get one more iteration, and your code will work.
If you try it once as an example, you'll see your error.
Input: 12
first loop:
out: 12%10 = 2 / 1 = 2
i = 100
test: 12/100 = 0 (as an integer)
aborts one too early.
One solution could be testing
(num % i) != num
Just as one of many solutions.
Well, remember that integer division always rounds down (or is it toward zero?) in C. So what would num / i be if num < 10 and i = 10?
replace your while statement
with
while (i<10*num)
If I were doing it, I'd (probably) start by creating the new value as an int, and then print out that value. I think this should simplify the code a bit. As pseudocode, it'd look something like:
output = 0;
while (input !=0)
output *= 10
output += input % 10
input /= 10
}
print output
The other obvious possibility would be to convert to a string first, then print the string out in reverse:
std::stringstream buffer;
buffer << input;
cout << std::string(buffer.str().rbegin(), buffer.str().rend());
int _tmain(int argc, _TCHAR* argv[])
{
int x = 1234;
int out = 0;
while (x != 0)
{
int Res = x % (10 );
x /= 10;
out *= 10;
out += Res;
}
cout << out;
}
This is a coding assignment for my college course. This assignment comes just after a discussion on Operator Overloading in C++. Although it doesn't make it clear if Overloading should be used for the assignment or not.
The following code works for a two-digit number only.
#include<iostream>
using namespace std;
int main() {
int n;
cin >> n;
cout << (n%10) << (n/10);
return 0;
}
int a,b,c,d=0;
cout<<"plz enter the number"<<endl;
cin>>a;
b=a;
do
{
c=a%10;
d=(d*10)+c;
a=a/10;
}
while(a!=0);
cout<<"The reverse of the number"<<d<<endl;
if(b==d)
{
cout<<"The entered number is palindom"<<endl;
}
else
{
cout<<"The entered number is not palindom"<<endl;
}
}
template <typename T>
T reverse(T n, size_t nBits = sizeof(T) * 8)
{
T reverse = 0;
auto mask = 1;
for (auto i = 0; i < nBits; ++i)
{
if (n & mask)
{
reverse |= (1 << (nBits - i - 1));
}
mask <<= 1;
}
return reverse;
}
This will reverse bits in any signed or unsigned integer (short, byte, int, long ...). You can provide additional parameter nBits to frame the bits while reversing.
i. e.
7 in 8 bit = 00000111 -> 11100000
7 in 4 bit = 0111 -> 1110
public class TestDS {
public static void main(String[] args) {
System.out.println(recursiveReverse(234));
System.out.println(recursiveReverse(234 ,0));
}
public static int reverse(int number){
int reversedNumber = 0;
int temp = 0;
while(number > 0){
//use modulus operator to strip off the last digit
temp = number%10;
//create the reversed number
reversedNumber = reversedNumber * 10 + temp;
number = number/10;
}
return reversedNumber;
}
private static int reversenumber =0;
public static int recursiveReverse(int number){
if(number <= 0){
return reversenumber;
}
reversenumber = reversenumber*10+(number%10);
number =number/10;
return recursiveReverse(number);
}
public static int recursiveReverse(int number , int reversenumber){
if(number <= 0){
return reversenumber;
}
reversenumber = reversenumber*10+(number%10);
number =number/10;
return recursiveReverse(number,reversenumber);
}
}
I have done this simply but this is applicable upto 5 digit numbers but hope it helps
#include<iostream>
using namespace std;
void main()
{
int a,b,c,d,e,f,g,h,i,j;
cin>>a;
b=a%10;
c=a/10;
d=c%10;
e=a/100;
f=e%10;
g=a/1000;
h=g%10;
i=a/10000;
j=i%10;
cout<<b<<d<<f<<h<<j;
}`

converting 128 bits from a character array to decimal without external libraries in C++ [closed]

Closed. This question needs to be more focused. It is not currently accepting answers.
Want to improve this question? Update the question so it focuses on one problem only by editing this post.
Closed 1 year ago.
Improve this question
I had to convert a the 128 bits of a character array which has size 16 (1 byte each character), into a decimal and hexadecimal, without using any other libraries than included. Converting it to hexadecimal was easy as four bits were processed each time an the result was printed for each four bits as soon as it was generated.
But when it comes to decimal. Converting it in the normal mathematical way was not possible, in which each bit is multiplied by 2 to the power the index of the bit from left.
So I thought to convert it like I did with hexadecimal by printing digit by digit. But the problem is that in decimal it is not possible as the maximum digit is 9 and it needs 4 bits to represented while 4 bits can represent decimal numbers up to 15. I tried making some mechanism to carry the additional part, but couldn't find a way to do so. And I think, that was not going to work either. I have been trying aimlessly for three days as I have no idea what to do. And couldn't even find any helpful solution on the internet.
So, I want some way to get this done.
Here is My Complete Code:
#include <iostream>
#include <cstring>
#include <cmath>
using namespace std;
const int strng = 128;
const int byts = 16;
class BariBitKari {
char bits_ar[byts];
public:
BariBitKari(char inp[strng]) {
set_bits_ar(inp);
}
void set_bits_ar(char in_ar[strng]) {
char b_ar[byts];
cout << "Binary 1: ";
for (int i=0, j=0; i<byts; i++) {
for (int k=7; k>=0; k--) {
if (in_ar[j] == '1') {
cout << '1';
b_ar[i] |= 1UL << k;
}
else if (in_ar[j] == '0') {
cout << '0';
b_ar[i] &= ~(1UL << k);
}
j++;
}
}
cout << endl;
strcpy(bits_ar, b_ar);
}
char * get_bits_ar() {
return bits_ar;
}
// Functions
void print_deci() {
char b_ar[byts];
strcpy(b_ar, get_bits_ar());
int sum = 0;
int carry = 0;
cout << "Decimal : ";
for (int i=byts-1; i >= 0; i--){
for (int j=4; j>=0; j-=4) {
char y = (b_ar[i] << j) >> 4;
// sum = 0;
for (int k=0; k <= 3; k++) {
if ((y >> k) & 1) {
sum += pow(2, k);
}
}
// sum += carry;
// if (sum > 9) {
// carry = 1;
// sum -= 10;
// }
// else {
// carry = 0;
// }
// cout << sum;
}
}
cout << endl;
}
void print_hexa() {
char b_ar[byts];
strcpy(b_ar, get_bits_ar());
char hexed;
int sum;
cout << "Hexadecimal : 0x";
for (int i=0; i < byts; i++){
for (int j=0; j<=4; j+=4) {
char y = (b_ar[i] << j) >> 4;
sum = 0;
for (int k=3; k >= 0; k--) {
if ((y >> k) & 1) {
sum += pow(2, k);
}
}
if (sum > 9) {
hexed = sum + 55;
}
else {
hexed = sum + 48;
}
cout << hexed;
}
}
cout << endl;
}
};
int main() {
char ar[strng];
for (int i=0; i<strng; i++) {
if ((i+1) % 8 == 0) {
ar[i] = '0';
}
else {
ar[i] = '1';
}
}
BariBitKari arr(ar);
arr.print_hexa();
arr.print_deci();
return 0;
}
To convert a 128-bit number into a "decimal" string, I'm going to make the assumption that the large decimal value just needs to be contained in a string and that we're only in the "positive" space. Without using a proper big number library, I'll demonstrate a way to convert any array of bytes into a decimal string. It's not the most efficient way because it continually parses, copies, and scans strings of digit characters.
We'll take advantage of the fact that any large number such as the following:
0x87654321 == 2,271,560,481
Can be converted into a series of bytes shifted in 8-bit chunks. Adding back these shifted chunks results in the original value
0x87 << 24 == 0x87000000 == 2,264,924,160
0x65 << 16 == 0x00650000 == 6,619,136
0x43 << 8 == 0x00004300 == 17,152
0x21 << 0 == 0x00000021 == 33
Sum == 0x87654321 == 2,271,560,481
So our strategy for converting a 128-bit number into a string will be to:
Convert the original 16 byte array into 16 strings - each string representing the decimal equivalent for each byte of the array
"Shift left" each string by the appropriate number of bits based on the index of the original byte in the array. Taking advantage of the fact that a left shift is equivalent of multiplying by 2.
Add all these shifted strings together
So to make this work, we introduce a function that can "Add" two strings (consisting only of digits) together:
// s1 and s2 are string consisting of digits chars only ('0'..'9')
// This function will compute the "sum" for s1 and s2 as a string
string SumStringValues(const string& s1, const string& s2)
{
string result;
string str1=s1, str2=s2;
// make str2 the bigger string
if (str1.size() > str2.size())
{
swap(str1, str2);
}
// pad zeros onto the the front of str1 so it's the same size as str2
while (str1.size() < str2.size())
{
str1 = string("0") + str1;
}
// now do the addition operation as loop on these strings
size_t len = str1.size();
bool carry = false;
while (len)
{
len--;
int d1 = str1[len] - '0';
int d2 = str2[len] - '0';
int sum = d1 + d2 + (carry ? 1 : 0);
carry = (sum > 9);
if (carry)
{
sum -= 10;
}
result.push_back('0' + sum);
}
if (carry)
{
result.push_back('1');
}
std::reverse(result.begin(), result.end());
return result;
}
Next, we need a function to do a "shift left" on a decimal string:
// s is a string of digits only (interpreted as decimal number)
// This function will "shift left" the string by N bits
// Basically "multiplying by 2" N times
string ShiftLeftString(const string& s, size_t N)
{
string result = s;
while (N > 0)
{
result = SumStringValues(result, result); // multiply by 2
N--;
}
return result;
}
Then to put it altogether to convert a byte array to a decimal string:
string MakeStringFromByteArray(unsigned char* data, size_t len)
{
string result = "0";
for (size_t i = 0; i < len; i++)
{
auto tmp = to_string((unsigned int)data[i]); // byte to decimal string
tmp = ShiftLeftString(tmp, (len - i - 1) * 8); // shift left
result = SumStringValues(result, tmp); // sum
}
return result;
}
Now let's test it out on the original 32-bit value we used above:
int main()
{
// 0x87654321
unsigned char data[4] = { 0x87,0x65,0x43,0x21 };
cout << MakeStringFromByteArray(data, 4) << endl;
return 0;
}
The resulting program will print out: 2271560481 - same as above.
Now let's try it out on a 16 byte value:
int main()
{
// 0x87654321aabbccddeeff432124681111
unsigned char data[16] = { 0x87,0x65,0x43,0x21,0xaa,0xbb,0xcc,0xdd,0xee,0xff,0x43,0x21,0x24,0x68,0x11,0x11 };
std::cout << MakeStringFromByteArray(data, sizeof(data)) << endl;
return 0;
}
The above prints: 179971563002487956319748178665913454865
And we'll use python to double-check our results:
Python 3.8.3 (tags/v3.8.3:6f8c832, May 13 2020, 22:37:02) [MSC v.1924 64 bit (AMD64)] on win32
Type "help", "copyright", "credits" or "license" for more information.
>>> int("0x87654321aabbccddeeff432124681111", 16)
179971563002487956319748178665913454865
>>>
Looks good to me.
I originally had an implementation that would do the chunking and summation in 32-bit chunks instead of 8-bit chunks. However, little-endian vs. big endian byte order issues get involved. I'll leave that potential optimization as an exercise to do another day.