Counting Sort confusion. Not sorting array (c++) - c++

I was researching counting sort and decided to try an algorithm i found online. Though, it doesn't seem to actually sort my array.
void countSort2(int arr[], int n, int exp)
{
int *output = new int[n]; // output array
int i, count[10] = {0};
// Store count of occurrences in count[]
for (i = 0; i < n; i++)
count[ (arr[i]/exp)%10 ]++;
// Change count[i] so that count[i] now contains actual position of
// this digit in output[]
for (i = 1; i < 10; i++)
count[i] += count[i - 1];
// Build the output array
for (i = n - 1; i >= 0; i--)
{
output[count[ (arr[i]/exp)%10 ] - 1] = arr[i];
count[ (arr[i]/exp)%10 ]--;
}
// Copy the output array to arr[], so that arr[] now
// contains sorted numbers according to curent digit
for (i = 0; i < n; i++)
arr[i] = output[i];
}
int main()
{
int b[10] = {4,3,2,1,6,7,8,9,7,6};
countSort2(b,10,10);
int i = 0;
while(i<10)
{
cout<<b[i]<<endl;
i++;
}
When the array is printed out, I get: "4,3,2,1,6,7,8,9,7,6". Am I calling the function wrong?

This is how you call the method [1]..
10 is the number of elements...
int main()
{
int b[10] = {14,23,22,11,66,67,58,49,17,16};
countSort2(b,10,1);
countSort2(b,10,10);
int i = 0;
while(i<10)
{
cout<<b[i]<<endl;
i++;
}
return 0;
}

This is a radix sort that sorts an array by a decimal digit. The sort is done from least significant digit to most significant digit. This means a series of calls with exp = 1, 10, 100, 1000, 10000, ... .
Here is an example of a radix sort that sorts an array of 64 bit unsigned integers by the bytes in the integers, from least significant to most significant. In this example, the temporary array is passed as a parameter to RadixSort():
typedef unsigned __int64 UI64;
typedef unsigned __int64 * PUI64;
PUI64 RadixSort(PUI64 pData, PUI64 pTemp, size_t count)
{
size_t mIndex[8][256] = {0}; // index matrix
PUI64 pDst, pSrc, pTmp;
size_t i,j,m,n;
UI64 u;
for(i = 0; i < count; i++){ // generate histograms
u = pData[i];
for(j = 0; j < 8; j++){
mIndex[j][(size_t)(u & 0xff)]++;
u >>= 8;
}
}
for(j = 0; j < 8; j++){ // convert to indices
n = 0;
for(i = 0; i < 256; i++){
m = mIndex[j][i];
mIndex[j][i] = n;
n += m;
}
}
pDst = pTemp; // radix sort
pSrc = pData;
for(j = 0; j < 8; j++){
for(i = 0; i < count; i++){
u = pSrc[i];
m = (size_t)(u >> (j<<3)) & 0xff;
pDst[mIndex[j][m]++] = u;
}
pTmp = pSrc;
pSrc = pDst;
pDst = pTmp;
}
return(pSrc);
}

Related

RC4 Not generating the proper scrambled state array

I have the follow code below to generate a scrambled state array, however, it does not seem to be generating the properly randomized state array for the key (51323).
unsigned char* generateStateArray(unsigned long key) {
unsigned char s[256];
//Load the state array from 1-255
for (int i = 0; i < 256; i++) {
s[i] = i;
}
//Get the binary representation of the key
unsigned long n = key;
int binary[64];
for (int i = 0; i < 64; i++) {
binary[i] = 0;
std::cout << binary[i];
}
std::cout << std::endl;
for (int i = 0; n > 0; i++) {
binary[i] = n % 2;
n /= 2;
}
//Randomize the entries
int j = 0;
for (int i = 0; i < 256; i++) {
j = (j + binary[i % 64] + s[i]) & 255;
char c = s[i];
s[i] = s[j];
s[j] = c;
}
}
The output for S should look like:
But it gives me this output:
Any idea what I'm doing wrong and how I can fix it?

radix sort array of strings

I am trying to use radix sort to sort file contain social security and date of birth the format looks like this "###-##-####,#######.I have to apply radix sort on each fields according to command line switch. I have a radix sort that is work for int array and i am trying to modify the code for string type array but i am not sure how to accomplish this. I did a quick sort for string type by comparing strings and pivot and that is work fine however for radix sort I am not if I can do this with string type or I have to convert the string to integer. I have tried to use "atoi" to convert to integer but I am not sure how to correctly do this if I have to.
string getMax(string arr[], int n){
string max = arr[0];
for (int i = 1; i < n; i++){
if (arr[i]>max)
max = arr[i];
}
return max;
}
void countSort(string a[], int size, int k){
string *b = NULL; int *c = NULL;
b = new string[size];
c = new int[k];
for (int i = 0; i <k; i++){
c[i] = 0;
//cout << c[i] << "\n";
}
for (int j = 0; j <size; j++){
c[(a[j]/k)%10]++; //a[j] is a string
//cout << c[a[j]] << endl;
}
for (int f = 1; f <10; f++){
c[f] += c[f - 1];
}
for (int r = size - 1; r >= 0; r--){
b[c[(a[r] / k) % 10] - 1] = a[r];
c[(a[r] / k) % 10]--;
}
for (int l = 0; l < size; l++){
a[l] = b[l];
}
}
void radixSort(string b[], int r){
string max = getMax(b, r);
for (int digit = 1; max / digit > 0; digit *= 10){
countSort(b, r, digit);
}
};
I didn't try, but I think you can do radix sort for string.
Calculate the length of the longest string in the array to sort.
Do radix sort just like for integers. Do sorting using each characters in the string.
If a string is shorter than another and there is no character in the "digit", consider its value as -65536 (or a smaller value than any other characters).
UPDATE: I tested my idea and it seems working.
#include <cstdio>
#include <string>
using std::string;
size_t getMax(string arr[], int n){
size_t max = arr[0].size();
for (int i = 1; i < n; i++){
if (arr[i].size()>max)
max = arr[i].size();
}
return max;
}
void countSort(string a[], int size, size_t k){
string *b = NULL; int *c = NULL;
b = new string[size];
c = new int[257];
for (int i = 0; i <257; i++){
c[i] = 0;
//cout << c[i] << "\n";
}
for (int j = 0; j <size; j++){
c[k < a[j].size() ? (int)(unsigned char)a[j][k] + 1 : 0]++; //a[j] is a string
//cout << c[a[j]] << endl;
}
for (int f = 1; f <257; f++){
c[f] += c[f - 1];
}
for (int r = size - 1; r >= 0; r--){
b[c[k < a[r].size() ? (int)(unsigned char)a[r][k] + 1 : 0] - 1] = a[r];
c[k < a[r].size() ? (int)(unsigned char)a[r][k] + 1 : 0]--;
}
for (int l = 0; l < size; l++){
a[l] = b[l];
}
// avold memory leak
delete[] b;
delete[] c;
}
void radixSort(string b[], int r){
size_t max = getMax(b, r);
for (size_t digit = max; digit > 0; digit--){ // size_t is unsigned, so avoid using digit >= 0, which is always true
countSort(b, r, digit - 1);
}
}
int main(void) {
string data[] = {
"aaaba",
"dfjasdlifjai",
"jiifjeogiejogp",
"aabaaaa",
"gsgj",
"gerph",
"aaaaaaa",
"htjltjlrth",
"joasdjfisdjfdo",
"hthe",
"aaaaaba",
"jrykpjl",
"hkoptjltp",
"aaaaaa",
"lprrjt"
};
puts("before sorting:");
for (size_t i = 0; i < sizeof(data) / sizeof(data[0]); i++) {
printf(" %s\n", data[i].c_str());
}
radixSort(data, (int)(sizeof(data) / sizeof(data[0])));
puts("after sorting:");
for (size_t i = 0; i < sizeof(data) / sizeof(data[0]); i++) {
printf(" %s\n", data[i].c_str());
}
return 0;
}

Bucket sort with huge random numbers

I know Bucket sort is has a lot of examples everywhere, so I tried to implement this so it can take huge random numbers with no luck
void Bucket_sort(int arr[], int max){
const int maxsize = max;
int bucket_list = new int [maxsize+1];
int length = sozeof(bucket_list) / sizeof(bucket[0]);
for(int i = 0; i <max;i++){
bucket_list[i] = 0; //fill with zeros
}
for (unsigned int i = 0; i <length; i++){
bucket_list[arr[i]]++;
}
int position = 0;
for (unsigned int i = 0 i < length; i++){
for(int k = 0; k<bucket_list[i];k++){
arr[position++] = i;
}
}
}
int main() {
int max = 50000
int arr[max];
for (int i = 0; i < max; i++){
arr[i] = rand() % 50000;
}
cout<<"Here are the numbers before Bucker Sort"<<endl;
for (int j = 0; j < max; j++){
cout<<arr[j];
}
Bucket_sort(arr,max);
for (int k = 0; k<max; k++){
cout<<arr[k];
}
}
some how I can't get it working, it will just out put the same order (unsorted)
I did find some same questions as mine, but none of them helped, here is one
https://stackoverflow.com/questions/20037176/c-bucket-sort-putting-integers-into-buckets
This line:
bucket_list = 0; //fill with zeros
this is changing your pointer, not filling with zeros. You should use
bucket_list[i] = 0; //fill with zeros
Edit: There are a lot more compiler issues with your code. Once you have those sorted out, the calculation of length is still wrong. You can't use the sizeof dividing trick, because bucket_list isn't an array. Replace
int length = sozeof(bucket_list) / sizeof(bucket[0]);
with
int length = maxsize
or just don't use length at all (you already have maxsize).
#include<iostream>
#include<conio.h>
#include<stdlib.h>
using namespace std;
void Bucket_sort(int arr[], int max){
int maxsize = max;
int *bucket_list = new int[maxsize+1];
// int length = sozeof(bucket_list) / sizeof(bucket[0]);
int length = maxsize;
for(int i = 0; i <max;i++){
bucket_list[i] = 0; //fill with zeros
}
for (unsigned int i = 0; i <length; i++){
bucket_list[arr[i]]++;
}
int position = 0;
for (unsigned int i = 0 ; i < length ; i++){
for(int k = 0; k<bucket_list[i];k++){
arr[position++] = i;
}
}
}
int main() {
int max = 50;
int arr[max];
for (int i = 0; i < max; i++){
arr[i] = rand()%50;
}
cout<<"Here are the numbers before Bucker Sort"<<endl;
for (int j = 0; j < max; j++){
cout<<arr[j];
}
Bucket_sort(arr,max);
for (int k = 0; k<max; k++){
cout<<arr[k];
}
getch();
return 0;
}

Find a subarray of m*m (2<=m<n) having largest sum; out of an n*n int array(having +ve, -ve, 0s)

I have written a solution for the above problem but can someone please suggest an optimized way.
I have traversed through the array for count(2 to n) where count is finding subarrays of size count*count.
int n = 5; //Size of array, you may take a dynamic array as well
int a[5][5] = {{1,2,3,4,5},{2,4,7,-2,1},{4,3,9,9,1},{5,2,6,8,0},{5,4,3,2,1}};
int max = 0;
int **tempStore, size;
for(int count = 2; count < n; count++)
{
for(int i = 0; i <= (n-count); i++)
{
for(int j = 0; j <= (n-count); j++)
{
int **temp = new int*[count];
for(int i = 0; i < count; ++i) {
temp[i] = new int[count];
}
for(int k = 0; k < count; k++)
{
for(int l = 0; l <count; l++)
{
temp[k][l] = a[i+k][j+l];
}
}
//printing fetched array
int sum = 0;
for(int k = 0; k < count; k++)
{
for(int l = 0; l <count; l++)
{
sum += temp[k][l];
cout<<temp[k][l]<<" ";
}cout<<endl;
}cout<<"Sum = "<<sum<<endl;
if(sum > max)
{
max = sum;
size = count;
tempStore = new int*[count];
for(int i = 0; i < count; ++i) {
tempStore[i] = new int[count];
}
//Locking the max sum array
for(int k = 0; k < count; k++)
{
for(int l = 0; l <count; l++)
{
tempStore[k][l] = temp[k][l];
}
}
}
//printing finished
cout<<"------------------\n";
//Clear temp memory
for(int i = 0; i < size; ++i) {
delete[] temp[i];
}
delete[] temp;
}
}
}
cout<<"Max sum is = "<<max<<endl;
for(int k = 0; k < size; k++)
{
for(int l = 0; l <size; l++)
{
cout<<tempStore[k][l]<<" ";
}cout<<endl;
}cout<<"-------------------------";
//Clear tempStore memory
for(int i = 0; i < size; ++i) {
delete[] tempStore[i];
}
delete[] tempStore;
Example:
1 2 3 4 5
2 4 7 -2 1
4 3 9 9 1
5 2 6 8 0
5 4 3 2 1
Output:
Max sum is = 71
2 4 7 -2
4 3 9 9
5 2 6 8
5 4 3 2
This is a problem best solved using Dynamic Programming (DP) or memoization.
Assuming n is significantly large, you will find that recalculating the sum of every possible combination of matrix will take too long, therefore if you could reuse previous calculations that would make everything much faster.
The idea is to start with the smaller matrices and calculate sum of the larger one reusing the precalculated value of the smaller ones.
long long *sub_solutions = new long long[n*n*m];
#define at(r,c,i) sub_solutions[((i)*n + (r))*n + (c)]
// Winner:
unsigned int w_row = 0, w_col = 0, w_size = 0;
// Fill first layer:
for ( int row = 0; row < n; row++) {
for (int col = 0; col < n; col++) {
at(r, c, 0) = data[r][c];
if (data[r][c] > data[w_row][w_col]) {
w_row = r;
w_col = c;
}
}
}
// Fill remaining layers.
for ( int size = 1; size < m; size++) {
for ( int row = 0; row < n-size; row++) {
for (int col = 0; col < n-size; col++) {
long long sum = data[row+size][col+size];
for (int i = 0; i < size; i++) {
sum += data[row+size][col+i];
sum += data[row+i][col+size];
}
sum += at(row, col, size-1); // Reuse previous solution.
at(row, col, size) = sum;
if (sum > at(w_row, w_col, w_size)) { // Could optimize this part if you only need the sum.
w_row = row;
w_col = col;
w_size = size;
}
}
}
}
// The largest sum is of the sub_matrix starting a w_row, w_col, and has dimensions w_size+1.
long long largest = at(w_row, w_col, w_size);
delete [] sub_solutions;
This algorithm has complexity: O(n*n*m*m) or more precisely: 0.5*n*(n-1)*m*(m-1). (Now I haven't tested this so please let me know if there are any bugs.)
Try this one (using naive approach, will be easier to get the idea):
#include <iostream>
#include<vector>
using namespace std;
int main( )
{
int n = 5; //Size of array, you may take a dynamic array as well
int a[5][5] =
{{2,1,8,9,0},{2,4,7,-2,1},{5,4,3,2,1},{3,4,9,9,2},{5,2,6,8,0}};
int sum, partsum;
int i, j, k, m;
sum = -999999; // presume minimum part sum
for (i = 0; i < n; i++) {
partsum = 0;
m = sizeof(a[i])/sizeof(int);
for (j = 0; j < m; j++) {
partsum += a[i][j];
}
if (partsum > sum) {
k = i;
sum = partsum;
}
}
// print subarray having largest sum
m = sizeof(a[k])/sizeof(int); // m needs to be recomputed
for (j = 0; j < m - 1; j++) {
cout << a[k][j] << ", ";
}
cout << a[k][m - 1] <<"\nmax part sum = " << sum << endl;
return 0;
}
With a cumulative sum, you may compute partial sum in constant time
std::vector<std::vector<int>>
compute_cumulative(const std::vector<std::vector<int>>& m)
{
std::vector<std::vector<int>> res(m.size() + 1, std::vector<int>(m.size() + 1));
for (std::size_t i = 0; i != m.size(); ++i) {
for (std::size_t j = 0; j != m.size(); ++j) {
res[i + 1][j + 1] = m[i][j] - res[i][j]
+ res[i + 1][j] + res[i][j + 1];
}
}
return res;
}
int compute_partial_sum(const std::vector<std::vector<int>>& cumulative, std::size_t i, std::size_t j, std::size_t size)
{
return cumulative[i][j] + cumulative[i + size][j + size]
- cumulative[i][j + size] - cumulative[i + size][j];
}
live example

Run-Time Check Failure #2

I have problem with such error: Run-Time Check Failure #2 - Stack around the variable 'numb' was corrupted.
It appears at the last bracket of such function:
int problem20()
{
int res = 0, i;
int numb[160];
for(i = 0; i < 160; i++)
numb[i] = 0;
numb[0] = 1;
for(i = 1; i < 100; i++)
{
multiply(numb, i, numb, 160);
}
for(i = 0; i < 160; i++)
res += numb[i];
return res;
}
EDIT:
void multiply(int* a1, int a2, int* res, int l)
{
int temp, i, m = a2, k;
for(k = 0; m > 0; k++)
m /= 10;
int *result = new int[l + k];
for(i = 0, temp = 0; i < l; i++)
{
result[i] = a1[i] * a2 + temp;
temp = result[i] / 10;
result[i] %= 10;
}
for(i = l; i < l + k; i++)
{
result[i] = temp % 10;
temp /= 10;
}
memcpy(res, result, sizeof(int) * (l + k));
delete[] result;
}
function miltiply just multiply numb by i and give result to the third argument. This function is ok, it was tested earlier.
Your problem is that you pass numb as the res argument for the multiply function. The multiply function creates an array that has size l + k and then tries to copy it to the numb array with size l, this means that you are going out of the bounds of the numb array which in turn triggers this problem.
I would suggest turning the int* arguments to references to std::vector in order to avoid the need to manually allocate a temporary array.