C++ rotation of point in float coordinates accuracy - c++

i study OpenGL ES 2.0. But i think it's more C++ question rather then OpenGL. I'am stuck with rotation question. It is known, that rotation transformation can be applied using the following equations:
p'x = cos(theta) * (px-ox) - sin(theta) * (py-oy) + ox
p'y = sin(theta) * (px-ox) + cos(theta) * (py-oy) + oy
But it seems that when i perform this rotation operation several times the accuracy problem is occured. I guess, that the core of this problem is in uncertain results of cos function and floating point limitations. As a result i see that my rotating object is getting smaller and smaller and smaller. So:
1.) How do you think, does this issue really connected with floating point accuracy problem?
2.) If so, how can i handle this.
Suppose that float _points[] is array containing coordinates x1,y1,x2,y2...xn,yn. Then i recompute my coordinates after rotation in the following way:
/* For x */
float angle = .... ;
pair<float, float> orig_coordinates(0, 0);
for (; coors_ctr < _n_points * 2; coors_ctr += 2)
_points[coors_ctr] = cos(angle) * (_points[coors_ctr] - _orig_coordinates.first) -
sin(angle) * (_points[coors_ctr + 1] - _orig_coordinates.second) +
_orig_coordinates.first;
/* For y */
coors_ctr = 1;
for (; coors_ctr < _n_points * 2; coors_ctr += 2)
_points[coors_ctr] = sin(angle) * (_points[coors_ctr - 1] - _orig_coordinates.first) +
cos(angle) * (_points[coors_ctr] - _orig_coordinates.second) + _orig_coordinates.second;

I think the problem is that you're writing the rotated result back to the input array.
p'x = cos(theta) * (px-ox) - sin(theta) * (py-oy) + ox
p'y = sin(theta) * (p'x-ox) + cos(theta) * (py-oy) + oy
Try doing the rotation out of place, or use temporary variables and do one point (x,y) at a time.

Related

Quaternion rotation works fine with y/z rotation but gets messed up when I add x rotation

So I've been learning about quaternions recently and decided to make my own implementation. I tried to make it simple but I still can't pinpoint my error. x/y/z axis rotation works fine on it's own and y/z rotation work as well, but the second I add x axis to any of the others I get a strange stretching output. I'll attach the important code for the rotations below:(Be warned I'm quite new to cpp).
Here is how I describe a quaternion (as I understand since they are unit quaternions imaginary numbers aren't required):
struct Quaternion {
float w, x, y, z;
};
The multiplication rules of quaternions:
Quaternion operator* (Quaternion n, Quaternion p) {
Quaternion o;
// implements quaternion multiplication rules:
o.w = n.w * p.w - n.x * p.x - n.y * p.y - n.z * p.z;
o.x = n.w * p.x + n.x * p.w + n.y * p.z - n.z * p.y;
o.y = n.w * p.y - n.x * p.z + n.y * p.w + n.z * p.x;
o.z = n.w * p.z + n.x * p.y - n.y * p.x + n.z * p.w;
return o;
}
Generating the rotation quaternion to multiply the total rotation by:
Quaternion rotate(float w, float x, float y, float z) {
Quaternion n;
n.w = cosf(w/2);
n.x = x * sinf(w/2);
n.y = y * sinf(w/2);
n.z = z * sinf(w/2);
return n;
}
And finally, the matrix calculations which turn the quaternion into an x/y/z position:
inline vector<float> quaternion_matrix(Quaternion total, vector<float> vec) {
float x = vec[0], y = vec[1], z = vec[2];
// implementation of 3x3 quaternion rotation matrix:
vec[0] = (1 - 2 * pow(total.y, 2) - 2 * pow(total.z, 2))*x + (2 * total.x * total.y - 2 * total.w * total.z)*y + (2 * total.x * total.z + 2 * total.w * total.y)*z;
vec[1] = (2 * total.x * total.y + 2 * total.w * total.z)*x + (1 - 2 * pow(total.x, 2) - 2 * pow(total.z, 2))*y + (2 * total.y * total.z + 2 * total.w * total.x)*z;
vec[2] = (2 * total.x * total.z - 2 * total.w * total.y)*x + (2 * total.y * total.z - 2 * total.w * total.x)*y + (1 - 2 * pow(total.x, 2) - 2 * pow(total.y, 2))*z;
return vec;
}
That's pretty much it (I also have a normalize function to deal with floating point errors), I initialize all objects quaternion to: w = 1, x = 0, y = 0, z = 0. I rotate a quaternion using an expression like this:
obj.rotation = rotate(angle, x-axis, y-axis, z-axis) * obj.rotation
where obj.rotation is the objects total quaternion rotation value.
I appreciate any help I can get on this issue, if anyone knows what's wrong or has also experienced this issue before. Thanks
EDIT: multiplying total by these quaternions output the expected rotation:
rotate(angle,1,0,0)
rotate(angle,0,1,0)
rotate(angle,0,0,1)
rotate(angle,0,1,1)
However, any rotations such as these make the model stretch oddly:
rotate(angle,1,1,0)
rotate(angle,1,0,1)
EDIT2: here is the normalize function I use to normalize the quaternions:
Quaternion normalize(Quaternion n, double tolerance) {
// adds all squares of quaternion values, if normalized, total will be 1:
double total = pow(n.w, 2) + pow(n.x, 2) + pow(n.y, 2) + pow(n.z, 2);
if (total > 1 + tolerance || total < 1 - tolerance) {
// normalizes value of quaternion if it exceeds a certain tolerance value:
n.w /= (float) sqrt(total);
n.x /= (float) sqrt(total);
n.y /= (float) sqrt(total);
n.z /= (float) sqrt(total);
}
return n;
}
To implement two rotations in sequence you need the quaternion product of the two elementary rotations. Each elementary rotation is specified by an axis and an angle. But in your code you did not make sure you have a unit vector (direction vector) for the axis.
Do the following modification
Quaternion rotate(float w, float x, float y, float z) {
Quaternion n;
float f = 1/sqrtf(x*x+y*y+z*z)
n.w = cosf(w/2);
n.x = f * x * sinf(w/2);
n.y = f * y * sinf(w/2);
n.z = f * z * sinf(w/2);
return n;
}
and then use it as follows
Quaternion n = rotate(angle1,1,0,0) * rotate(angle2,0,1,0)
for the combined rotation of angle1 about the x-axis, and angle2 about the y-axis.
As pointed out in comments, you are not initializing your quaternions correctly.
The following quaternions are not rotations:
rotate(angle,0,1,1)
rotate(angle,1,1,0)
rotate(angle,1,0,1)
The reason is the axis is not normalized e.g., the vector (0,1,1) is not normalized. Also make sure your angles are in radians.

line-width for ellipse is not constant

I am drawing hollow ellipse using opengl. I calculate vertices in c++ code using standard ellipse formula. In fragment shader i just assign color to each fragment. The ellipse that i see on the screen has thinner line width on the sharper curves as compared to that where curve is not that sharp. So question is, how to make line-width consistent across the entire parameter of ellipse? Please see the image below:
C++ code :
std::vector<float> BCCircleHelper::GetCircleLine(float centerX, float centerY, float radiusX, float radiusY, float lineWidth, int32_t segmentCount)
{
auto vertexCount = (segmentCount + 1) * 2;
auto floatCount = vertexCount * 3;
std::vector<float> array(floatCount);
const std::vector<float>& data = GetCircleData (segmentCount);
float halfWidth = lineWidth * 0.5f;
for (int32_t i = 0; i < segmentCount + 1; ++i)
{
float sin = data [i * 2];
float cos = data [i * 2 + 1];
array [i * 6 + 0] = centerX + sin * (radiusX - halfWidth);
array [i * 6 + 1] = centerY + cos * (radiusY - halfWidth);
array [i * 6 + 3] = centerX + sin * (radiusX + halfWidth);
array [i * 6 + 4] = centerY + cos * (radiusY + halfWidth);
array [i * 6 + 2] = 0;
array [i * 6 + 5] = 0;
}
return std::move(array);
}
const std::vector<float>& BCCircleHelper::GetCircleData(int32_t segmentCount)
{
int32_t floatCount = (segmentCount + 1) * 2;
float segmentAngle = static_cast<float>(M_PI * 2) / segmentCount;
std::vector<float> array(floatCount);
for (int32_t i = 0; i < segmentCount + 1; ++i)
{
array[i * 2 + 0] = sin(segmentAngle * i);
array[i * 2 + 1] = cos(segmentAngle * i);
}
return array;
}
Aiming this:
The problem is likely that your fragments are basically line segments radiating from the center of the ellipse.
If you draw a line, from the center of the ellipse through the ellipse you've drawn, at any point on the perimeter, you could probably convince yourself that the distance covered by that red line is in fact the width that you're after (roughly, since you're working at low spatial resolution; somewhat pixelated). But since this is an ellipse, that distance is not perpendicular to the path being traced. And that's the problem. This works great for circles, because a ray from the center is always perpendicular to the circle. But for these flattened ellipses, it's very oblique!
How to fix it? Can you draw circles at each point on the ellipse, instead of line segments?
If not, you might need to recalculate what it means to be that thick when measured at that oblique angle - it's no longer your line width, may require some calculus, and a bit more trigonometry.
Ok, so a vector tangent to the curve described by
c(i) = (a * cos(i), b * sin(i))
is
c'(i) = (- a * sin(i), b * cos(i))
(note that this is not a unit vector). The perpendicular to this is
c'perp = (b * cos(i), a * sin(i))
You should be able to convince yourself that this is true by computing their dot product.
Lets calculate the magnitude of c'perp, and call it k for now:
k = sqrt(b * b * cos(i) * cos(i) + a * a * sin(i) * sin(i))
So we go out to a point on the ellipse (c(i)) and we want to draw a segement that's perpendicular to the curve - that means we want to add on a scaled version of c'perp. The scaling is to divide by the magnitude (k), and then multiply by half your line width. So the two end points are:
P1 = c(i) + halfWidth * c'perp / k
P2 = c(i) - halfWidth * c'perp / k
I haven't tested this, but I'm pretty sure it's close. Here's the geometry you're working with:
--
Edit:
So the values for P1 and P2 that I give above are end-points of a line-segment that's perpendicular to the ellipse. If you really wanted to continue with just altering the radiusX and radiusY values the way you were doing, you could do this. You just need to figure out what the 'Not w' length is at each angle, and use half of this value in place of halfWidth in radiusX +/- halfWidth and radiusY +/- halfwidth. I leave that bit of geometry as an exercise for the reader.

How to get vertices for a sphere? [duplicate]

Are there any tutorials out there that explain how I can draw a sphere in OpenGL without having to use gluSphere()?
Many of the 3D tutorials for OpenGL are just on cubes. I have searched but most of the solutions to drawing a sphere are to use gluSphere(). There is also a site that has the code to drawing a sphere at this site but it doesn't explain the math behind drawing the sphere. I have also other versions of how to draw the sphere in polygon instead of quads in that link. But again, I don't understand how the spheres are drawn with the code. I want to be able to visualize so that I could modify the sphere if I need to.
One way you can do it is to start with a platonic solid with triangular sides - an octahedron, for example. Then, take each triangle and recursively break it up into smaller triangles, like so:
Once you have a sufficient amount of points, you normalize their vectors so that they are all a constant distance from the center of the solid. This causes the sides to bulge out into a shape that resembles a sphere, with increasing smoothness as you increase the number of points.
Normalization here means moving a point so that its angle in relation to another point is the same, but the distance between them is different.
Here's a two dimensional example.
A and B are 6 units apart. But suppose we want to find a point on line AB that's 12 units away from A.
We can say that C is the normalized form of B with respect to A, with distance 12. We can obtain C with code like this:
#returns a point collinear to A and B, a given distance away from A.
function normalize(a, b, length):
#get the distance between a and b along the x and y axes
dx = b.x - a.x
dy = b.y - a.y
#right now, sqrt(dx^2 + dy^2) = distance(a,b).
#we want to modify them so that sqrt(dx^2 + dy^2) = the given length.
dx = dx * length / distance(a,b)
dy = dy * length / distance(a,b)
point c = new point
c.x = a.x + dx
c.y = a.y + dy
return c
If we do this normalization process on a lot of points, all with respect to the same point A and with the same distance R, then the normalized points will all lie on the arc of a circle with center A and radius R.
Here, the black points begin on a line and "bulge out" into an arc.
This process can be extended into three dimensions, in which case you get a sphere rather than a circle. Just add a dz component to the normalize function.
If you look at the sphere at Epcot, you can sort of see this technique at work. it's a dodecahedron with bulged-out faces to make it look rounder.
I'll further explain a popular way of generating a sphere using latitude and longitude (another
way, icospheres, was already explained in the most popular answer at the time of this writing.)
A sphere can be expressed by the following parametric equation:
F(u, v) = [ cos(u)*sin(v)*r, cos(v)*r, sin(u)*sin(v)*r ]
Where:
r is the radius;
u is the longitude, ranging from 0 to 2π; and
v is the latitude, ranging from 0 to π.
Generating the sphere then involves evaluating the parametric function at fixed intervals.
For example, to generate 16 lines of longitude, there will be 17 grid lines along the u axis, with a step of
π/8 (2π/16) (the 17th line wraps around).
The following pseudocode generates a triangle mesh by evaluating a parametric function
at regular intervals (this works for any parametric surface function, not just spheres).
In the pseudocode below, UResolution is the number of grid points along the U axis
(here, lines of longitude), and VResolution is the number of grid points along the V axis
(here, lines of latitude)
var startU=0
var startV=0
var endU=PI*2
var endV=PI
var stepU=(endU-startU)/UResolution // step size between U-points on the grid
var stepV=(endV-startV)/VResolution // step size between V-points on the grid
for(var i=0;i<UResolution;i++){ // U-points
for(var j=0;j<VResolution;j++){ // V-points
var u=i*stepU+startU
var v=j*stepV+startV
var un=(i+1==UResolution) ? endU : (i+1)*stepU+startU
var vn=(j+1==VResolution) ? endV : (j+1)*stepV+startV
// Find the four points of the grid
// square by evaluating the parametric
// surface function
var p0=F(u, v)
var p1=F(u, vn)
var p2=F(un, v)
var p3=F(un, vn)
// NOTE: For spheres, the normal is just the normalized
// version of each vertex point; this generally won't be the case for
// other parametric surfaces.
// Output the first triangle of this grid square
triangle(p0, p2, p1)
// Output the other triangle of this grid square
triangle(p3, p1, p2)
}
}
The code in the sample is quickly explained. You should look into the function void drawSphere(double r, int lats, int longs):
void drawSphere(double r, int lats, int longs) {
int i, j;
for(i = 0; i <= lats; i++) {
double lat0 = M_PI * (-0.5 + (double) (i - 1) / lats);
double z0 = sin(lat0);
double zr0 = cos(lat0);
double lat1 = M_PI * (-0.5 + (double) i / lats);
double z1 = sin(lat1);
double zr1 = cos(lat1);
glBegin(GL_QUAD_STRIP);
for(j = 0; j <= longs; j++) {
double lng = 2 * M_PI * (double) (j - 1) / longs;
double x = cos(lng);
double y = sin(lng);
glNormal3f(x * zr0, y * zr0, z0);
glVertex3f(r * x * zr0, r * y * zr0, r * z0);
glNormal3f(x * zr1, y * zr1, z1);
glVertex3f(r * x * zr1, r * y * zr1, r * z1);
}
glEnd();
}
}
The parameters lat defines how many horizontal lines you want to have in your sphere and lon how many vertical lines. r is the radius of your sphere.
Now there is a double iteration over lat/lon and the vertex coordinates are calculated, using simple trigonometry.
The calculated vertices are now sent to your GPU using glVertex...() as a GL_QUAD_STRIP, which means you are sending each two vertices that form a quad with the previously two sent.
All you have to understand now is how the trigonometry functions work, but I guess you can figure it out easily.
If you wanted to be sly like a fox you could half-inch the code from GLU. Check out the MesaGL source code (http://cgit.freedesktop.org/mesa/mesa/).
See the OpenGL red book: http://www.glprogramming.com/red/chapter02.html#name8
It solves the problem by polygon subdivision.
My example how to use 'triangle strip' to draw a "polar" sphere, it consists in drawing points in pairs:
const float PI = 3.141592f;
GLfloat x, y, z, alpha, beta; // Storage for coordinates and angles
GLfloat radius = 60.0f;
int gradation = 20;
for (alpha = 0.0; alpha < GL_PI; alpha += PI/gradation)
{
glBegin(GL_TRIANGLE_STRIP);
for (beta = 0.0; beta < 2.01*GL_PI; beta += PI/gradation)
{
x = radius*cos(beta)*sin(alpha);
y = radius*sin(beta)*sin(alpha);
z = radius*cos(alpha);
glVertex3f(x, y, z);
x = radius*cos(beta)*sin(alpha + PI/gradation);
y = radius*sin(beta)*sin(alpha + PI/gradation);
z = radius*cos(alpha + PI/gradation);
glVertex3f(x, y, z);
}
glEnd();
}
First point entered (glVertex3f) is as follows the parametric equation and the second one is shifted by a single step of alpha angle (from next parallel).
Although the accepted answer solves the question, there's a little misconception at the end. Dodecahedrons are (or could be) regular polyhedron where all faces have the same area. That seems to be the case of the Epcot (which, by the way, is not a dodecahedron at all). Since the solution proposed by #Kevin does not provide this characteristic I thought I could add an approach that does.
A good way to generate an N-faced polyhedron where all vertices lay in the same sphere and all its faces have similar area/surface is starting with an icosahedron and the iteratively sub-dividing and normalizing its triangular faces (as suggested in the accepted answer). Dodecahedrons, for instance, are actually truncated icosahedrons.
Regular icosahedrons have 20 faces (12 vertices) and can easily be constructed from 3 golden rectangles; it's just a matter of having this as a starting point instead of an octahedron. You may find an example here.
I know this is a bit off-topic but I believe it may help if someone gets here looking for this specific case.
Python adaptation of #Constantinius answer:
lats = 10
longs = 10
r = 10
for i in range(lats):
lat0 = pi * (-0.5 + i / lats)
z0 = sin(lat0)
zr0 = cos(lat0)
lat1 = pi * (-0.5 + (i+1) / lats)
z1 = sin(lat1)
zr1 = cos(lat1)
glBegin(GL_QUAD_STRIP)
for j in range(longs+1):
lng = 2 * pi * (j+1) / longs
x = cos(lng)
y = sin(lng)
glNormal(x * zr0, y * zr0, z0)
glVertex(r * x * zr0, r * y * zr0, r * z0)
glNormal(x * zr1, y * zr1, z1)
glVertex(r * x * zr1, r * y * zr1, r * z1)
glEnd()
void draw_sphere(float r)
{
float pi = 3.141592;
float di = 0.02;
float dj = 0.04;
float db = di * 2 * pi;
float da = dj * pi;
for (float i = 0; i < 1.0; i += di) //horizonal
for (float j = 0; j < 1.0; j += dj) //vertical
{
float b = i * 2 * pi; //0 to 2pi
float a = (j - 0.5) * pi; //-pi/2 to pi/2
//normal
glNormal3f(
cos(a + da / 2) * cos(b + db / 2),
cos(a + da / 2) * sin(b + db / 2),
sin(a + da / 2));
glBegin(GL_QUADS);
//P1
glTexCoord2f(i, j);
glVertex3f(
r * cos(a) * cos(b),
r * cos(a) * sin(b),
r * sin(a));
//P2
glTexCoord2f(i + di, j);//P2
glVertex3f(
r * cos(a) * cos(b + db),
r * cos(a) * sin(b + db),
r * sin(a));
//P3
glTexCoord2f(i + di, j + dj);
glVertex3f(
r * cos(a + da) * cos(b + db),
r * cos(a + da) * sin(b + db),
r * sin(a + da));
//P4
glTexCoord2f(i, j + dj);
glVertex3f(
r * cos(a + da) * cos(b),
r * cos(a + da) * sin(b),
r * sin(a + da));
glEnd();
}
}
One way is to make a quad that faces the camera and write a vertex and fragment shader that renders something that looks like a sphere. You could use equations for a circle/sphere that you can find on the internet.
One nice thing is that the silhouette of a sphere looks the same from any angle. However, if the sphere is not in the center of a perspective view, then it would appear perhaps more like an ellipse. You could work out the equations for this and put them in the fragment shading. Then the light shading needs to changed as the player moves, if you do indeed have a player moving in 3D space around the sphere.
Can anyone comment on if they have tried this or if it would be too expensive to be practical?

Polar Rose 2D offset

I'm having some trouble trying to plot a polar rose with a offset C of the equation r(theta) = cos(k*theta) + C.
I'm trying to plot this polar rose: http://en.wikipedia.org/wiki/Polar_coordinate_system#/media/File:Cartesian_to_polar.gif
The polar equation can be:
r(theta) = cos(k * theta)
or
r(theta) = sin(k * theta)
The equation of the polar rose I want to draw is:
r(theta) = 2 + sin(6 * theta)
Ok, and the parametric equations will be:
x = C + sin(k * theta) * cos(theta)
y = C + sin(k * theta) * sin(theta)
In my Canvas(drawing area), my origin is not at the center of the screen, so I need to translate the rose to it. Ok, no big deal. Another point is that I need to scale the rose for it to be visible or it will be too small, but still no problem, this explains the: 100*. Here is my code, it is on C++ btw:
for ( float t = 0; t < PI_2; t+= 0.01 )
{
r = Origin.get_x() + 100*(2+(sin(6*t) * cos(t)));
h = Origin.get_y() + 100*(2+(sin(6*t) * sin(t)));
point(r,h);
}
I know that I'm doing it wrong, because when I add the +2 which should be the C constant is not working the way I want to, It's just translating more and drawing a polar rose without an offset. How do I prevent the "extra translation" and draw it properly?
x = r cos(theta), y = r sin(theta) so your parametric equations should be x(theta) = C * cos(theta) + sin(k*theta) * cos(theta) and y(theta) = C * sin(theta) + sin(k*theta) * sin(theta). You just forgot to multiply C by cos(theta) and by sin(theta) respectively.

Drawing Sphere in OpenGL without using gluSphere()?

Are there any tutorials out there that explain how I can draw a sphere in OpenGL without having to use gluSphere()?
Many of the 3D tutorials for OpenGL are just on cubes. I have searched but most of the solutions to drawing a sphere are to use gluSphere(). There is also a site that has the code to drawing a sphere at this site but it doesn't explain the math behind drawing the sphere. I have also other versions of how to draw the sphere in polygon instead of quads in that link. But again, I don't understand how the spheres are drawn with the code. I want to be able to visualize so that I could modify the sphere if I need to.
One way you can do it is to start with a platonic solid with triangular sides - an octahedron, for example. Then, take each triangle and recursively break it up into smaller triangles, like so:
Once you have a sufficient amount of points, you normalize their vectors so that they are all a constant distance from the center of the solid. This causes the sides to bulge out into a shape that resembles a sphere, with increasing smoothness as you increase the number of points.
Normalization here means moving a point so that its angle in relation to another point is the same, but the distance between them is different.
Here's a two dimensional example.
A and B are 6 units apart. But suppose we want to find a point on line AB that's 12 units away from A.
We can say that C is the normalized form of B with respect to A, with distance 12. We can obtain C with code like this:
#returns a point collinear to A and B, a given distance away from A.
function normalize(a, b, length):
#get the distance between a and b along the x and y axes
dx = b.x - a.x
dy = b.y - a.y
#right now, sqrt(dx^2 + dy^2) = distance(a,b).
#we want to modify them so that sqrt(dx^2 + dy^2) = the given length.
dx = dx * length / distance(a,b)
dy = dy * length / distance(a,b)
point c = new point
c.x = a.x + dx
c.y = a.y + dy
return c
If we do this normalization process on a lot of points, all with respect to the same point A and with the same distance R, then the normalized points will all lie on the arc of a circle with center A and radius R.
Here, the black points begin on a line and "bulge out" into an arc.
This process can be extended into three dimensions, in which case you get a sphere rather than a circle. Just add a dz component to the normalize function.
If you look at the sphere at Epcot, you can sort of see this technique at work. it's a dodecahedron with bulged-out faces to make it look rounder.
I'll further explain a popular way of generating a sphere using latitude and longitude (another
way, icospheres, was already explained in the most popular answer at the time of this writing.)
A sphere can be expressed by the following parametric equation:
F(u, v) = [ cos(u)*sin(v)*r, cos(v)*r, sin(u)*sin(v)*r ]
Where:
r is the radius;
u is the longitude, ranging from 0 to 2π; and
v is the latitude, ranging from 0 to π.
Generating the sphere then involves evaluating the parametric function at fixed intervals.
For example, to generate 16 lines of longitude, there will be 17 grid lines along the u axis, with a step of
π/8 (2π/16) (the 17th line wraps around).
The following pseudocode generates a triangle mesh by evaluating a parametric function
at regular intervals (this works for any parametric surface function, not just spheres).
In the pseudocode below, UResolution is the number of grid points along the U axis
(here, lines of longitude), and VResolution is the number of grid points along the V axis
(here, lines of latitude)
var startU=0
var startV=0
var endU=PI*2
var endV=PI
var stepU=(endU-startU)/UResolution // step size between U-points on the grid
var stepV=(endV-startV)/VResolution // step size between V-points on the grid
for(var i=0;i<UResolution;i++){ // U-points
for(var j=0;j<VResolution;j++){ // V-points
var u=i*stepU+startU
var v=j*stepV+startV
var un=(i+1==UResolution) ? endU : (i+1)*stepU+startU
var vn=(j+1==VResolution) ? endV : (j+1)*stepV+startV
// Find the four points of the grid
// square by evaluating the parametric
// surface function
var p0=F(u, v)
var p1=F(u, vn)
var p2=F(un, v)
var p3=F(un, vn)
// NOTE: For spheres, the normal is just the normalized
// version of each vertex point; this generally won't be the case for
// other parametric surfaces.
// Output the first triangle of this grid square
triangle(p0, p2, p1)
// Output the other triangle of this grid square
triangle(p3, p1, p2)
}
}
The code in the sample is quickly explained. You should look into the function void drawSphere(double r, int lats, int longs):
void drawSphere(double r, int lats, int longs) {
int i, j;
for(i = 0; i <= lats; i++) {
double lat0 = M_PI * (-0.5 + (double) (i - 1) / lats);
double z0 = sin(lat0);
double zr0 = cos(lat0);
double lat1 = M_PI * (-0.5 + (double) i / lats);
double z1 = sin(lat1);
double zr1 = cos(lat1);
glBegin(GL_QUAD_STRIP);
for(j = 0; j <= longs; j++) {
double lng = 2 * M_PI * (double) (j - 1) / longs;
double x = cos(lng);
double y = sin(lng);
glNormal3f(x * zr0, y * zr0, z0);
glVertex3f(r * x * zr0, r * y * zr0, r * z0);
glNormal3f(x * zr1, y * zr1, z1);
glVertex3f(r * x * zr1, r * y * zr1, r * z1);
}
glEnd();
}
}
The parameters lat defines how many horizontal lines you want to have in your sphere and lon how many vertical lines. r is the radius of your sphere.
Now there is a double iteration over lat/lon and the vertex coordinates are calculated, using simple trigonometry.
The calculated vertices are now sent to your GPU using glVertex...() as a GL_QUAD_STRIP, which means you are sending each two vertices that form a quad with the previously two sent.
All you have to understand now is how the trigonometry functions work, but I guess you can figure it out easily.
If you wanted to be sly like a fox you could half-inch the code from GLU. Check out the MesaGL source code (http://cgit.freedesktop.org/mesa/mesa/).
See the OpenGL red book: http://www.glprogramming.com/red/chapter02.html#name8
It solves the problem by polygon subdivision.
My example how to use 'triangle strip' to draw a "polar" sphere, it consists in drawing points in pairs:
const float PI = 3.141592f;
GLfloat x, y, z, alpha, beta; // Storage for coordinates and angles
GLfloat radius = 60.0f;
int gradation = 20;
for (alpha = 0.0; alpha < GL_PI; alpha += PI/gradation)
{
glBegin(GL_TRIANGLE_STRIP);
for (beta = 0.0; beta < 2.01*GL_PI; beta += PI/gradation)
{
x = radius*cos(beta)*sin(alpha);
y = radius*sin(beta)*sin(alpha);
z = radius*cos(alpha);
glVertex3f(x, y, z);
x = radius*cos(beta)*sin(alpha + PI/gradation);
y = radius*sin(beta)*sin(alpha + PI/gradation);
z = radius*cos(alpha + PI/gradation);
glVertex3f(x, y, z);
}
glEnd();
}
First point entered (glVertex3f) is as follows the parametric equation and the second one is shifted by a single step of alpha angle (from next parallel).
Although the accepted answer solves the question, there's a little misconception at the end. Dodecahedrons are (or could be) regular polyhedron where all faces have the same area. That seems to be the case of the Epcot (which, by the way, is not a dodecahedron at all). Since the solution proposed by #Kevin does not provide this characteristic I thought I could add an approach that does.
A good way to generate an N-faced polyhedron where all vertices lay in the same sphere and all its faces have similar area/surface is starting with an icosahedron and the iteratively sub-dividing and normalizing its triangular faces (as suggested in the accepted answer). Dodecahedrons, for instance, are actually truncated icosahedrons.
Regular icosahedrons have 20 faces (12 vertices) and can easily be constructed from 3 golden rectangles; it's just a matter of having this as a starting point instead of an octahedron. You may find an example here.
I know this is a bit off-topic but I believe it may help if someone gets here looking for this specific case.
Python adaptation of #Constantinius answer:
lats = 10
longs = 10
r = 10
for i in range(lats):
lat0 = pi * (-0.5 + i / lats)
z0 = sin(lat0)
zr0 = cos(lat0)
lat1 = pi * (-0.5 + (i+1) / lats)
z1 = sin(lat1)
zr1 = cos(lat1)
glBegin(GL_QUAD_STRIP)
for j in range(longs+1):
lng = 2 * pi * (j+1) / longs
x = cos(lng)
y = sin(lng)
glNormal(x * zr0, y * zr0, z0)
glVertex(r * x * zr0, r * y * zr0, r * z0)
glNormal(x * zr1, y * zr1, z1)
glVertex(r * x * zr1, r * y * zr1, r * z1)
glEnd()
void draw_sphere(float r)
{
float pi = 3.141592;
float di = 0.02;
float dj = 0.04;
float db = di * 2 * pi;
float da = dj * pi;
for (float i = 0; i < 1.0; i += di) //horizonal
for (float j = 0; j < 1.0; j += dj) //vertical
{
float b = i * 2 * pi; //0 to 2pi
float a = (j - 0.5) * pi; //-pi/2 to pi/2
//normal
glNormal3f(
cos(a + da / 2) * cos(b + db / 2),
cos(a + da / 2) * sin(b + db / 2),
sin(a + da / 2));
glBegin(GL_QUADS);
//P1
glTexCoord2f(i, j);
glVertex3f(
r * cos(a) * cos(b),
r * cos(a) * sin(b),
r * sin(a));
//P2
glTexCoord2f(i + di, j);//P2
glVertex3f(
r * cos(a) * cos(b + db),
r * cos(a) * sin(b + db),
r * sin(a));
//P3
glTexCoord2f(i + di, j + dj);
glVertex3f(
r * cos(a + da) * cos(b + db),
r * cos(a + da) * sin(b + db),
r * sin(a + da));
//P4
glTexCoord2f(i, j + dj);
glVertex3f(
r * cos(a + da) * cos(b),
r * cos(a + da) * sin(b),
r * sin(a + da));
glEnd();
}
}
One way is to make a quad that faces the camera and write a vertex and fragment shader that renders something that looks like a sphere. You could use equations for a circle/sphere that you can find on the internet.
One nice thing is that the silhouette of a sphere looks the same from any angle. However, if the sphere is not in the center of a perspective view, then it would appear perhaps more like an ellipse. You could work out the equations for this and put them in the fragment shading. Then the light shading needs to changed as the player moves, if you do indeed have a player moving in 3D space around the sphere.
Can anyone comment on if they have tried this or if it would be too expensive to be practical?