Trying to use a template defined in a class that is being passed as a template parameter itself. The typename specifier is obviously incorrect but i just get other errors if i try to use template there.
struct Tee
{
template<typename T = int> class Bar { };
};
template<typename T>
struct Foo
{
typename T::Bar<> f; // *error non-template used as template
};
int main() {
Foo<Tee> foo;
return 0;
}
Related
Inside a specialization for a templated class I call a function which should not compile, but in my mind it shouldn't matter as I pass false as a template argument and the compiler shouldn't instantiate that class in the first place:
#include <iostream>
template <typename T>
struct outerstruct
{
template <bool b>
struct innerStruct
{
};
template<>
struct innerStruct<true>
{
using type = std::underlying_type_t<T>;
};
template<>
struct innerStruct<false>
{
};
innerStruct<false> member; // std::underlying_type_t cannot be called on a T,
// even though that class shouldn't be instantiated
// because I'm passing false (or I think)
};
int main()
{
outerstruct<int> a;
}
Why is innerStruct<true> being instantiated and the compiler trying to call underlying_type if I pass the false argument?
Very confusingly for me, I can make it behave the way I want (ie., have the compiler ignore the call to std::underlying_type_t) by just adding another template argument to innerClass, here I add a U:
#include <iostream>
template <typename T>
struct outerstruct
{
template <typename ExtraArg, bool b>
struct innerStruct
{
};
template<typename ExtraArg>
struct innerStruct<ExtraArg, true>
{
using type = std::underlying_type_t<T>;
};
template<typename ExtraArg>
struct innerStruct<ExtraArg, false>
{
};
//innerStruct<bValue> member;
innerStruct<int, true> member; // Now it's working as I expected,
// I can pass int or whatever argument to ExtraArg
// and it compiles as long as I have 'false'
};
int main()
{
outerstruct<int> a;
}
What is the difference between the first and the second examples? What business does template specialization innerStruct<true> have being instantiated if in the first example I only called innerStruct<false>
By using template template parameters one can pass to a class a templated class without specifying types on its parameters. I was wondering is there a way to pass into a template template parameter a templated signature of a function to be able to specialize which variant of the function is to be considered forward.
To be clear - I know I cannot do that:
template <class T>
void foo() { /*...*/ }
template <template <class...> class FooType>
struct Foo { /*...*/ };
int main() {
Foo<decltype(foo)> f;
}
But somehow I would like to be able to pass templated signature of function to Foo. Is it even possible?
I couldn't believe that this is not possible so I searched a bit and found a way to do exactly what I wanted. I used templated using with a syntax:
template <template<class... Args> class FooType>
struct Foo {
FooType<int> ft;
};
template <class Res, class... Args>
using FooSignature = Res(*)(Args...);
int foo() {
return 1;
}
int main() {
Foo<FooSignature> f;
f.ft = foo;
}
This however still leaves the question how can this be possible since the standard states something opposite.
In the example below one has a template template parameter that accepts the preferred signature for the function.
Because of the specialization and the lack of a body for the template class, only types for callables are accepted.
It is a generalization of what the OP actually asked:
#include<cassert>
template<typename F>
struct S;
template<typename R, typename... Args>
struct S<R(Args...)> {
using type = R(*)(Args...);
};
template<template<typename> class F>
struct T {
typename F<void(int)>::type ft;
typename F<double(double, double)>::type gt;
};
void f(int) { }
double g(double x, double y) { return x+y; }
int main() {
T<S> t;
t.ft = f;
t.gt = g;
t.ft(42);
auto v = t.gt(1., 1.);
assert(v == 2.);
}
As can be seen in this answer
Template of function pointer is illegal in C++
The C++ Standard says in $14/1,
A template defines a family of classes or functions.
Further quoting from the linked answer:
Please note that it does NOT say "A template defines a family of classes, functions or function pointers"
However, you can pass concrete function pointers, and specialise on their signature:
#include <iostream>
template <class T>
void foo(T) { }
template <typename>
struct Foo;
template<typename T>
struct Foo<void(T)>
{
void cb() { std::cout << "T\n"; }
};
template<>
struct Foo<void(int)>
{
void cb() { std::cout << "int\n"; }
};
template<>
struct Foo<void(double)>
{
void cb() { std::cout << "double\n"; }
};
int main()
{
Foo<decltype(foo<int >)>().cb(); // outputs 'int'
Foo<decltype(foo<double>)>().cb(); // outputs 'double'
Foo<decltype(foo<char >)>().cb(); // outputs 'T'
return 0;
}
template of template is still a template.
template <class T>
void foo() { /*...*/ }
template <typename T>
struct Foo { /*...*/ };
int main() {
Foo<decltype(foo<int>)> f;
}
You cannot pass a function template as an argument. What you can do is wrap a function template in a generate lambda taking a tag parameter:
template <class T> struct tag_t { using type = T; };
template <class T>
void foo() { ... }
template <class F>
void call_func_with(F f) {
f(tag_t<int>{} );
f(tag_t<double>{} );
}
call_with_func([](auto tag) { foo<decltype(tag)::type>(); } );
Here, f(tag_t<X>{} ) ends up calling foo<X>(), as desired.
I've some trouble to make use of template template parameters. Here is a very simplified example:
template <typename T>
struct Foo {
T t;
};
template <template <class X> class T>
struct Bar {
T<X> data;
X x;
};
int main()
{
Bar<Foo<int>> a;
}
The compiler (g++ (Ubuntu 4.8.2-19ubuntu1) 4.8.2) reports the following error:
main.cpp:8:5: error: ‘X’ was not declared in this scope
T<X> data;
^
main.cpp:8:6: error: template argument 1 is invalid
T<X> data;
^
Any idea what's wrong?
So I would like so make use of something like Bar<Foo<>>
template <typename T = int>
struct Foo {
T t;
};
template <typename T>
struct Baz {
T t;
};
template <typename T>
struct Bar;
template <template <typename> class T, typename X>
struct Bar<T<X>> {
T<X> data;
X x;
};
int main()
{
Bar<Foo<>> a;
Bar<Baz<float>> b;
}
template <typename T>
struct Foo {
T t;
};
template <template <class> class T, class X>
struct Bar {
T<X> data;
X x;
};
int main()
{
Bar<Foo, int> a;
}
In
template <template <class X> class T>
The template type parameter X is not a template parameter to the outermost template: it is a template parameter to the innermost template. It's rather similar to
int foo(int (*bar)(int x))
{
int y = x; // compiler error
}
which doesn't work since the function takes a single argument, bar: there is no argument x.
Depending upon what you are truly trying to do, you could add the second template parameter, with something like
template <typename X, template <typename> class T >
struct Bar
{
// ...
};
you can keep the declaration with a single type parameter, but pattern match to give a partial specialization that would define the class in the example context
template <typename T>
struct Bar;
template <typename X, template <typename> class T >
struct Bar<T<X>>
{
// ...
};
you could modify Foo to have a useful nested type, and grab it that way
template <typename T>
struct Bar
{
using X = T::value_type;
};
or you could define a metafunction that extracts a template parameter from a template type, and get it that way:
template <typename T>
struct Bar
{
using X = get_parameter<T>;
};
The most flexible is the last version, except rather than a metafunction that extracts template arguments, you would declare a get_bar_parameter function, and define a partial specialization that extracts the template parameter from a Foo<X> (or a T<X>). That way, if you ever decide in the future to use Bar with classes where the right value of X isn't computed that way, you can do so by giving an appropriate specialization for get_bar_parameter.
// method 1
template <typename T>
struct Foo {
typedef T Type;
T t;
};
template <typename T>
struct Bar {
T data;
typename T::Type x;
};
// method 2
template <typename T>
struct Hack
{
T t;
};
template <typename T>
struct TypeOf
{
typedef struct UnknownType Type;
};
template<>
struct TypeOf< Hack<int> >
{
typedef int Type;
};
template <typename T>
struct Baz {
T data;
typename TypeOf<T>::Type X;
};
int main()
{
Bar< Foo<int> > a;
Baz< Hack<int> > b;
return 0;
}
In method 1 information is provided with nested type. This requires changing original class.
In method 2 this information is provided with specialization of another template.
There is such function definition:
template<>
template<>
void object::test<1>()
{
}
What does it mean that there are double template<>?
EDIT:
I extracted code which is valid for this example:
#include <iostream>
template <class U>
class A {
template <int n>
void test() {
}
};
template <class T>
class B {
public:
typedef A<T> object;
};
typedef B<int>::object object;
template<>
template<>
void object::test < 1 > () {
}
int main() {
return 0;
}
This code compiles under g++.
Source: TUT test framework
For example,
template<class T = int> // Default T is int
class object<T> {
template<int R> void test ();
};
Your code:
template<> // T is fixed
template<> // R is fixed
void object<>::test<1>() // T is default int, R is 1
{
}
is equivalent to:
template<> // T is fixed
template<> // R is fixed
void object<int>::test<1>() // T is int, R is 1
{
}
This is the template specialization of a class template member function template (did I get that right?), with a default parameter for the template. Look at this:
template<typename T = int>
struct X {
template<typename U>
void foo(U u);
};
template<>
template<>
void X::foo(float f) { }
This introduces a specialization for the case where the template parameter of X is int and the argument to X<int>::foo is float. This case is slightly different from yours, we don't have to provide the template argument explicitly after the name of the member function as it can be deduced. Your function has a non-type template argument which cannot be deduced and as such must be provided.
What confused me the most is the default template argument and I'm unsure if it is good practice to use skip it. I'd provide it for every specialization to avoid confusion.
That looks to me like a specialization of a function template within a class template. For example, consider the following class template definition:
template <int m=1>
class object
{
public:
template <int n>
void test();
};
// This differs from your example, by the addition of `<>` after `object`, but it's as
// close as I can come to valid code true to your example
template<>
template<>
void object<>::test<1>()
{
}
I want to specialize a class template with the following function:
template <typename T>
class Foo
{
public:
static int bar();
};
The function has no arguments and shall return a result based on the type of Foo. (In this toy example, we return the number of bytes of the type, but in the actual application we want to return some meta-data object.)
The specialization works for fully specified types:
// specialization 1: works
template <>
int Foo<int>::bar() { return 4; }
// specialization 2: works
template <>
int Foo<double>::bar() { return 8; }
// specialization 3: works
typedef pair<int, int> IntPair;
template <>
int Foo<IntPair>::bar() { return 2 * Foo<int>::bar(); }
However, I would like to generalize this to types that depend on (other) template parameters themselves.
Adding the following specialization gives a compile-time error (VS2005):
// specialization 4: ERROR!
template <>
template <typename U, typename V>
int Foo<std::pair<U, V> >::bar() { return Foo<U>::bar() + Foo<V>::bar(); }
I am assuming this is not legal C++, but why? And is there a way to implement this type of pattern elegantly?
Partitial specialization is valid only for classes, not functions.
Workaround:
template <typename U, typename V>
class Foo<std::pair<U, V> > {
public:
static int bar() { return Foo<U>::bar() + Foo<V>::bar(); }
};
If you does not want to specialize class fully, use auxiliary struct
template<class T>
struct aux {
static int bar();
};
template <>int aux <int>::bar() { return 4; }
template <>int aux <double>::bar() { return 8; }
template <typename U, typename V>
struct aux <std::pair<U, V> > {
static int bar() { return Foo<U>::bar() + Foo<V>::bar(); }
};
template<class T>
class Foo : aux<T> {
// ...
};
It is perfectly legal in C++, it's Partial Template Specialization.
Remove the template <> and if it doesn't already exists add the explicit class template specialization and it should compile on VS2005 (but not in VC6)
// explicit class template specialization
template <typename U, typename V>
class Foo<std::pair<U, V> >
{
public:
static int bar();
};
template <typename U, typename V>
int Foo<std::pair<U, V> >::bar() { return Foo<U>::bar() + Foo<V>::bar(); }