OpenCV CVTrees : double free or corruption on Eclipse - c++

I have a class and there is a member vector<cvtrees*> vect. I generate many cvtrees object and push on vect. I use this function for train:
Mat trainingDataMat(trainSize, featureSize, CV_32FC1);
// fill trainingDataMat
for(int i = 0; i < LOOP; i++) {
Mat labelMat(trainSize, 1, CV_32FC1);
// fill labelMat
// learn classifier
CvRTrees *rtrees = new CvRTrees();
(*rtrees).train( trainingDataMat, CV_ROW_SAMPLE, labelMat, Mat(), Mat(), Mat(), Mat(), CvRTParams());
this->rtreesVector.push_back(rtrees);
}
And I use a function for predict. When I run below code, I get an error no source.
Mat testSample(1, featureSize, CV_32FC1);
for(int k = 0; k < featureSize; k++) {
testSample.at<float>(k) = (float)this->trainInvoiceVector[i]->at(j,k);
}
for(int i = 0; i < this->rtreesVector.size(); i++) {
int response = (int)((*(this->rtreesVector[i])).predict( testSample )); // !!!! THIS LINE IS THE PROBLEM
cout << "response" << response << endl;
}

Related

OpenCV c++ findHomography not returning same results

I am stitching three images. Now I wanted to implement warp perspective on the left side (image A and B) and right side (image B an C). I am able to compute both H matrices, but with some wierd behaving.
When I am computing A + B + C. It will do firstly B + C, then A + B. Here the H matric for AB is incorrect, but I dont know why!
When I will do only A+B then I will recieved "correct values". I tried everything, so I came here. It seems like there is some junk behind after computing B+C, but even I tried .clear() and .release() everything, still same behaving, I also tried to use .clone() everywhere - didnt help. I also checked if correct images are feeded in, yes they are.
I will try to simplify my code as much I can do:
// Stitcher variables
std::vector<std::pair<Mat, Mat>> images_toCalc;
std::vector<Mat> images;
std::vector<Mat> Hs;
//MAIN
images[2] = imread("E:/JOB/StitchingProject/StitchingApp/x64/Debug/i/left.jpg");
images[1] = imread("E:/JOB/StitchingProject/StitchingApp/x64/Debug/i/mid.jpg");
images[0] = imread("E:/JOB/StitchingProject/StitchingApp/x64/Debug/i/right.jpg");
stitcher->setImages(images, 3);
stitcher->runStitching2(false);
// runStitching2
for (int i = 0; i < this->images.size() - 1; i++) {
Mat image1 = this->images.at(i).clone();
Mat image2 = this->images.at(i + 1).clone();
//if (true) {
if (!isHalfAlready(i)) {
flip(image1, image1, 1);
flip(image2, image2, 1);
this->images_toCalc.push_back(std::make_pair(image2.clone(), image1.clone()));
}
else {
this->images_toCalc.push_back(std::make_pair(image1.clone(), image2.clone()));
}
}
for (int i = 0; i < images_toCalc.size(); i++) {
Mat H;
H = this->calcH(images_toCalc.at(i).first, images_toCalc.at(i).second);
this->Hs.push_back(H);
H.release();
if (this->debugLevel[3]) cout << "[" << i << "] H" << endl << Hs.at(i) << endl;
}
Now the buggy part
// this->calcH
Mat heStitcher::calcH(Mat& image1_toCalc, Mat& image2_toCalc) {
std::vector< KeyPoint > keypointsObject, keypointsScene;
Mat descriptorsObject, descriptorsScene;
Mat image1, image2;
image1 = image1_toCalc.clone();
image2 = image2_toCalc.clone();
if (greyCalc) {
cv::cvtColor(image1, image1, cv::COLOR_BGR2GRAY);
cv::cvtColor(image2, image2, cv::COLOR_BGR2GRAY);
}
Ptr<SURF> detector = SURF::create();
detector->detectAndCompute(image1, Mat(), keypointsObject, descriptorsObject);
detector->detectAndCompute(image2, Mat(), keypointsScene, descriptorsScene);
detector->clear();
vector<std::vector<DMatch>> matches;
Ptr<FlannBasedMatcher> matcher = cv::FlannBasedMatcher::create();
matcher->knnMatch(descriptorsObject, descriptorsScene, matches, 2);
matcher->clear();
double min_dist = 100;
double max_dist = 0;
std::vector< DMatch > goodMatches;
for (size_t i = 0; i < matches.size(); i++) {
if (matches[i][0].distance < 0.75f * matches[i][1].distance) {
goodMatches.push_back(matches[i][0]);
}
}
std::vector< Point2f > obj;
std::vector< Point2f > scene;
for (int i = 0; i < goodMatches.size(); i++) {
obj.push_back(keypointsObject[goodMatches[i].queryIdx].pt);
scene.push_back(keypointsScene[goodMatches[i].trainIdx].pt);
}
cv::Mat H;
cv::Mat H2;
if (obj.size() < 4) {
if (this->debugLevel[2]) cout << endl << "!!!!!! not enough similarities (less than 4) !!!!!!" << endl;
}
else {
H = findHomography(obj, scene, RANSAC);
}
image1.release();
image2.release();
descriptorsObject.release();
descriptorsScene.release();
keypointsObject.clear();
keypointsScene.clear();
obj.clear();
scene.clear();
goodMatches.clear();
matches.clear();
H2 = H.clone();
H.release();
return H2;
}
After this warpPerspective, border cutting etc, results with matrices in picture 1 a 2. (from where obviously matrices are incorrect). I cannot understant, why when using same script, with same procedure, I am getting different ressults.

Convertion of Mat to 2d array and access the pixel values in c++

I have converted a Mat to 2d arrays in c++ using opencv. To be able to make sure that I am getting the same pixel values in both containers(Mat and array) I tried this:
cout << xma.at<float>(4,11) << endl;
cout << xma_[4][11] << endl;
xma is Mat and xma_ is the 2d array.
The result I get are very far from each other!
Is the way that I am trying to access the pixel values correct?
And here is the code:
Mat imrgb = imread("src.tif", CV_LOAD_IMAGE_COLOR);
Mat bgr[3];
split(imrgb, bgr);
double average[600][800];
for(int j=0; j<=599;j++ )
{
for(int i=0; i<=799; i++)
{
average[j][i] =((((float)(bgr[0].at<uchar>(j,i)) + (float)(bgr[1].at<uchar>(j,i)) +(float)(bgr[2].at<uchar>(j,i))))/(3));
}
}
for(int j=0; j<=599;j++ )
{
for(int i=0; i<=799; i++)
{
average[j][i] = average[j][i] / 255;
}
}
src = Mat(600, 800, CV_64F, &average);
vector<float>gx;
vector<float>mult_vec;
for(int i=0; i<vec_first.size(); i++)
{
mult_vec.push_back(vec1[i] * vec2[i]);
}
for(int i=0; i<mult_vec.size(); i++)
{
gx.push_back((exp(-mult_vec[i] / C);
}
for(int i = 0; i < gx.size(); i++)
{
gy.push_back(gx[i]);
}
Mat gyMat=Mat(5, 1, CV_32F);
memcpy(gyMat.data, gy.data(), gy.size()*sizeof(float));
Mat gykernel;
cv::transpose(gy, gykernel);
filter2D(src, xma, -1 , gykernel, Point( -1, -1 ), 0, BORDER_DEFAULT );
for(j=0; j<=599;j++ )
{
for(i=0; i<=799; i++)
{
xma_[j][i] =(double)(xma.at<uchar>(j,i));
}
}
First I have read an rgb image, then I have splitted it into 3 channels and tried to get the average of the 3 channels. I have then divided the values to 255 to get the gray scale image.

C++ OpenCV Xcode

Excuse the hasty code dump. I'm working with OpenCV at the moment. I've been stuck with an error for 2h.
- (IBAction)faceRecognition:(id)sender {
// load images
vector<Mat> images;
vector<int> labels;
int numberOfSubjects = 4;
int numberPhotosPerSubject = 3;
for (int i=1; i<=numberOfSubjects; i++) {
for (int j=1; j<=numberPhotosPerSubject; j++) {
// create grayscale images
Mat src = [self CreateIplImageFromUIImage:[UIImage imageNamed:[NSString stringWithFormat:#"%d_%d.jpg", i, j]]];
Mat dst;
cv::cvtColor(src, dst, CV_BGR2GRAY);
images.push_back(dst);
labels.push_back(i);
}
}
// get test instances
Mat testSample = images[images.size() - 1];
int testLabel = labels[labels.size() - 1];
// ... and delete last element
images.pop_back();
labels.pop_back();
// build the Fisherfaces model
Fisherfaces model(images, labels);
// test model
int predicted = model.predict(testSample);
cout << "predicted class = " << predicted << endl;
cout << "actual class = " << testLabel << endl;
}
I can't figure out how to fix this:
Variable type 'cv::Fisherfaces' is an abstract class
It appears under "//build the Fisherfaces model" in the bottom.
Any assistance greatly appreciated.

Error in OpenCV: getting \377 while printing intensity values from a MAT

I am trying to access the values in a opencv Mat; but when I print the values I get the following:
\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377\377
My code is as follows:
cv::Mat oneComp(yb-yt, xb-xt, CV_8U);
cv::Mat currentLabelImage(drawing.rows,drawing.cols, CV_8U);
currentLabelImage = (drawing == n+1);
currentLabelImage.convertTo(currentLabelImage, CV_32F);
for (int i = 0; i<yb-yt; i++){
for(int j = 0; j<xb-xt; j++){
std:: cout << currentLabelImage.at<uchar>(i+yt, j+xt);
}
}
I am doing this on Objective-C Xcode.

How to make a color histogram based classifier using OpenCV 3.0.0

I am trying to make a classifier using OpenCV 3.0.0's CvSVM and color histogram. I already tried to make my own using the following code to make the datasets:
int labels[510];
if (label.compare("raw")){
for (int i = 0; i < 509; i++){
labels[i] = 1;
}
}
else if (label.compare("ripe")){
for (int i = 0; i < 509; i++){
labels[i] = 2;
}
}
else if (label.compare("rotten")){
for (int i = 0; i < 509; i++){
labels[i] = 3;
}
}
float trainingData[510][2];
for (int i = 0; i < 254; i++){
trainingData[i][1] = r_hist.at<float>(i - 1);
trainingData[i][2] = i;
}
int j = 0;
for (int i = 255; i < 509; i++){
trainingData[i][1] = g_hist.at<float>(j - 1);
trainingData[i][2] = i;
j++;
}
And this code for the SVM:
int width = 512, height = 512;
Mat image = Mat::zeros(height, width, CV_8UC3);
Mat labelsMat(510, 1, CV_32SC1, labels);
Mat trainingDataMat(510, 2, CV_32FC1, trainingData);
Ptr < cv::ml::SVM > svm = SVM::create();
svm = cv::Algorithm::load<ml::SVM>("svm.xml");
svm->setC(0.01);
svm->setType(ml::SVM::C_SVC);
svm->setKernel(ml::SVM::LINEAR);
svm->setTermCriteria((cvTermCriteria(TermCriteria::MAX_ITER, 100, 1e6)));
svm->train(trainingDataMat, ROW_SAMPLE, labelsMat);
svm->save("svm.xml");
The problem with the code above is that it won't save properly. Is there a better way to do it?